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Abstract. Design and implementation of intrusion detection systems
remain an important research issue in order to maintain proper net-
work security. Support Vector Machines (SVM) as a classical pattern
recognition tool have been widely used for intrusion detection. However,
conventional SVM methods do not concern different characteristics of
features in building an intrusion detection system. We propose an en-
hanced SVM model with a weighted kernel function based on features
of the training data for intrusion detection. Rough set theory is adopted
to perform a feature ranking and selection task of the new model. We
evaluate the new model with the KDD dataset and the UNM dataset.
It is suggested that the proposed model outperformed the conventional
SVM in precision, computation time, and false negative rate.
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1 Introduction

Various intrusion detection systems are studied and proposed to meet the chal-
lenges of a vulnerable internet environment [1, 3]. It is not an exaggerated state-
ment that an intrusion detection system is a must for a modern computer sys-
tem. Intrusion detection technologies can be classified into two groups: misuse
detection and anomaly detection [1]. A misuse detection system detects intru-
sion events that follow known patterns. These patterns describe a suspect set
of sequences of actions or tasks that may be harmful. The main limitation of
this approach is that it cannot detect possible novel intrusions, i.e., events that
have never happened and captured previously. An anomaly detection based sys-
tem analyzes event data and recognizes patterns of activities that appear to be
normal. If an event lies outside of the patterns, it is reported as a possible intru-
sion. It is considered as a self-learning approach. We focus on anomaly intrusion
detection in this study.

Many artificial intelligence techniques have been used for anomaly intrusion
detection. Qiao et al. [12] presented an anomaly detection method by using a
hidden Markov model to analyze the UNM dataset. Lee et al. [9] established
an anomaly detection model that integrates the association rules and frequency



episodes with fuzzy logic to produce patterns for intrusion detection. Mohajeran
et al. [10] developed an anomaly intrusion detection system that combines neural
networks and fuzzy logic to analyze the KDD dataset. Wang et al. [14] applied
genetic algorithms to optimize the membership function for mining fuzzy asso-
ciation rules.

Support Vector Machines (SVM) have become one of the popular techniques
for anomaly intrusion detection due to their good generalization nature and the
ability to overcome the curse of dimensionality [2, 13]. Although there are some
improvements, the number of dimensions still affects the performance of SVM-
based classifiers [2]. Another issue is that an SVM treats every feature of data
equally. In real intrusion detection datasets, many features are redundant or less
important [8]. It would be better if we consider feature weights during SVM
training. Rough set theory has proved its advantages on feature analysis and
feature selection [5, 6, 16]. This paper presents a study that incorporates rough
set theory to SVM for intrusion detection. We propose a new SVM algorithm for
considering weighting levels of different features and the dimensionality of intru-
sion data. Experiments and comparisons are conducted through two intrusion
datasets: the KDD Cup 1999 dataset1 and the UMN dataset that was recorded
from the trace of systems calls coming from a UNIX system2.

2 A Brief Overview of Support Vector Machines

An SVM model is a machine learning method that is based on statistical learning
theories [13]. It classifies data by a set of support vectors that represent data
patterns.

A general two-class classification problem is to find a discriminant function
f(x), such that yi = f(xi) given N data samples (x1, y1) . . . (xi, yi) . . . (xN , yN ).
A possible linear discriminant function can be presented as f(x) = sgn(w ·
x − b) where w · x − b = 0 can be viewed as a separating hyperplane in the
data space. Therefore, choosing a discriminant function is to find a hyperplane
having the maximum separating margin with respect to the two classes. The final
linear discriminant is formulated as f(x) = sgn(

∑l
i=1 αiyi(xi · x − b), where l

is the number of training records, yi ∈ {−1,+1} is the label associated with the
training data, 0 ≤ αi ≤ C (constant C > 0), and xi is the support vectors.

When the surface separating two classes is not linear, we can transform the
data points to another higher dimensional space such that the data points will
be linear separable. The nonlinear discriminant function of SVM is:

f(x) = sgn(
l∑

i=1

αiyiK(xi, x) + b), (1)

where K(xi,x) is the kernel function that is used to transform data points.

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2 http://www.cs.unm.edu/∼immsec/systemcalls.htm



Algorithm 1: Feature Weights Calculation
Input : Dataset D.
Output: A weight vector W .
Find out all the reducts of D using rough sets;
Nfeature ← number of features in D;
Nreduct ← number of reducts of D;
//Initialize the weight of each feature.
for (i ← 0 to Nfeature) do

wi ← 0;
end
// Calculate the weight of each feature.
for (i ← 0 to Nfeature) do

for (j ← 0 to Nreduct) do

if
`
feature i in the jth reduct Rj

´
then

m ← number of features in Rj ;
wi ← wi + 1

m
;

end

end

end
Scale the values of feature weights into the interval [0, 100];

3 Enhancing SVM Learning with Weighted Features

Various SVM kernel functions are proposed for users to choose from for different
applications [2, 7]. The most common kernel functions are the linear function,
polynomial function, sigmoid function, and radial basis function. These kernel
functions do not consider the differences between features of data. From the
general SVM kernel function format K(xi, x), we can see that all features of
the training or test datasets are treated equally. Treating all features equally
may not be efficient and it may affect the accuracy of SVM. A possible solution
to consider the importance of different features is to add weights to a kernel
function. The weights are used to measure the importance of each feature. A
generic form of the new kernel function is formulated as K(wxi, wx), where w
is a vector consisting of weights of features of data set. A nonlinear discriminant
function with feature weights is formulated as,

f(x) = sgn(
l∑

i=1

αiyiK(wxi, wx) + b). (2)

This enhanced kernel is independent to particular kernel functions. For dif-
ferent applications, one may choose the most suitable kernel function to apply
the feature weights on. We use rough set theory to calculate and generate these
weights from training data in this study. The basic principles of weight calcula-
tion are: 1) if a feature is not in any reducts then the weight of this feature is
0; 2) the more times a feature appears in the reducts, the more important this
feature is; 3) the fewer the number of features in a reduct, the more important



these features appearing in this reduct are. If a reduct has only one feature, the
feature belonging to this reduct is the most important.

Based on the above principles, we propose an algorithm as depicted in Al-
gorithm 1 that adopts rough set theory to rank features and calculate feature
weights. After the feature ranking process, we consider those features with 0
weights as the least important features and delete them. In Algorithm 1, feature
ranking and feature selection are conducted in the same process.

4 Experiments and Results Analysis

Two datasets, KDD and UNM, are used in experiments to evaluate the per-
formance of the proposed new model. The KDD dataset consists of network
connection records generated by a TCP/IP dump. It contains 4, 940, 000 con-
nection records. There are 41 features in each record. 10% of the original data
are training data with a label which identifies which category the record belongs.
We only discuss binary classification.

The system call dataset is from the University of New Mexico (UNM). It
consists of 4, 298 normal traces and 1,001 intrusion traces. Each trace is the list
of system calls issued by an lpr process from the beginning of its execution to
the end. There are 182 different system calls in the dataset.

Four measures adapted from information retrieval [4] are used to evaluate the
performance of an SVM model: precision = A

A+B , recall= A
A+C , false negative

rate= C
A+C , and false positive rate= B

B+D . A, B, C, and D represent the number
of detected intrusions, not intrusions but detected as intrusions, not detected
intrusions, and not detected non-intrusions respectively.

A false negative occurs when an intrusion action has occurred but the system
considers it as a non-intrusive behavior. A false positive occurs when the system
classifies an action as an intrusion while it is a legitimate action. A good intrusion
detection system should perform with a high precision and a high recall, as well
as a lower false positive rate and a lower false negative rate. To consider both the
precision and false negative rate is very important as the normal data usually
significantly outnumbers the intrusion data in practice. To only measure the
precision of a system is misleading in such a situation. A poor intrusion detection
system may have a high precision but a high false negative rate.

There are four steps in our experiments. The first step is to remove redundant
intrusion records. Both KDD and UNM datasets have more intrusion data than
normal data. We filter the redundant intrusion records until the two resulting
datasets consisting of 1.5% intrusions and 98.5% normal records. There are no
obvious feature-value pairs in the dataset. We use a mapping method to convert
the dataset to feature-value format. The second step is to use rough set feature
ranking and selection to calculate weights of each feature and delete unimportant
features. After processing, the number of features of the KDD dataset is narrowed
down from 41 to 16 and the UNM dataset is narrowed down from 467 to 9. The
third step is to train the SVM. We generate one training set and three test sets
for each of the datasets. For the KDD dataset, each set has 50,000 randomly



selected records. Each set has 2,000 records for the UNM dataset. Based on
previous research, we choose γ = 10−6 for RBF kernel e−||xi−x||2·γ [17]. The last
step is to build a decision function to classify the test data. Experimental results
for the two datasets are presented in Table 1 and 2.

Table 1. Comparisons of the experimental results on the KDD dataset

Nrecord Nfeature Precision (%) False Negative (%) CPU-second
test set 1

Conventional SVM 5× 104 41 99.82 7.69 222.28

Enhanced SVM 5× 104 16 99.86 6.39 75.63
Improvement 60.0% 0.4% 16.9% 66.0%

test set 2

Conventional SVM 5× 104 41 99.80 8.25 227.03

Enhanced SVM 5× 104 16 99.85 6.91 78.93
Improvement 60.0% 0.5% 16.2% 65.0%

test set 3

Conventional SVM 5× 104 41 99.88 7.45 230.27

Enhanced SVM 5× 104 16 99.91 5.49 77.85
Improvement 60.0% 0.3% 26.3% 66.0%

Table 2. Comparisons of the experimental results on the UNM dataset

Nrecord Nfeature Precision (%) False Negative (%) CPU-second
test set 1

Conventional SVM 2× 103 467 100 0 1.62

Enhanced SVM 2× 103 9 100 0 0.28
Improvement 98% 83%

test set 2

Conventional SVM 2× 103 467 100 0 1.71

Enhanced SVM 2× 103 9 100 0 0.29
Improvement 98% 83%

test set 3

Conventional SVM 2× 103 467 100 0 1.59

Enhanced SVM 2× 103 9 100 0 0.25
Improvement 98% 84%

Here are some observations from the experiments. The improvements of per-
formance are consistent for all of the six test sets. This suggests that the new
model has a good generalization ability. The new model outperforms the con-
ventional SVM in all three measures, namely, precision, false negative rate and
CPU time for the KDD dataset. Although the improvement for precision is only
0.4% on average, the improvement for the other two are significant. The im-
provements for false negative rate are between 16.2% and 26.8%. The time used
for the new model is only one third of the conventional SVM model. For the
UNM dataset, the precision and false negative rate of conventional SVM are
perfect with no room for improvement. These results are similar to the results
from other researchers with other methods on this dataset [9, 15]. However, the
CPU time is significantly reduced with the new model.

5 Conclusion

We propose an enhanced SVM model for intrusion detection. The new model
adopts rough sets to rank the features of intrusion detection data. Only the



important features will be counted when training an SVM. It is suggested that
the proposed new model is effective for the KDD dataset. Although the precision
levels of both the conventional SVM and the new model are about the same, the
false negative rates of the new model are lower than the conventional SVM
model. In addition, the time used to detect an intrusion of the new model is
much less than the conventional SVM. An additional set of experiments was
conducted with the UNM dataset. Both conventional SVM and the new model
performed perfectly in terms of accuracy. However, the new model still has an
advantage, i.e., the running time is much less as fewer number of features are
used for classification.
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