
On the Musical Opportunities of Cylindrical Hexagonal Lattices: Mapping Flat
Isomorphisms Onto Nanotube Structures

Hanlin Hu, Brett Park and David Gerhard
Department of Computer Science, University of Regina

hu263@cs.uregina.ca | brett@shiverware.com | gerhard@cs.uregina.ca

ABSTRACT

It is possible to position equal-tempered discrete notes on
a flat hexagonal grid in such a way as to allow musical
constructs (chords, intervals, melodies, etc.) to take on the
same shape regardless of the tonic. This is known as a mu-
sical isomorphism, and it has been shown to have advan-
tages in composition, performance, and learning. Consid-
ering the utility and interest of such layouts, an extension
into 3D interactions was sought, focussing on cylindrical
hexagonal lattices which have been extensively studied in
the context of carbon nanotubes. In this paper, we explore
the notation of this class of cylindrical hexagonal lattices
and develop a process for mapping a flat hexagonal iso-
morphism onto such a lattice. This mapping references and
draws upon previous explorations of the helical and cycli-
cal nature of western musical harmony, but is not limited
to 12-tone equal tempered scales.

1. INTRODUCTION

The tiling problem in music theory describes the challenge
of using periodic or aperiodic congruent tiles to partition
a plane into a representation of musical significance. One
solution is to tile triads into vertices in an equilateral tri-
angle lattice. Based on the dual map of the equilateral tri-
angle lattices, congruent hexagonal lattices are introduced
to present isomorphic layouts, which have the following
characteristics of musical keyboard design [1]: Transpo-
sition Invariance, where each construct such as interval,
chord and scale have the same geometric shape regardless
of the root key; and Tuning Invariance, where all constructs
must have the same geometric shape in all tunings of the
continuum (which allows for an extension of this theory
from common 12-tone equal tempered usage into micro-
tonal tunings).

Since the tonnetz was first introduced by Euler in the
1700s, many physical instruments have been developed
which use isomorphic layouts on flat hexagonal lattices,
including the AXiS Keyboard, the Hex player and others.
Most of the keyboards are not reconfigurable, only provid-
ing a single layout, as is the case with the Opal, the Thum-
mer and the like. Keyboards like AXiS-49, AXiS-64 and
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Rainboard can be reconfigured to alternate isomorphisms,
but they present only a subset of the layout in a fixed win-
dow, rather than the standard 88 keys / eight octaves, or
more. The reason full sized isomorphic keyboards have not
been developed is that the boundary shape of keys in one
octave are not uniform. As discussed in Section 2, differ-
ent isomorphic layouts have different base intervals, and
therefore when the layouts are extended to include 8 oc-
taves (or whatever constraint may be applied), the overall
shape and structure will be different. In order to construct
an instrument that has access to 8 octaves, in a reconfig-
urable arrangement, without shifting positions of notes, a
very large number of controller buttons would be needed
and the object itself would be unnecessarily expensive and
unwieldy.

Taking into account the cyclic, helical, repetitive nature
of musical harmony, especially as it appears on hexagonal
musical isomorphisms, it is possible to represent all notes
in a much tighter arrangement, by curling a flat hexago-
nal isomorphism through the third dimension and aligning
repeating octaves along the circumference of the result-
ing cylinder. Drawing on mathematics already competed
in the study of buckminsterfullerene (Carbon Nanotubes),
this paper describes the mathematical theory behind the ap-
propriate amounts of curl for different isomorphic layouts,
and presents a framework for constructing any such cylin-
drical hex isomorphic layout.

The paper is organized as follows: First, we explore the
current state of isomorphic keyboard layouts and present
some historical examples. Next, we explore the mathemat-
ics of carbon nanotubes. Third, we explore the orientation
of an isomorphism to a nanotube using pitch axes and chi-
ral angles. We then present details of the various cases
that arise with specific arrangements, classify those cases,
and present solutions for each. Finally, we show some ex-
amples of nanotube isomorph curlings, and discuss some
possible directions for instrument design and playablity.

2. ISOMORPHIC MUSICAL LAYOUTS

Isomorphic layouts are the product of research on the tiling
problem, as well as geometries of musical theory. Euler [2]
was the first to introduce such an arrangement, based on
whole-number ratios of related frequencies mapped into a
lattice, shown in Fig. 1. Later, Riemann presented a sim-
ilar lattice [3], by using triangles to represent major and
minor thirds, shown in Fig. 2. The dual of this triangular
tessellation of vertices is a hexagonal grid.
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Figure 1: Euler’s tonnetz.

Figure 2: Riemann’s triangular lattice.

Paul von Jankó designed a piano with horizontally whole
tone and vertically semitone steps in 1882 [4], the arrange-
ment of which is shown in Fig. 3. However, this piano did
not achieve wide popularity because of the expense and
weight of the instrument itself. The Wicki-Hayden lay-
out was introduced as distinguishing seven white keys into
two groups [5]. It benefits performance with shorten dis-
tance between keys in two groups, reducing learning time
by unifying fingering into one pattern, and removing ambi-
guities by separating black keys into flat and sharp groups
respectively. However, the keys in the Wicki-Hayden lay-
out were not in a chromatic order, making it more difficult
to learn for musicians used to adjacent semitones. Other
popular isomorphic layouts such as Bajan, B-system, C-
system, Gerhard and Park layouts are described in [6]. The
AXiS keyboard, Opal, Thummer and Rainboard are phys-
ical constructions of these isomorphic layouts.

All of the isomorphic layouts mentioned above are based
on flat, two-dimensional tessellations, which are usually
hexagonal, but also can be rectangular, as in the case of
the Jankó or Linnstrument layouts. Based on group theory
and the tiling problem in mathematics, it is possible to map
2-d tessellations into higher dimensional space [7]. After
carbon nanotubes (CNTs) were discovered from observa-
tions of formations of Fullerenes, the mathematical topol-
ogy of carbon nanotubes became a subject of scrutiny in
mathematical chemistry research [8, 9]. CNTs consisting
of hexagons in their side-face are supersets of a 2-d hexag-
onal grid. By extensively exploring CNTs structure, over-
laying existing hexagonal isomorphisms, and applying the
constraints of transposition invariance and tuning invari-
ance from isomorphism theory, we can construct musical
keyboard layouts based around these shapes and perhaps
open a new area of keyboard design.

Figure 3: Jankó’s piano

3. CYLINDRICAL HEXAGONAL TUBE
LATTICES FROM A 2-D HEXAGONAL GRID

In this section we introduce two separate representations
of coordinate systems for hexagonal lattices and see where
they may meet. First, we introduce the notation used by
carbon nanotube research, and second, we introduce the
notation used by isomorphic musical keyboard research.

3.1 Hexagonal co-ordinates from nanotubes

If you start with a flat hexagonal lattice and begin curling,
you will notice that there are a discrete number of ways that
you can turn a sheet of hexagons into a tube of hexagons
and have the hexagons line up properly. In order to make
sure that the hexagons line up and make a complete cylin-
drical lattice, we explore the mathematics of the chiral vec-
tor a term taken from the study of nanotubes that indicates
the direction in which hexagons will repeat.

A cylindrical hexagonal tube (n,m) , where n � m, is
defined by a chiral vector. The definition of the chiral vec-
tor is
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where a is a the length between two vertices in a hexagon.
As shown in Fig. 4, each intersection point on a 2-d hexag-

onal grid can be represented by using these two vectors (�!a1
and �!

a2). When we choose an origin, the other points are
labelled with the hexagonal coordinate (n,m). In Fig. 4
these points are vertices of the lattice, but this vector repre-
sentation is not limited to such vertices; it can be any point
inside the hexagon or on the boundary. Section 4 describes
how a vector chosen in such a representation may be used
to describe the tube that is produced by cutting and curling
the hexagonal lattice through the third dimension, and the
three varieties of tube that can be generated depending in
the way in which hexagons in the lattice line up and repeat.



Figure 4: A 2-d hexagonal grid in Cartesian coordinates

3.2 Hexagonal co-ordinates from isomorphs

Musical isomorphisms have a different strategy for rep-
resentation, one which is based on musical intervals. As
described in Section 2, many different isomorphisms ex-
ist, depending on which musical interval is placed along
which axis. In the original tonnetz, these intervals are ma-
jor thirds and minor thirds, together making a major triad
or minor triad depending on the order. Any two inter-
vals can be combined to make an isomorphic layout, and a
complete theory has been developed and presented in [10],
wherein the LGD notation is introduced, with G being the
greater of the two intervals, L being the lesser, and D be-
ing the difference. Hexagonal isomorphisms are thus rep-
resented based on their intervals as well as a possible rota-
tion R and mirroring M factor, as well as shear S and an
indication of the number of tones in the scale T , since this
theory can be extended beyond the familiar 12-tone equal
tempered scale into microtonal applications.

4. CHIRAL ANGLE AND THREE TYPES OF
CYLINDRICAL HEXAGONAL TUBES

Hexagonal lattices can be curled into tubes in three dif-
ferent ways, shown in Fig. 5, based on the angle that we
choose in Fig. 4. If we choose hexagons that are flat against
each other and wrap them around to form the circumfer-
ence of the tube, the pointed ends of the hexagons stick out
and we call this “zigzag”. If we choose to go in the other
direction, with the pointed ends of the hexagons touching,
we get a notched tooth appearance for the end of the tube,
and this is called “armchair”. If, instead, we spiral the
hexagons around in a helix so that one layer builds upon
the next, these are other chiral tubes, and there are many
different ways we could do this.

We can also group into these three types by distinguishing
the chiral angle ⇥, as the angle between the chiral vector
and the zigzag direction shown in Fig. 4:

⇥ = tan�1

" p
3m

m+ 2n

#
(4)

By following Equation (4), the three types are:

Armchair (m = n): ⇥ = tan�1
h

1p
3

i
= 30�, the trace

shown by purple dash line with purple triangles in
Fig. 4.

Zigzag (m = 0): ⇥ = tan�1 [0] = 0�, the trace shown
by red dash line with red dots in Fig. 4.

Other chiral tubes (called “Chiral”): 0� < ⇥ < 30�, the
area between the zigzag and armchair angles shown
in Fig. 4.

Once cut and curled, these three vectors produce three
types of cylindrical hexagonal tubes, shown in side view in
Fig. 5.

Figure 5: Three types of cylindrical hexagonal tubes

5. TUBE LENGTH AND DIAMETER

Because we need hexagons to line up perfectly in order to
produce a viable tube lattice, we can’t produce a tube of
just any size. For example, if we consider the zigzag tube,
we can only produce tubes which are a whole number of
hexagons “around”. The same holds true for any type.

The diameter of a tube is decided by the length of chiral
vector. From equations (1), (2) and (3), the length of chiral
vector is the peripheral length of the tube:

k�!Chk =
p
3a
p

n

2 + nm+m

2
, (5)

where a is the length of an edge between two vertices in a
hexagon. The diameter of such a tube is therefore:

D =
k�!Chk
⇡

=
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p
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2

⇡

, (6)

and for the Armchair (m = n) and Zigzag (m = 0) cases,
Table 1 shows the corresponding tube parameters.



Tube Chiral Length Tube Diameter
Armchair 3na 3na/⇡

Zigzag
p
3na

p
3na/⇡

Table 1: Parametric descriptors of chiral vector length and
tube diameter for armchair and zigzag cases.

6. MAPPING A 2-D HEXAGONAL GRID INTO A
3-D CYLINDRICAL HEXAGONAL LATTICE

If we are to be successful in curling a flat isomorphism into
a tube, we must ensure that the intervals are preserved. For
example, if we use a harmonic table layout (a well known
layout closely resembling the original tonnetz), then adja-
cent hexagons must be minor thirds, major thirds or fifths.
If we were to wrap this into a tube, then if we start at a
given note and proceed around the tube, we must end up
back at the note we started with. This puts a strict con-
straint on the way that isomorphisms can be wrapped: The
circumference of the tube must be in a direction in which
repeated notes will be found on the original flat layout.

Conveniently, the LGD representation of isomorphisms
provides such a direction. In [10], the isotone axis is de-
fined as a line contains all the instances of a particular note
in an isomorphic layout. The pitch axis is a line perpendic-
ular to the isotone axis, and is the direction in which pitch
increases. Figures 6 through 13 show examples of some
of the more common hexagonal isomorphisms, with their
pitch axis indicated with a green arrow, and their isotone
axis indicated with a dashed green line.

By setting the chiral vector direction in hexagonal coor-
dinates (n,m), to be equal to the isotone axis in the LGD
representation of a musical isomorphism, with an appro-
priately chosen chiral vector length, each isomorphic lay-
out can be mapped from a 2-d grid into a 3-d cylindrical
hexagonal lattice.

6.1 Mapping the isotone axis to the chiral vector

In LGD notation, either the isotone axis range or pitch axis
range can be transposed by using rotation and reflection.
However, since the hexagon is a member of the dihedral
group 1 , it is possible to focus on the area in hexagonal
coordinates (n,m) with ⇥ (the chiral angle) as 0�  ⇥ 
30�. Besides, either D, �L directions or �D, L directions
has 60 degree opening which is the same as �!a1,�!a2 vectors.
We can therefore set the isotone axis in each isomorphic
layout equal to a chiral vector direction, by mapping D and
-L into �!

a1 and �!
a2 directions respectively.

We can now define a new notation (D,L) which fully
represents the isomorphic cylinder corresponding to the
isotone axis range in the LGD notation. Correspondingly,
the vector perpendicular to the chiral vector which is called
the translation vector goes in the same direction as the
pitch axis, and represents the direction of the axis of the
resulting cylinder.

1 Dihedral group: A mathematicaly defined set of symmetries of a reg-
ular polyhedron which includes reflection and rotation

Figure 6: Jankó (1,1)

Figure 7: Harmonic Table (4,3)

Figure 8: Gerhard (3,1) Figure 9: Park (3,2)

Figure 10: Wicki-Hayden
(5,2)

Figure 11: Bajan (2,1)

Figure 12: B-system (2,1) Figure 13: C-system (2,1)



We can consider a subset of an isomorphic layout consist-
ing of a single copy of each note from a single octave (in
this case 12 notes since the system we are using is 12-tone
equal tempered, but this could be extended to microtonal
systems). This sample patch represents the smallest unit
that can be considered when curling such an isomorph into
a tube. Along the isotone axis, these patches repeat iden-
tically, and represent a further constraint - each tube must
have around its circumference a whole number of copies
of this patch.

Considering Figs. 6–13 again, we also see a blue straight
line. This line represents what would be the zigzag chi-
ral direction, and so the angle between this and the dashed
green line represents the chiral vector. We have seen al-
ready that the dashed green line represents the isotone axis
of the layout, and so we can see that each layout also maps
to a cylindrical hexagonal lattice structure with a specific
chiral vector.

The specific chiral angles of these common isomorphic
layouts (in degrees to two significant digits) is calculated
using equation (4), and are shown in Table 2.

Layout (D,L) Chiral angle
Jankó (1,1) 30.00�

Harmonic Table (4,3) 25.29�

Gerhard (3,1) 13.90�

Park (3,2) 23.41�

Wicki-Hayden (5,2) 16.10�

Bajan (2,1) 19.10�

B-system (2,1) 19.10�

C-system (2,1) 19.10�

Table 2: The chiral vector of typical isomorphic layout.

6.2 Edge cases: Zigzag and Armchair

There are two special cases mentioned in [10]. The first
one is where L= 0, which only happens for intervals 0,1,1
in LGD notation. This case results in a Zigzag type lat-
tice (1,0). The second case is where D=L, which happens
for intervals of 1,2,1 in LGD notation. This case makes
the Armchair type lattice (1,1). The samples of those two
special cases are shown in Fig. 14, and both can be seen to
be instances somewhat similar to a Jankó layout.

7. BENEFITS OF A 3-D CYLINDRICAL
HEXAGONAL LATTICE

We now have two new parameters that can be used to de-
scribe isomorphisms that have been curled into cylinders:
The chiral angle, and the diameter. Between these two,
it will be possible to explore the musical and ergonomic
characteristics of different cylindrical isomorphisms, con-
struct them into physical instruments, give them to musi-
cians to play with, and characterize them based on playa-
bility, learnability, and expression. This exploration will
be undertaken in future work, but we can begin with a the-
oretical discussion of some of the different playing modes

(a) Zigzag (1,0)

(b) Armchair (1,1)

Figure 14: Two special cases exist in the lattices

and characteristics.
Presented here are three potential benefits of using a cylin-

drical hexagonal isomorphic lattice.

7.1 Boundary conditions and note reachability

One of the primary features of any arrangement of note
actuators on a musical instrument is to make notes reach-
able. Adding additional manuals to an organ or additional
strings to a bass guitar, for example, serve two purposes: to
extend the range of the instrument, but also to make more
notes available with less hand travel. On a traditional pi-
ano keyboard, only a little more than an octave of notes is
available in any one hand position, and the ability to accu-
rately move your hand to a new position is a critical stage
in studying the piano.

Isomorphic layouts have the potential to be more compact
than existing instruments, making more notes available in
a single hand position and making all notes a smaller dis-
tance from the centre of the layout. However, any attempt
to construct a reconfigurable hexagonal instrument that can
present different isomorphisms comes to a challenge: each
isomorphism potentially has a different boundary, that is,
the overall shape of the entire layout showing all notes.
Figure 15 shows the boundaries of two similar layouts.

It would be difficult to create a reconfigurable musical in-
strument that could represent both of these layouts to their
top and bottom boundaries for two reasons. First, the an-
gle of the boundaries is different; and second, the orien-
tation of the hexagons is different: Wicki-hayden uses a
“horizontal” layout where adjacent hexagons share a ver-
tical face, while the Harmonic Table layout uses a “verti-
cal” layout. Indeed, both layouts represent infinite dupli-
cations of notes to the left and right, at different angles,
which would add to the challenge of manufacturing such
an instrument.

Considering the parallelograms shown in Figs. 6 through
13, and extending these by repeating along the isotone axis
and extending along the pitch axis, we see that each of the
popular layouts will have a very different boundary shape.
These boundary shapes are compared in Fig. 16. This is
also related to the shear, a characteristic of an isomorphic
layout, described in [11].



Figure 15: 8-octave boundaries of two popular isomorphisms. Left: Wicki-hayden. Right: Harmonic Table

Figure 16: Parallelograms of typical isomorphic layouts

7.2 Wrapping infinite repetitions into tubes

Considering again the boundary shape of each isomorphism,
it should be clear that the previous discussion on nanotube
mapping and chiral angle can be simplified by consider-
ing an infinite sheet of repetitions of notes, and rolling that
sheet in such a way that the repetitions coincide around
the circumference of a tube. It should also be clear that
the diameter of these tubes will be constrained to a whole
number multiple of the distance between identical notes in
the same octave. Table 3 shows the diameter of the tube
corresponding to each of the layouts under discussion, cal-
culated using equation (6).

When considering the construction of a physical instru-

Layout Diameter
Jankó 3a

⇡

Harmonic Table
p
111a
⇡

Gerhard
p
39a
⇡

Park
p
57a
⇡

Wicki-Hayden
p
117a
⇡

Bajan
p
27a
⇡

B-system
p
27a
⇡

C-system
p
27a
⇡

Table 3: Diameters of eight typical isomorphic layouts,
where a is the length of one side of a hexagon.

ment, given that there are different tube sizes required,
there are two options: allow the size of the instrument to
change; or allow the size of the buttons to change. Both
present significant technical challenges that are not addressed
in this paper and left for future work.

To map a specific isomorphic layout onto a tube with a
given diameter, the length of the side of the hexagonal tiles
(a) must be changed. As an example, consider the situa-
tion where two different isomorphisms are to be mapped
onto a tube of a given size. The ratio of size of two hexag-
onal buttons can then be calculated from Table 3. Mapping
Gerhard and Wicki-Hayden on the same tube, we must set:

p
39a1

⇡

=

p
117a2

⇡

Which also assumes that the both cylinders are using the
same number of copies of the base set of notes around the



Figure 17: Tube size varied by the number of duplicates.
(from left) 4 copies, 3, 2, and 1.

circumference. Simplifying, we get:

a1

a2
=

p
3

1

which means the size of buttons in Gerhard layout is
p
3

times bigger than that in Wicki-Hayden layout, given the
same tube diameter.

7.3 Tube Size and Note Duplication

As already discussed, the size of the tube for any given iso-
morphism will depend on the number of copies of the base
parallelogram that are included around the circumference
of the tube. This choice is aesthetic and can be used to
influence playability, interaction, note availability, button
size, and other factors.

Figure 17 presents a set of possible tubes from the same
isomorphic layout, in this case the Gerhard layout. The
only difference between tubes is the number of duplicates
that go around the circumference of the tube. If a single
copy is used, the tube is quite narrow and each note ap-
pears exactly once on the entire structure. Adding more
duplicates makes the tube larger, but does not change the
shape of any harmonic constructs on the tube.

8. PLAYABILITY MODES

Fingering on a curved keyboard can be a solution for some
particular isomorphic layouts which were considered hav-
ing “fingering difficulties” on 2-d planar keyboard, but this
will require further study to conclusively prove. One can
imagine a controller constructed with the ability to “roll”
across a table or surface (Fig. 18), allowing different notes
to become available at different times. With the appropri-
ate layout, this could be an additional compositional or per-
formance function, modulating key or tonality or adjusting
other musical parameters.

It is also possible to imagine a larger cylinder with keys
tiled on the inside of the surface instead of the outside.
This could produce a compelling stage presence with play-
ers performing inside the lattice, and playing on the inner
surface. The inside and outside tiling are shown in Fig. 19.

Figure 18: An appropriate area along either decreasing or
increasing octave direction

Figure 19: Playing on inner (left) or outer surface

9. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a discussion on turning
the cyclic nature of tonnetz-style isomorphic discrete note
layouts into a true cylindrical cycle, by setting the isotone
axis of an isomorphism equal to the chiral vector direction
of a nanotube. By choosing the intervals on the isomor-
phic axes, and by changing the number of duplicates and
the size of buttons on each cylindrical hexagonal lattice,
it is possible to create a wide variety of tubes of different
sizes and structures, each of which maintains the strong
constraints of isomorphic note arrangements while offer-
ing the possibility of new playing interfaces, compositional
structures, and learning tools.

Future work on this topic will begin with brute-force gen-
erating a set of tubes for all possible isomorphisms, based
on the completeness work in [10]. With this, we can ex-
plore the similarities and differences between tube layouts,
as well as the musicality, playability, and interaction modes
of these tubes. Next, we plan to choose some of the tubes
with the greatest potential for new modes of interaction and
physically construct new controllers based on this theory,
and provide these to musicians, composers, and students,
to explore and study. We will also formally study the mu-
sical and educational benefits of these tube structures. A
long-term goal is to explore the possibility of creating a
single reconfigurable tube for which the diameter and chi-
ral angle can be modified in real time.
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