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Abstract. Knowledge discovery in scientific and research datasets is an
extremely challenging problem due to the high dimensionality, hetero-
geneity, and complex relationships within the data. When these datasets
also includes temporal and geospatial components, the challenges in an-
alyzing the data become even more difficult. A number of visualization
approaches have been developed and studied to support the exploration
and analysis among such datasets, including parallel coordinate plots, di-
mensional subsetting, geovisualization, and multiple coordinated views.
In this research, we combine and enhance these approaches in a system
called Geo-Coordinated Parallel Coordinates (GCPC), with the goal of
supporting interactive exploration, analytical reasoning, and knowledge
discovery.

1 Introduction

With advances in data collection and storage technology, the volume and com-
plexity of scientific and research datasets are becoming increasingly overwhelm-
ing. Analyzing and understanding these datasets is an essential step in hypothe-
sis development and scientific discovery. Discovering new and unexpected knowl-
edge requires making sense of large amounts of high-dimensional and interrelated
data. The need to derive insights from data collected for a particular domain
or problem is driving researchers to design, develop, and study new tools and
techniques to support data analysis and knowledge discovery.

Knowledge discovery is the process of identifying and understanding new
meaningful patterns and trends contained within datasets [14]. It is a complex
process that requires multiple iterations of data processing and transformation,
hypotheses generation, and finally interpretation and reasoning about what has
been discovered [14]. Such a process is an extremely challenging problem when
the data is high-dimensional and heterogeneous, contains complex relationships
among attributes, and has important temporal and spatial aspects.

Modern knowledge discovery systems utilize automated data analysis meth-
ods based on research from various fields including data mining, statistics, arti-
ficial intelligence, and machine learning. Even though these automated methods
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may be used to identify previously unknown aspects of the data, they provide
researchers with few explanations about how or why the knowledge has been
acquired, and provide little aid to the researchers in interpreting what has been
discovered. Exploratory data analysis takes a different approach, with the aim of
keeping humans involved in the discovery process . This often includes iterative
investigation of the data, with the support of automated data processing, leading
to the understanding of the patterns and the acquisition of new knowledge.

Visual analytics is an emerging approach that is increasingly being employed
to support exploratory analysis of data [7, 23]. By combining information visu-
alization, data processing, data mining, and interactive interfaces, analysts are
able to explore, analyze, reason, and make sense of highly complex data [23].
Merging multiple visual and interactive representations helps analysts to gen-
erate hypotheses, identify new lines of inquiry, understand patterns, and derive
new insight from what is being shown.

Our goal in this research is to develop a method to support the exploration
and understanding of complex patterns and trends within high dimensional,
heterogeneous, and geotemporal data. Geo-Coordinated Parallel Coordinates
(GCPC) takes a visual analytics approach to the problem domain, using multi-
ple coordinated views to simultaneously show, filter, and examine the data using
parallel coordinates, micro-visualizations of the statistical features of the data,
geovisualization, and investigative scatter plotting. Interactive and automated
features support the knowledge discovery process, as well as the necessary task
of hiding the complexity of the data to reveal the patterns.

The remainder of this paper is organized as follows. Section 2 provides a
review of the key literature that has informed this research, including overviews
of high dimensional data visualization, geovisual analytics, and multiple coor-
dinated views. Section 3 outlines the key features of GCPC, followed by a case
study in Section 4 that illustrates how these features can be used for data explo-
ration and analysis activities, leading to new knowledge generation. The paper
concludes with Section 5, which outlines the key contributions of this work, the
limitations of the approach, and future work.

2 Literature Review

The use of visual analytics to support exploration, reasoning, and knowledge
discovery within high dimensional geotemporal data is an active research domain
with applications in many scientific fields [13, 22]. The following literature review
focuses on three main topics that are relevant to our work: high dimensional data
visualization, geotemporal data visualization, and multiple coordinated views.

2.1 High Dimensional Data Visualization

While a multitude of approaches have been developed over the years to visual-
ize high dimensional data, each has its limitations [30]. Dimensional reduction
methods use computational techniques such as principle component analysis [2]
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or multidimensional scaling [30] to transform the data to a lower dimensional
space while preserving the relative proximity between data points [11]. The end
result is a visual representation of the data in a coordinate space that has no
obvious correlation to the actual dimensions, introducing complexity while ex-
ploring the data [11]. Dimensional subsetting methods use algorithmic techniques
or user preferences to select a small subset of the dimensions to visualize. The
success of such an approach is dependant on choosing which dimensions contain
the most relevant and useful information [30]. This approach can be extended by
displaying several dimensionally subsetted views of the data in a small multiples
configuration. However, as more views are added to explore the relationships
between the different dimensions, it becomes increasingly difficult to detect and
interpret patterns within the data [20]. Instead of using simple shapes to repre-
sent each data point within these plots, glyphs can be used to encode additional
dimensions of the data with shape, size, colour, orientation, or other visual at-
tributes. However, there is a limit to the number of dimensions that can be
visualized using glyphs before they become incomprehensible [12].

A fundamentally different approach to the problem is the use of parallel
coordinate plots, where data are represented within a structure that maps each
of the dimensions to a parallel axis [21]. Individual data points are represented
using polylines, intersecting each axis at the appropriate location for the value on
the specific dimension. This approach is very flexible and scalable with respect
to the dimensionality of the data; adding a new dimension can be achieved
by adding a new parallel axis and extending the polylines to their appropriate
values [17]. The primary value of this approach over other high dimensional
data visualization techniques is that all aspects of the data are shown, and
the relationship between pairs of attributes can be investigated by interactively
placing their axes beside one another.

However, there are also a number of important limitations. When multiple
data points intersect an axis at the same location, ambiguity is introduced. This
can be addressed by interactively highlighting the data points, or replacing the
polylines with curves or density functions, both of which make it easier to per-
ceive and follow the data points through the parallel coordinate structure [17].
When a large number of data points are shown using parallel coordinates, over-
plotting may occur, resulting in visual clutter. Some have explored clustering
and outlier detection algorithms in order to reduce the amount of data that is
shown, and to highlight those data points that are different from the norm [16,
32]. Since overplotting may also make it difficult to grasp the distribution of the
data, adding statistical information to the parallel axes may be useful [18], but
may also further contribute to the complexity of the display. When a particu-
lar dimension of the data represents discrete qualitative values, the ambiguity
and overplotting problems become even more acute. Parallel sets provide an
alternative for visualizing such categorical data, using ribbons between the co-
ordinates to represent the frequency of each category [24]. However, combining
this with traditional parallel coordinates when the data includes a combination
of qualitative and quantitative data is not feasible.
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2.2 Geotemporal Data Visualization

Geotemporal data visualization is a challenging problem due to the complexity of
representing different scales and relations between the geospatial and temporal
aspects of the data [7]. Simply mapping the data with traditional GIS tools, using
different layers for each temporal range, limits the ability to dynamically analyze
the features of the data. Several approaches have been proposed to support
interactive visual analysis of geotemporal data. One of the earliest methods is
the space-time cube, where location is represented in the map dimensions, and
time represented in the third dimension [5]. Another straightforward method is
using two coordinated visualizations: one to represent the temporal aspect of
the data and the second to represent the geospatial aspect of the data. In this
approach, a thematic dot map [22] or a choropleth map [16] may be used to
visualize the location of the data; the temporal representation can then be used
to interactively filter what is shown in the map. Others have studied methods for
directly visualizing the temporal aspect of the data overlaid on the map (e.g.,
using a glyph to representing an aggregation of monthly temporal data [4]).
However, by using visual attributes to represent the temporal aspect of the
data, these attributes cannot be used to represent other multivariate aspects.
Pre-processing the data to calculate changes over specified timeframes, and then
visualizing these differences, can allow interesting features to be identified that
would be difficult to discern otherwise [19]. Such an approach can be beneficial
when the goal is to analyze how the data are changing over space and time.

2.3 Multiple Coordinated Views

Considering data that consists of both high dimensional attributes and geotem-
poral aspects, exploring and analyzing this type of data becomes an extremely
challenging problem. A single visualization method is not adequate to support
exploration, comparison, analysis, and knowledge discovery across the different
aspects of such complex data. A common approach is to provide multiple visual-
izations of the data, which are linked together such that interactive manipulation
in one (e.g., zooming, filtering, and focusing) results in a corresponding change
in all others [27]. Views of the data that are customized to the specific meanings
of the attributes have been used in this manner, such as the combination of a
scatter plot matrix, time series visualizations, and word clouds [13, 16]. From a
geospatial analysis perspective, the coordinated combination of parallel coordi-
nates and geovisualization approaches have been studied for many years [3, 15].
However, there remains a shortage of geovisual analytics systems that support
interactive analysis of high dimensional geotemporal data [6]. Furthermore, link-
ing these approaches within an integrated analysis of the qualitative non-spatial
attributes remains an open problem that we wish to address in this research.

3 Geo-Coordinated Parallel Coordinates (GCPC)

Discovering knowledge and testing hypothesis in environmental studies is a chal-
lenging problem due to the complexity of environmental data. Such data often
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consists of multiple heterogeneous factors with complex interrelations and im-
portant spatial and temporal aspects. Motivated by the challenges of exploring
among such data, we have developed a geovisual analytics system to support
analysis and reasoning about high dimensional heterogeneous geotemporal data.
Geo-Coordinated Parallel Coordinates (GCPC) has been designed to enable the
interactive analysis activities described in Keim’s visual analytics mantra: “an-
alyze first; show the important; zoom, filter, and analyze further; details on
demand” [23].

The core of the system is comprised of two tightly coordinated features: a
parallel coordinate plot and a geovisualization. These two views allow the sys-
tem to represent the high dimensional, heterogeneous, temporal, and geospatial
aspects of the data simultaneously. An optional scatterplot view allows analysts
to interactively investigate correlations between pairs of factors. To further sup-
port exploration among the data, these visual components are linked through
coordinated interactions: filtering, zooming, and highlighting the data to focus
on interesting features in one view results in similar actions in the other views.
Selections for visual encoding (e.g., colour, size) are replicated across all views,
reinforcing the interpretation of the coordination across the views. A screenshot
of the system is provided in Fig. 1.

Since environmental data analytics is seldom performed on just a single data
set, the system was designed with data flexibility in mind. In order to load an
arbitrary dataset, an automatic pre-processing step converts raw data into a
tabular format with a single geospatial location per data point. The data types

Fig. 1. The main view of the GCPC consists of parallel coordinates, micro-
visualizations of the statistical properties of each dimension, interactive controls for
configuring the visualizations, a geovisualization of the geospatial distribution of the
data, and the investigative scatterplot. Here, the data is filtered for specific values on
the first dimension and coloured based on the values in the sixth dimension.
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are automatically detected, allowing appropriate visual encodings within the
GCPC interface.

The software was developed within a web-based interface, using the Data
Driven Documents (D3) library [8] as the core. Existing parallel coordinates [10]
and geovisualization [1] plugins were used and extended to add the additional
visual and interactive features. In the remainder of this section, the specific
features and design considerations of GCPC will be explained.

3.1 Parallel Coordinate Plot

The parallel coordinate plot in GCPC allows multiple interactions to support
exploration within the high dimensional data. Since the direct relationship be-
tween a pair of dimensions can only be seen if the dimensions are placed adjacent
to one another, the system supports interactive reordering of the coordinates.
Dimensions of the data that are not relevant for the current analysis activity can
be interactively hidden. Investigating interesting subsets of the data is supported
by filtering the data using brushing operations on the coordinates. Such filtering
is immediately applied throughout the system to support further investigation
in the other views. Detailed analysis is also supported by allowing the user to
zoom-in on the brushed data, resulting in a rescaling of the data displayed on
the coordinate. This can allow for the study of a subset of data that is tightly
clustered within a narrow range of values.

The analyst may choose to colour the data according to the value on a chosen
dimension, which is also reflected in the other visualizations. In order to ensure
proper interpretation of the colour encoding, the encoding scheme is different
for each data type. Quantitative data is encoded with a continuous, perceptu-
ally ordered scale; ordinal data is encoded with a discrete perceptually ordered
scale; and qualitative data is encoded with perpetually distinct colour scales.
Colour scales were chosen with an awareness of colour theory and the human
interpretation of colour [31], using ColorBrewer [9] as the starting point for the
specific scale selections. Since a given dataset may contain multiple different
temporal aspects, it was decided to not provide a single timeline to filter the
data, but instead to include these within the parallel coordinates. This allows
the temporal features to be studied, filtered, and manipulated in the same way
as other aspects of the data.

Statistical Descriptors One of the criticisms of using parallel coordinate plots
is the difficulty in identifying the distribution of the data on a given dimension
when there are a large number of data points. The compact nature of the parallel
coordinates may result in overplotting and visual clutter, making it difficult
to identify the precise data points going through a given value on a specific
dimension. To address this limitation, micro-visualizations have been added to
each parallel coordinate to illustrate the statistical properties of the data. While
others have explored similar solutions by overlaying the statistical descriptors on
the coordinates [18], GCPC provides these on top of each coordinate, allowing the
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information to be observed as needed, without interfering with the interpretation
of the data shown in parallel coordinate plots.

The format of these statistical descriptors depends on the type of data they
describe. Quantitative data is visualized using Tukey box plots [29], providing a
compact representation of the median, quartile, and fifth/ninety-fifth percentiles.
For qualitative and ordinal data, such measures are meaningless; instead his-
tograms of the distributions are provided. Both formats allow the analyst to
quickly observe and interpret the different types of data, providing an overview
of the features of the dataset. Any filtering of the data automatically results in
a recalculation of the statistical properties of what remains, and an update in
these micro-visualizations.

Outlier Detection A second criticism of parallel coordinate plots is the dif-
ficulty in identifying outliers, due to the significant visual weight that is given
to the dominant pattern within the data. As a result, it is difficult to visually
isolate data points that are different from the norm. In some cases, such outliers
may be uninteresting, and there may be a desire to remove these to reduce the
additional visual clutter they cause. In other cases, the outliers may be impor-
tant for the analysis at hand, and there may be a desire to highlight them. In
order to support outlier analysis, GCPC includes an automatic outlier detection
algorithm.

The approach employed is designed specifically for high dimensional data,
based on the comparison of angles between multi-dimensional vectors [25]. This
is based on the observation that for an anomalous data point, the angle to other
pairs of data points in the collection will be small because of its distance from
the other data. Conversely, for data points that are not anomalous, they will
be surrounded by other points, resulting in large angles to other pairs of data
points. The statistical variance of the angle is computed for each point to all
other pairwise points in the dataset, which is then used as an outlier score to
rank the data points. A data point is labeled as outlier if the score is lower than
an empirically set threshold. Although not entirely accurate, qualitative and
ordinal data are mapped and normalized to numerical values in this process.

More specifically, the angle based outlier detection score (ABOD) of point
A is computed as:

ABOD(A) = V ARB,CεD

(
〈ĀB, ĀC〉

‖ ĀB ‖2‖ ĀC ‖2

)
where B, and C represent all pairs of data points in the dataset D, and V AR is
the statistical variance over these data. What is being calculated are the angles
between point A and all pairs B and C, noramlized by the length of the vectors
‖ ĀB ‖, ‖ ĀC ‖, which gives more weight to the score if points B,C are nearer
to point A.

Because this algorithm must compare each data point to all other pairs,
it is computationally expensive (O(n3)). While classifying the data using an
algorithm such as k-nearest neighbours can speed up the approach [25], for our
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purposes it is not necessary to calculate these outliers in real-time. Instead, the
outlier ranking scores can be calculated during the pre-processing step and stored
as part of the data, but keeping the cut-off threshold for outlier classification as
an interactive parameter. The analyst may then choose how sensitive to make
the outlier detection, and whether to use this to filter out the outliers or highlight
them for detailed investigation.

3.2 Geovisualization

The purpose of the geovisualization is to allow the analyst to observe and in-
terpret the spatial distribution of the data. This is an essential part of GCPC,
allowing for the exploration among the relations between multiple factors and
the geospatial aspects of the data. GCPC contains two main modes of displaying
geospatial features on the map: a dot map that represents each point as a circle
at the appropriate location, and hexagonal binning that represents aggregated
spatial data on a hexagonal grid. While the process for producing the dot map
is straightforward, there is some complexity in the creation of the hexagonal bin
map. A grid of hexagonal polygons are layered over the map, and the data is
aggregated based on which bin it falls into [26]. The default is to simply count
the number of data points in each bin, but more complex aggregation such as
total or average calculations are also possible. The size of the hexagons are then
used to encode the data aggregated within the bins.

Settings below the parallel coordinate plot allow for the manipulation of two
visual variables within the geovisualization: colour and size. When the dot map
is shown, the size and colour of the dots are encoded based on the dimensions of
the data chosen for these values. When the data is aggregated in the hexagonal
bins, this colour and size encoding cannot be used directly. Instead, the size of the
hexagon continues to be calculated as normal, but the colour is determined by
the average value for quantitative data or the most frequent value for qualitative
data.

The normal pan and zoom operations on the map allow the analyst to view
more closely the geospatial relationships among the data. In order to further
understand and explore among the data, the analyst may activate a geographical
filter. The system allows the user to draw polygons to create arbitrary shapes
that overlap a region of interest. The filter will remove all data points outside of
the drawn shape, both within the geovisualization and also from the other visual
representations. Coordinated highlighting allows the analyst to select specific
data points within the map in order to isolate their attributes in the other
dimensions using the other visual representations. These features enable the
co-exploration of the data within both the high-dimensional elements and the
geospatial elements.

3.3 Investigative Scatterplot and Correlation Analysis

Investigating the correlation between different factors and dimension is essential
to understanding the complex relations within the data. While the order of the
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dimensions in the parallel coordinates may be manipulated to observe the pattern
of the relationship, an analyst may wish to investigate such relationships in more
detail and in a more fluid and interactive way. Selecting dimensions of the data to
plot on the x- and y-axis using the controls under the parallel coordinates results
in the creation of a scatterplot of the data. This enables a direct and intuitive
analysis of the correlation between the selected attributes. Any selections of the
colour and size encoding will also be present in this scatterplot, allowing for the
interactive visualization of four dimensions of the data.

Because the analyst can easily change the dimension of the data to use for
the axes, correlations can quickly be investigated and examined. Following the
same coordinated interaction within the other views of the data, brushing over
a region of this scatterplot will filter the other views, and selecting individual
points will highlight their counterparts within the parallel coordinates and the
geovisualization.

3.4 Data Inspection

During the exploration of the data, it is important to maintain the ability to
drill down to the raw data in order to allow the analyst to inspect the actual
values. This inspection may be used by the analyst to confirm what has been
shown visually. When an individual data point is selected in any of the other
views, a details window is populated with the complete set of data for this
point. In addition, as the analyst filters the data using the parallel coordinates,
geovisualization, and investigative scatterplot, they may wish to extract this
specific subset of the data for detailed inspection and export into other software.
A table view of the data supports this process, which only shows the data that
matches the current filter settings.

4 Case Study

To demonstrate the features and utility of GCPC in the analysis of environ-
mental data, we describe below three exploration scenarios of a dataset from the
fisheries domain. The dataset was provided by the Too Big To Ignore (TBTI) re-
search project, whose goal is to document and study the impact and importance
of small scale fisheries around the world [28]. It consists of 127 data points over
nineteen dimensions that include quantitative, qualitative, ordinal, temporal,
and geospatial attributes that describe the small-scale fishing industry around
the world. While the size of this dataset is relatively small, its high dimensional-
ity, heterogeneity, and geotemporal attributes made it difficult to analyze using
traditional means.

Initial Exploration The analyst in this case study is an environmental re-
searcher trying to explore and compare the impact of small scale fisheries across
the broad range of attributes collected. Loading the dataset into GCPC will
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automatically identify the type of each dimension and calculate initial statisti-
cal distributions. As shown in Fig. 2, the system will default to showing all of
the data in the parallel coordinates plot, and the locations at which this data
was collected in the geovisualization. From this overview of the entire dataset,
global patterns in the data may be observed, including the distribution of the
data over the dimensions, the correlation between adjacent coordinates, and the
geodistribution of the data. This initial assessment of the data can then be used
as the basis for confirming what is known (e.g., the extent of small-scale fishing
in Central America), and developing and evaluating new hypotheses about the
data.

One aspect of the data that can be readily observed from the overview is that
it is highly irregular, with a small number of extreme values that extend the range
of some coordinates (e.g., Inshore Fishing Area (third parameter), and Fishers
Count (sixth parameter)). This pattern in the data causes the remaining data
points to be clustered at the other end of the scale, making it difficult to discern
their pattern. There are two mechanisms built into GCPC that can address
this problem: using the automatic outlier detection to hide these data points
that are substantially different than the norm, or using the interactive focusing,
filtering, and zooming features on the coordinates of interest. Supposing that
the analyst wants to retain interactive control over the analysis process, the
first step in exploring these coordinates is to inspect the extreme values. By
clicking on each, the researcher will observe that they correspond to countries
with large fishing regions (i.e., Canada, Indonesia, and Australia). The data on
these dimensions can be filtered easily, by interactively dragging a bounding box
over the coordinates. Clicking on the zoom icon will cause the selected range to
fill the available space for the coordinate in question. The results of this filtering
and zooming operation can be seen in Fig. 3.

Knowing that there are outliers in the data, the analyst may wish to have
the system automatically find these so that they can be evaluated, and then
perhaps hidden when conducting future analyses of the data. Fig. 4 shows these

Fig. 2. The default view of the data loaded in GCPC.
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Fig. 3. Zooming the scale on the Inshore Fishing Area dimension from over 1,000,000
to 100,000 reveals the pattern at the lower values on this dimension.

Fig. 4. Highlighting the outliers data allows the analyst to easily inspect these, and
the subsequently hide them.

anomalies, and dims the remaining data so that the overall pattern can still
be observed. The algorithm identified countries that are considerably different
than the normal pattern of the data across multiple dimensions (e.g., Chile and
Mexico). Another set of outliers detected were data points with multiple missing
information, which render them substantially different than normal data (e.g.,
Australia). Isolating these anomalies from the rest of the data would be tedious
and cognitively taxing had it been done manually.

Analysis of Attribute Relationships After this initial observation and ex-
ploration, the researcher may be interested in the development and testing of
an hypothesis that relates Total Catch, Boats Count, Fishers Count, and Total
Landings. A first step in such an examination is to re-order the coordinates such
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that they are adjacent to one another. Doing so, allows the analyst to observe
direct or inverse correlations easily. More complex relationships can be observed
using the investigative scatterplot, mapping these attributes to the x-axis, y-
axis, colour, and size options (see Fig. 5). Since the colour and size parameters
are also represented on the map, the locations where the Total Landings and
Fishers Count are large can be observed. This analysis shows a pattern of the
correlation between these parameters, as well as the instances of data points
that are counter to the pattern (e.g., Japan, with low Fishers Count, but high
Boats Count and Total Catch).

Fig. 5. Investigating the relations between Total Catch, Boats Count, Fishers Count,
and Total Landings using the investigative scatter plot and visual encodings.

Analysis of Spatial Relationships An important step in analyzing data such
as this is to make comparisons across different geographical regions. Suppose the
researcher wishes to study the gender distribution of small-scale fishers between
Europe and Africa. The map can be zoomed to these regions independently,
and then free-form shapes can be drawn around the areas of interest. Doing so
filters the data shown in the parallel coordinates, which may be further filtered,
perhaps in order to focus on the gender distribution in the most recent data.
Screenshots showing these two analyses are provided in Fig. 6. From this, we
can readily observe that in France, Italy, and Greece, it is not common for both
men and women to fish. However, in sub-Saharan Africa, recent data shows that
both men and women are actively involved in the small-scale fisheries.

5 Conclusion and Future Work

In this paper, we presented Geo-Coordinated Parallel Coordinates, a visual an-
alytics system designed to support the exploration and analysis of high dimen-
sional, heterogeneous, geotemporal data. The main contribution of the system
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Fig. 6. Zooming the map and filtering the data to specific geographic regions allows
for the isolation of this data within the parallel coordinates, enabling the comparison
of parameters such as the differences on the Gender dimension.

are: (1) the integration and coordination of multiple visualization and inter-
action techniques; (2) the micro-visualizations of the statistical information for
each dimension added to the parallel coordinates; (3) the use of automatic outlier
detection to allow highlighting and filtering of outlier data; and (4) the flexible
design that allows arbitrary high-dimensional data to be loaded into the system.

Even though this paper demonstrated through a case study the benefits
of GCPC in facilitating analytic reasoning through interactive exploration of
the data, there are some limitations. The current implementation assumes the
geospatial data are point data, and does not support data that represents geospa-
tial regions. Complex data types such as hierarchical data and missing data
cannot be represented within the parallel coordinate structure. GCPC does not
currently support the analysis of complex temporal patterns such as temporal
ranges and movement data. Even though we endeavoured to address some of the
fundamental limitations of parallel coordinates in GCPC, it remains difficult to
detect patterns over more than four dimensions of the data.

Future work may include addressing some of these limitations. Supporting
different geospatial features (e.g., regions, trajectories) will allow the system to
more readily support the analysis of such data. Modifying the angle-based out-
lier detection approach to more accurately detect differences in qualitative and
ordinal data will improve the anomaly detection. Clustering the data may ad-
dress the overplotting issues within the parallel coordinates, allowing high-level
patterns within the data to be identified. Adding a separate view for temporal
data (e.g., a timeline), will enable users to analyze different types of temporal
data and identify complex geotemporal patterns and trends. Since this approach
is highly interactive, we are currently in the planning stage for an empirical eval-
uation with expert data analysts, which will provide evidence of the value and
usefulness of the approach for real-world data analysis activities.
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