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ABSTRACT

The concept of a tone helix has been studied in tone theory
and harmonic analysis from a variety of different perspec-
tives. A tone helix represents harmonic relationships between
tones in an attempt to model the perception of pitch and har-
mony in a single form. This paper presents a framework
whereby previous helical tone representations can be consid-
ered together as one generalization with multiple instantia-
tions. The framework is realized by combining the concept
of isomorphic note layouts with cylindrical lattices. The ex-
tensively studied geometry of carbon nanotubes is used as a
mathematical grounding. Existing tone helix representations
are shown to adhere to this new, more general framework,
and a process for mapping any flat isomorphism to its corre-
sponding tone helix is presented.

1. INTRODUCTION

Euler’s tonnetz [1] is perhaps the earliest exploration of the
harmonic arrangement of tones on a lattice. Euler sought to
build a representation which showed that notes in a scale are
related not just to adjacent notes, but also (or perhaps more
so) to notes which share a harmonic relationship. Perceptu-
ally, a perfect 5th with frequency ratios of 3:2 can be consid-
ered a closer relationship than that of a semitone.

Music theory has long since encapsulated this concept with
the circle of fifths which shows close relationships between
keys. Researchers have also explored 3-dimensional helical
structures of pitch, showing the harmonic relationships be-
tween intervals as the overall pitch ascends. Recently, re-
search into isomorphic layouts has shown a generalization
from the Tonnetz, and other alternative layouts such as the
Jankó, into a theory that presents any and all such harmoni-
cally related layouts, in either a square or hexagonally tiled
surface [2]. We term these layouts as flat isomorphisms.

The purpose of this paper is to merge these two research ar-
eas, making use of ideas from the study of flat isomorphisms
to further the exploration of the helical nature of musical har-
mony. Although all of the discussions herein and most histor-
ical explorations of these harmonic relationships have con-
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centrated on the 12-tone equal tempered scale of the West-
ern classical music tradition, it should be noted that any scale
which has harmonic frequency ratios at the core can be simi-
larly explored, including microtonal scales.

2. SPIRAL MODELS OF RELATIVE PITCH

Musicians and composers have always been interested in the
intricate way in which humans perceive the relationship be-
tween pitches. Physical constraints mean that most musi-
cal instruments align pitch on a linear scale, with adjacent
notes being close together in frequency. For a western 12-
tone equal tempered scale, this means that adjacent notes are
a semitone apart, but the semitone is not a harmonically con-
sonant interval. Intervals with small whole-number frequency
ratios, such as the perfect 5th (3:2), the perfect 4th (4:3) and
the major 3rd (5:4) have the feeling of harmonic closeness,
and researchers have explored the possibility of a represen-
tational structure that showed these harmonic relationships
instead of (or in addition to) the frequency relationship. Re-
peating ascending octaves imply that these harmonic relation-
ships are helical, which is why many researchers have inde-
pendently investigated pitch spirals or harmonic helixes.

Drobisch originally proposed the idea that pitch height could
be represented as a helix, in 1855 [3]. In 1982, Shepard [4]
introduced an equal-spaced helical model to arrange twelve
chromatic pitches over a regular, symmetrical, transformation-
invariant surface. Shepard notes that this model could be iso-
morphic, and allows a differential stretching or shrinking of
the vertical extent of an octave of the helix relative to its di-
ameter. Shepard’s spiral pitch model is shown in Fig. 1a.

Krumhansl [5] tried to use empirical data to unveil the rela-
tionships of pitches in tonality. She proposed a conical struc-
ture of pitch intervals which corroborates the perceptual neo-
Riemannian transformation, and does not contradict Shep-
ard’s spiral model. Both Shepard and Krumhansl’s models
are based on the psychological perception of pitch, but since
they are both abstracted structures based on a single octave,
they shown no information on pitch relationships beyond the
octave. In both of these models, the position of a pitch is re-
lated using height h and radius r, providing an angle of the
helix itself from the plane as a ratio of h/r.

Based on those two structures and the Longuet-Higgins’s
shape match algorithm, Chew [6] explored an abstract spiral
model for mapping Tonnetz-based representations to the he-
lix, providing an identical distance between each perfect 5th
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interval, and a different identical distance between each ma-
jor/minor 3rd. This arrangement is equivalent to a specific
isomorphism wrapped into a cylinder, using 5ths and 3rds as
the defining intervals. In Section 5, we will show that Chew’s
pitch representation, when appropriately constrained, corre-
sponds to one case of a family of similar pitch models, which
can be enumerated using our proposed framework. Chew’s
abstract spiral model model is shown in Fig. 1b.

(a) Shepard’s model (b) Chew’s model

Figure 1: Helical models of pitch.

3. HEXAGONAL ISOMORPHIC LAYOUTS

An isomorphic layout is an arrangement of pitches such that
any musical construct (scale, chord, melody) has a consis-
tent shape regardless of the root pitch of the construct. Early
examples of isomorphic layouts include Euler’s tonnez and
Jankó’s keyboard [7], and recent musical instruments based
on isomorphisms include the C-thru Axis and the Opal key-
board. A general theory of isomorphisms [2] states that, given
any two intervals, an isomorphic layout can be constructed
and evaluated for completeness (i.e. that it contains all notes
in the given musical system). As with the rest of this discus-
sion, Isomorphic layouts are not restricted to the western 12-
tone equal tempered scale, but we use this scale and nomen-
clature in our discussion for convenience and familiarity.

Isomorphisms have in the past been limited to flat surfaces,
however, 3d geometries for hexagonal lattices provide a com-
pelling opportunity for isomorphic study. The next section
presents a discussion of the mathematics of cylindrical hexag-
onal lattices, using the mathematical context developed in the
study of carbon nanotubes.

4. CYLINDRICAL HEXAGONAL LATTICES

A chiral tube (n,m), is defined by a chiral vector −→Ch, indi-
cating the orientation of the hexagonal lattice on the tube:

−→
Ch = n · −→a1 + m · −→a2, (1)

where −→a1 and −→a2 are two basis vectors separated by 60◦.
We can imagine cutting a planar hexagonal lattice in a spe-

cific direction, along the edges of hexagons, and then curling

the resulting sheet into a cylinder. If we cut along the chiral
angle of 0◦, we get a special tube known as a “zigzag”. Cut-
ting along the chiral angle of 30◦ gives us a the “armchair”
tube. Any other angle between 0◦ and 30◦ gives a general
chiral tube. These three different cutting directions are shown
in Fig. 2, and the resulting tubes are shown in Fig 3.
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Figure 2: Three types of hexagon lattice cuttings. Dark grey
indicates the “end” of the resulting tube, and light grey indi-
cates the “seam” of the tube.

Armchair Zigzag Chiral

Figure 3: Three types of cylindrical hexagonal tubes, gener-
ated by cutting the planar hexagonal lattice as in Fig. 2.

The diameter of the resulting tube depends on the number
of hexagons along the chiral angle. For armchair and zigzag
tubes, one can create a tube of any number of hexagons, but
for general chiral tubes we must select a whole number multi-
ple of the length of the chiral vector. The chiral vector shows
when the tube will repeat, and itself represents a whole num-
ber of hexagons in the −→a1 and −→a2 directions. Multiples of the
chiral vector gives duplicates of the cutting around the tube.

5. CHIRAL TUBES AND HELICAL MODELS

If we replace the hexagons on a chiral tube with individual
tones, we can see the beginnings of a tone helix model ap-
pear. As we proceed around the tube, each adjacent hex cor-
responds to a a specified interval, and the tones spiral around
the tube in exactly the same way as any of the the pitch helix
models presented in Section 2 would dictate.

5.1 Shepard’s Model

Let us first consider the Shepard pitch helix. In this case, the
pitch increases by semitones around the spiral, completing
one turn of the spiral once per octave. If we map this onto
a hexagon tube, it means that in order to advance one octave
(one hexagon along the tube), (

−→
a1), we must first proceed

12 semitones (hexagons) around the tube (
−→
a2). We can then

calculate the angle of the chiral vector [8]:



Θ = tan−1

[ √
3m

m + 2n

]
= tan−1

[√
3 · 12

12 + 2

]
= 23.2◦ (2)
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Figure 4: Chiral tube version of Shepard’s tone helix.

The hexagon lattice cutting for this chiral angle, and the re-
sulting tube, are shown in Fig. 4. In this case, we have ad-
jacent hexagons in one direction corresponding to semitones,
and adjacent hexagons in the other direction corresponding
to octaves. Shepard’s model allows for varying distance be-
tween the loops of the spiral, and we can accomplish this by
allowing duplicates of the hexagon lattice cutting, resulting
in a larger-diameter tube.

5.2 Chew’s Model

This method can also be use to instantiate Chew’s helical
model, presented in Fig. 1b. We can see that vertically ad-
jacent hexagons should be a major 3rd apart, and hexagons
along the spiral should be a perfect 5th apart, as shown in
Fig. 5. This presents a problem, however, because the chi-
ral vector for this arrangement of notes is not circumferential
to the resulting tube. This means that if we were to actu-
ally construct Chew’s model, with notes equally spaced out,
it would be not be internally consistent. If you start at one
note and proceed around the circumference of the cylinder
defined by Chew’s model, you would not get back to the same
note again, leading to a paradox. Chew [6] acknowledges that
distances on her helical model do not correspond to musical
distance. Our framework adds a more rigorous constraint that
all tones must be equidistant along and between each helix.

We can make a small modification (shown in Fig. 6) in order
to make Chew’s original model consistent using equal dis-
tances. We rotate and mirror the model so that major 3rds are
along the spiral, and perfect 5ths are in the vertical direction.
In this way, we can make the chiral angle horizontal, as is
required in our framework (see Section 6). It may also be
possible to implement Chew’s original pitch helix by allow-
ing additional notes to appear between each note on the helix,
and then removing or ignoring the interspaced notes. This is
left for future work.

A#

B

C

C#

F
D

D#
F#

E
G

G#
C#

F

A5

A4

perfect 5th

major 3rd

minor 3rd

C

E

G

(a) Chew's model on  a 
hexgonal lattice

(b) Cutting required to implement 
Chew's model 

C
A5

A4
A#

B

Figure 5: Chew’s original model cannot be implemented with
fixed note size. The chiral angle is not horizontal.

5.3 The Generalized Case: Finding the Helix Angle

We can imagine a tone helix with any interval along the spi-
ral and any other interval between spiral loops, and the result
can be mapped around a tube. If two intervals are sufficient
to define such a tube, and likewise two intervals are sufficient
to define a planar hexagonal isomorphism, then it follows that
if we take any planar hexagonal isomorphism, cut it in a spe-
cific way, and wrap it around a tube, the result (if the correct
cutting is chosen) will be a chiral tube corresponding to the
original isomorphism. We call this a cylindrical hexagonal
isomorphism. In this way, any unique self-consistent pitch
spiral model is an instance of our generalized framework, and
the helix angle for the corresponding tone spiral is, indeed,
the chiral angle of the matching tube.

The primary contribution of this new framework, then, is a
mathematical model of the shear required to represent a spe-
cific tone helix. Tube-like lattices have been proposed in the
past, but researchers have only speculated as to the angle that
a specific helix would need, and the circumference and shear
of the corresponding lattice. The next section presents the
justificationb for using chiral angles to compute these values
for any given tone helix.
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Figure 6: Chiral tube version of a modified Chew tone helix.



6. ISOMORPHISMS AND CHIRAL ANGLES

Each planar isomorphism, defined by two musical intervals,
can be represented by a pitch axis and an isotone axis [2]. The
pitch axis represents the direction in which pitches increase,
and the isotone axis (orthogonal to the pitch axis) represents
the direction in which pitches repeat. Adjacent istotone axes
are a semitone apart, though semitones may not be adjacent
on the layout. We can build on this isomorphism framework
to map any isomorphism onto an appropriate chiral tube.

If you proceed around the circumference of a chiral tube
created by curling an isomorphism, you must eventually ar-
rive back at the original pitch on which you started. For this
reason, we can see that the isotone axis of an isomorphism
must be aligned with the circumference of the associated chi-
ral tube. Since the pitch axis is orthogonal to the isotone axis,
the pitch axis must therefore be aligned along the axis of the
chiral tube. The chiral angle of a tube corresponds to the di-
rection in which we must cut the hexagonal lattice to form the
end of the tube. The chiral angle is therefore aligned with the
circumference of the tube, meaning the chiral angle must be
equal in both direction and magnitude to the isotone axis.

If we take an example isomorphism, where adjacent hexagons
have major 3rds, minor 3rds, and semitones, we can see this
process. The pitch axis and isotone axis for this isomorphism
are shown in Fig. 7.

Figure 7: Pitch axis (solid arrow) and isotone (dotted line).

We can then generate a paper prototype of a chiral tube for
this isomorphism (Fig. 8). This layout corresponds to a tone
helix with semitones along the spiral and major 3rds from one
loop to the next, with three loops making an octave. This
tube consists of one instance of the hexagonal lattice cutting.
Allowing duplicates of the cutting results in a larger tube.

7. CONCLUSION

Isomorphic tone layouts have been popular for the explo-
ration of musical harmony, the expanding of compositional
possibilities, and the accelerated learning of musicianship and
performance skill. Tone spirals have been a popular way to
study and relate the intricate way humans perceive musical
harmony. Combining these fields to create a class of cylindri-
cal isomorphisms has the potential to further expose harmonic
structure and offer new ways to interact with tone maps.

This paper presents a framework for mapping any tone he-
lixes onto a cylindrical lattice by calculating the required an-
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Figure 8: Low-Fi prototype tube and corresponding tone helix
for the isomorphism in Fig. 7.

gle and shear, and by doing so we have shown that existing
helical pitch models are instances of this framework, and than
any isomorphism can be mapped to a corresponding tube by
matching the isotone axis to the chiral angle. The strict re-
quirement of fixed note distance means that some existing
models must be slightly modified, but this constraint leads
to more well-defined helical tone spaces.

We suspect that these cylindrical models may provide playa-
bility and composition opportunities just as flat isomorphic
keyboards have done. We plan to study the chiral tubes of
different tone spirals, and to construct physical instruments
to evaluate the musicality of such isomorphic tubes.
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