J. Herbert, J.T. Yao, GTSOM: Game Theoretic Self-Organizing Maps, K. Chen and L.P. Wang (eds.), Trends in Ne
Computation, Springer-Verlag, 2007, pp199-224.

Chapter 8

GTSOM: GAME THEORETIC SELF-
ORGANIZING MAPS

Joseph Herbert, JingTao Yao

Department of Computer Science
University of Regina, Saskatchewan, Canada, S4S 0A2

[herbertj,jtyao]@cs.uregina.ca

Abstract Self-Organizing Maps (SOM) is a powerful tool for clustering and dis-
covering patterns in data. Input vectors are compared to neuron weight
vectors to form the SOM structure. An update of a neuron only benefits
part of the feature map, which can be thought of as a local optimization
problem. A global optimization model could improve representation to
data by a SOM. Game Theory is adopted to analyze multiple criteria
instead of a single criteria distance measurement. A new training model
GTSOM is introduced to take into account cluster quality measurements
and dynamically modified learning rates to ensure improved quality.

Keywords: Game theory, competitive learning, self-organization, SOM, global op-
timization

1. Introduction

The material presented in this work is the culmination of research
completed [1, 2] within the areas of competitive, unsupervised learning in
SOM. The work is an attempt to move away from the local optimization
process of traditional competitive learning in SOMs.

The problem with local optimization becomes apparent since only a
single criterion is used to match neurons of a SOM to input vectors.
That is, the choice and update of a neuron does not take into account
the entire situation and configuration of the SOM. The goal was to build
a new training model for a SOM that allows for a global optimization
algorithm to be used in the training of the network of neurons. This
new algorithm is introduced as GTSOM.

jtyao
J. Herbert, J.T. Yao, GTSOM: Game Theoretic Self-Organizing Maps, K. Chen and L.P. Wang (eds.), Trends in Neural Computation, Springer-Verlag, 2007, pp199-224.

SOM, introduced by Kohonen [3], is an approach to discovering simi-
lar patterns found within data [4, 5]. Used primarily to cluster attribute
data for pattern recognition, SOMs offer a robust model with many con-
figurable aspects to suit many different applications. These applications
include document organization using term usage and many other prob-
lems where classification is needed.

The traditional SOM method that updates neurons in the network
was based only on similarity to individual input, presented in a discrete
way. This is considered a problem in the long run as training iterations
progress. Local optimization occurs when an input vector is presented
to the network. The fact that the work done on manipulating weight
vectors in order to represent similarities in input may be overwritten as
iterations progress is disconcerting.

The process of training a system with subsets of data in order to
acquire new knowledge with new data is similar to that of knowledge
discovery in databases [6, 7], and has been used in other areas [8] apart
from artificial intelligence.

Methods must be introduced that can measure the quality of SOM at
any point in training. These methods will help us ensure that any new
training techniques introduced into the model increases the quality of
the SOM. Since learning during training is unsupervised, these methods
must allow for automation for continued absence of user involvement.
Efficient quality measures need to be created so that the state of the
network can be acquired during the training process. Measures such
as weight vector cluster density and distances between weight vector
clusters can be considered adequate to assess whether or not the network
represents training data accordingly.

The movement towards a global optimization model for training is
necessary for three reasons. First, the final trained network may be sta-
ble in terms of input similarity, but the final network is biased towards
input that is late in presentation. Second, the use of global optimiza-
tion techniques could help in demystifying the process of SOM training
since various idiosyncrasies are lost through the thousands of iterations
and vector updates. Third, an infrastructure to govern the global opti-
mization techniques will be able to help in governing variables that are
used in performing weight vector updates, such as learning rates and
neighbourhood sizes.

This work will use game theory as our underlying method in governing
competitive learning in a SOM. Game theory allows us to organize and
see cause-effect relationships between the multiple measures we use and
the ways we can implement them. That is, if we find a certain strategy

GTSOM: Game Theoretic Self-Organizing Maps 3

can help a particular neuron improve quality, we are able to quickly
determine which neuron should be chosen and which action to undertake.

A new algorithm GTSOM that utilizes aspects of game theory will be
presented and thoroughly examined. This allows for global optimization
of the feature map. This technique could be used to ensure that com-
petitive learning results in the modification of neurons that are truly
suitable for improving the training results. This research is beneficial
because it improves the SOM training model by ensuring quality is im-
proved every iteration of training. This may decrease the time required
for training and creates better neuron clustering of input similarity.

The work is organized as follows: Section 2 contains background in-
formation regarding competitive learning, self-organizing maps, game
theory, and clustering in general; Section 3 introduces the original con-
tributions in the field of competitive learning in SOMs, beginning with
a new SOM model and continuing with the introduction of the GTSOM
algorithm; Section 4 contains the analysis of the findings acquired from
the testings of our new model and algorithm; The summary of contri-
butions and other conclusions are given in Section 5.

2. Background Information

This section acknowledges some of the background information used
as foundational support for this work. A thorough overview of tradi-
tional SOMs is presented including: artificial neurons, weight and input
vectors and neighbourhoods. An in-depth look at competitive learning
and how it is used to train the SOM is provided as well, with explanations
of the decaying learning rate o and neighbourhood sizes. Information
regarding game theory and games is provided. This includes the notions
of payoffs and payoff tables.

Traditional SOM Overview

This section details the underlying components used in SOM, includ-
ing learning, artificial neurons, topologies, and input.

Self-Organizing Maps. SOMs were first introduced by Koho-
nen [3]. The SOM requires a set W of artificial neurons,

W ={w,...,wn}, (8.1)

where w; is the i-th neuron of the map. In neural network (NN) the-
ory [10], artificial neurons act as a series of transformation functions
that, given an input, a distinct output is presented as either input for

4

another neuron, or final output for the network. NNs emulate their
biological neuron counterparts [11], with inputs representing synapses,
outputs representing axoms that can be connected to other dendrites via
synapses.

Artificial neurons in a SOM differ from those of NNs in terms of con-
nectivity. Connectivity between neurons are not linear and fixed, as in
NNs. Connectivity to a given neuron in the network is formulated by
membership to the neighbourhood set of that particular neuron. Con-
nectivity implies communication between neurons in terms of output of
neurons act as input to others. This not the case for neurons in a SOM.

Neurons in a SOM. There are two ways in which connections
between artificial neurons in a SOM can be gathered. First, immedi-
ate neuron adjacency in the network topology can be thought of as a
connection, since influence (update) of a neuron’s weight vector affect
neurons in its immediate vicinity (neighbourhood). Second, the neigh-
bourhood of a neuron can be acquired by finding neurons of growing
adjacency that have weight vectors similar to that of the original. The
neighbourhood method of finding neurons of logical physical adjacency
to a particular neuron is crucial to the training of a SOM, as changes
to a neuron weight vector should influence those weight vectors that are
near and similar to the originally updated neuron.

Each artificial neuron in a SOM has a weight vector of equal dimen-
sionality to the input vectors. Therefore, for a set of neurons, each
neuron w; € W has a weight vector w; associated with it. A set W of
neurons has a set W of weight vectors,

W = {y,..., 0} (8.2)

For any wj; in W, the dimensionality of ; is equal to the dimension-
ality of any input vector p; presented to the network during training,
shown in Equation (8.3). Vector similarity between neuron weight vec-
tors and input vectors are measured during training. Training is the
process of modifying the SOM in order to create a map that adequately
represents the training input. Thus, if dimensionality differs between
the two, some components must be normalized - resulting in a loss of
information.

Cil
Ci,2 .
W; = : and p; = [pj,1,pj,2, T 7Pj,r] (8.3)

Cir

GTSOM: Game Theoretic Self-Organizing Maps)

Each neuron w; € W has a set of neurons whose proximity is within
that defined by d, a scalar whose value is changed according to an it-
eration ¢q. Therefore, for each neuron w;, the neighborhood N;(d) =
{wy,...,ws} consists of all neurons that have connectivity to w; within
distance d.

SOM Input Processing. Training of a SOM is typically done by
using a set of input vectors,

P:[ﬁluﬁ%"'?ﬁm]a (84)

where the i-th input vector corresponds to the i-th tuple in the original
information table. During training, each input vector is presented to the
network sequentially, which will be discussed in detail shortly.

SOM Training Model

Weight vectors are adjusted according to a learning rate « that is
decreased over time to allow for fast, vague training in the beginning
and specific, accurate training during the remainder of the runtime. A
SOM model contains three fundamental procedures that are required in
order to discover clusters of data.

The first procedure consists of all preprocessing tasks that are required
to be completed before training can take place. This includes initializing
the weights vectors of each neuron either randomly or by some other
method [13, 14] that determines suitable frequency of values. Another
task to be performed is that of input vector creation.

The training process of the SOM can begin once preprocessing has
been finished. The training model is divided into three layers: the input
layer, competition layer, and the update layer. The input layer controls
when each input vector is inserted into the SOM. The competition layer
oversees competition between neurons where a suitable neuron is chosen
that has a weight vector with highest degree of similarity. This neuron,
as well as its neighbors, gets updated so that it becomes more similar
to that of the input vector in the update layer. This process is repeated
for every input, resulting in a completed iteration. The SOM Training
model is presented visually in Figure 8.1.

The degree of change in which a weight vector becomes more similar
to that of the input vector is manipulated through the learning rate a.
Once many iterations have taken place, a suitable feature map will have
been created.

Figure 8.1. The layers of a SOM during the training process.

C+C O —{u

w*

" Input Competition " Update

This final trained map is now suitable for classifying additional data
similar to that of the training set. This feature map is a collection
of neurons with weight vectors assuming values corresponding to the
training input distribution.

Local Optimization in SOM. The update of single neurons depend
solely on their similarity to input, therefore a change in w;(q) results in a
modification of an original weight vector in the next iteration w;(q+ 1).

One input vector p; is presented into the network at any given time,
and is most similar to that of some weight vector w; associated with a
neuron w;. A winning neurons’ weight vector is updated to become more
similar to that of the current input. Therefore, W; — w;(¢) is updated
to w; — wi(g+1)

The update mechanism for the training model only improves one neu-
ron to each input to the full extent of the learning rate. This is considered
a local optimization technique since erasure of previous work completed
occurs as well as the inherent partial ordering of the input vectors. For
example, the final weight vector configuration will be entirely different
at the end of the training session, if a different ordering of input vector
presentation is selected.

However, if a model was used in order to ensure as many deserving
neurons as possible benefited from their similarity to one input, one may
start moving towards a global optimization training procedure. However,
if we decide to compare all input vectors to a single neuron, updating it’s
weight vector for each, we begin to see extraneous work being completed,
not to mention a huge problem of overfitting.

This logically leads to the fact that all input vectors have a possibil-
ity to be compared to all neurons, given the multiple iterations through
the input vector set P. At first glance, this may seem like global opti-
mization of the entire network to all input, but since order is important

GTSOM: Game Theoretic Self-Organizing Maps 7

when presenting input vectors to the network, this process is simply a
truncation of local optimization procedures.

A Brief Introduction to Game Theory

In the past decade, game theory has been one of the core subjects of
the decision sciences, specializing in the analysis of decision-making in an
interactive environment. The disciplines utilizing game theory include
economics [15, 16], networking [17], and cryptography [18, 19]. Game
theory was founded by von Neumann. The first important book was The
Theory of Games and Economic Behavior [9], which von Neumann wrote
in collaboration with Morgenstern. Certainly Morgenstern brought ideas
from neoclassical economics into the partnership, but von Neumann, too,
was well aware of them and had made other contributions to neoclassical
economics.

Game theory arose from the result of trying to mathematically ex-
press a simple game, including rules and actions a player of that game
would perform. Game theory is an important domain since so many
areas can use it. Many applications or problems can be expressed as a
game between two or more players. If a problem or application can be
expressed as a game, it can be expressed in a way that some aspects of
game theory can be utilized. Therefore, the study of game theory can be
thought of as an advanced problem solving technique that can be used
in many domains.

The study of game theory is divided into three major areas: mathe-
matical models of games, game theory and how it applies to economic
applications, and game theory applications in other areas. The last ma-
jor area - game theory for applications are studied by biologists, man-
agement, application mathematicians, legislators etc.

The basic assumption of game theory in terms of usage is that all
participating players are rational in terms of attempting to maximize
their expected payoffs. This presents problems when compared with
neoclassical economics. It narrows the range of possibilities that a party
can choose from. Rational behavior is much more predictable than irra-
tional behavior, as opposing parties are able to determine other party’s
strategies on the basis that they will not do anything that makes their
situation worse than before.

In a simple game put into formulation, a set of players O = {o01,...,0,},
a set of actions S = {ai,...,an} for each player, and the respective
payoff functions for each action F' = {u1,...,un,} are observed from
the governing rules of the game. Each player chooses actions from S

8

to be performed according to expected payoff from F', usually some a;
maximizing payoff p;(a;) while minimizing other player’s payoff.

Further reading on game theory and applications can be found in
Game Theory by D. Fudenberg et al [12].

3. A Game-Theoretic Approach to Competitive
Learning

This section introduces the new material developed pertaining to cre-
ating a new model for self-organizing maps to facilitate global optimiza-
tion. The first section will review some of the methods for competitive
learning, measuring similarity, as well as present new quality measure-
ments needed by the new model.

SOM Training and Competitive Learning

In this section, a review of existing training techniques, competitive
learning processes, and similarity measures will be presented. This in-
formation helps in creating new ideas to further the progress in reaching
the goals of this work.

Forming Trained Maps. In order for a SOM to cluster data,
it must be trained with suitable data. Training a SOM requires the
combination of three layers that work in tandem, where an output of
one layer is treated as input to the next. This training model is shown
in Figure 8.1.

The first layer, denoted as the input layer, consists of a data store to
be formatted into a set of input vectors P. An input vector represents
a tuple within the data set. Each input vector p; € P is used as input
for the next layer of a SOM.

The second layer, denoted as the competition layer, manages the com-
petitive learning methods [20] within the SOM. This layer determines
which neuron w; has a weight vector @; with minimum distance (maxi-
mum similarity) to p;. From this layer, a winning neuron w; is marked
to be updated in the third and final layer.

The update layer updates the weight vector associated with the win-
ning neuron that was used as input. After the updating of the neuron,
it’s weight vector is more attuned to that of the input vector. Transpos-
ing the values of both the input vector and the winning neurons weight
vector onto a Cartesian plane, the distance between the vectors is smaller
than it was at the beginning of the process. Once the weight vector of
the winning neuron has been changed, the neighbourhood is changed, to

GTSOM: Game Theoretic Self-Organizing Maps 9

a lesser extent, to reflect similarity to the input, since it is adjacent to
the winning neuron.

Each neuron w; € W has a set of neurons, called its neighbourhood
N;(d), where each neuron’s proximity is within that defined by d, a scalar
value that is changed according to an iteration ¢q. A d of 1 would result
in neurons within 1 unit to be added to the neighbourhood. Therefore,
for each neuron wj;, the neighborhood N;(d) = {wy,...,ws} consists of
all neurons that have connectivity to w; within distance d. An iteration
q is completed when all input vectors have been introduced to the com-
petition layer, a neuron has been selected as the winner, and the update
layer has completed.

The learning rate o of the entire network is to be in the range 0 <
a < 1. The learning rate is used as a modifier that determines how
much a weight vector @j; is changed to become more similar to that of
the current input vector.

Sufficient artificial neurons are created in order to adequately define
clusters in our data. Too few neurons will result in closely-packed group-
ings, making it difficult to discern between clusters. Too many neurons
will increase the runtime of the algorithm without any positive gain in
representation [21].

As in the case of NNs, a SOM must be trained on a subset of data
before the map is considered applicable.

Competitive Learning. To find the neuron w; € W that has a
weight vector closest to py, similarity measures [22] are observed between
each neuron and the input vector.

For example, a neuron w; is marked as the winner (denoted by the
asterisk) for input vector pj, if it has the smallest sum-of-squares value
between its weight vector and the input vector.

Once a winning neuron has been identified, it’s weight vector must be
updated according to the learning rate « corresponding to iteration q.
In addition, the neighborhood of that neuron must be updated so that
neurons connected to the winner reflect continued similarity to the new
information presented to the network. This process is done with func-
tions Update_w and Update_N that update the winning neuron and its
neighborhood respectively. The update of a winning neuron is completed
by computing the Kohonen rule [11]. With « being used to determine
how much of the distance between the original weight vector and current
input vector is added to create a new weight vector allows the algorithm
to specify how fast training can occur.

We wish to use a smaller learning rate to signify that although these
neurons did not win the competition for the input vector, they do have

10

some connectivity to the neuron that did. This step preserves similarity
between neurons adjacent to one another. Neighbourhood neurons are
updated with a fractional part of « simply because they are not as
similar to the input as is the winning neuron. Therefore, they should
not be rewarded for similarity to the input, but be rewarded because of
association with the winning neuron.

The process of updating a neuron and its neighbors to become more
similar to that of the input vector can be thought of as a local op-
timization procedure. For any given input vector, the update layer in
Figure 8.1 only adjusts neurons based on a single input, not the full data
set. The competition layer does not take into account other information
that could help in choosing a neuron better suited for distinguishing
clusters of similar features. There is no way of adjusting the process if
there happens to be too many neurons representing too few input vec-
tors and vice versa [3]. Neurons representing completely dissimilar sets
of input vectors should not be adjacent whereas separate groups of neu-
rons representing similar sets of input vectors should not be far apart
physically.

Therefore, a method of ensuring proper cluster density according to
the related distribution within the data set should be used. Cluster
density calculates that number of input vector associations per neuron in
a particular cluster. A method of ensuring that dissimilar weight vectors
representing dissimilar subsets of data should be as far apart on the
feature map as physically possible should also be present. An additional
competition layer must be added that can identify what actions should
be performed in order to ensure that the above problems do not persist.

Similarity Measures. In the traditional SOM model, a neuron
must be chosen as the winner in regards to a single input vector. The
most common of these is the sum-of-squares similarity which computes
the distance between vectors, in this case the input vector and a neuron
weight vector, shown in Equation (8.5),

wt = dwy | min (S (@0 - w2) b (8.5)
j=1

This distance measure signifies similarity between the input vector and a
neuron. The neuron whose weight vector is spatially closer to the input
vector will have the smallest sum-of-squares result.

Given a SOM consisting of n neurons and an input vector set of size
m, the training algorithm is expected to compute m x n sum-of-squares

GTSOM: Game Theoretic Self-Organizing Maps 11

calculations for an iteration, where an iteration consists of representing
each input vector to the competition layer once.

Once a winner neuron has been chosen, denoted wy, its weight vector
must be updated to become more spatially closer, or more similar, to
that of the current input vector. This is done by scaling the difference
between the two vectors via the learning rate o and adding the result to
the original weight vector, shown in Equation (8.6):

w; (q) = w; (g — 1) + a(Pk(q) — ¥ (g — 1)) . (8.6)

The weight vector for the winning neuron w; at iteration ¢ is equal to
the original weight vector at iteration (¢ — 1) plus the a-scaled difference
between the current input vector pj and the original weight vector wy.

The neighbourhood must then be updated. The neighbourhood set is
calculated around w; according to the decaying neighbourhood distance

d. The update of a neighborhood is done via Equation (8.7):

W, (2)(q) = Wn,. (a)(q — 1) + /(pr(q) — D, a)(q— 1)) - (8.7)

The modified learning rate o/ denotes a smaller learning rate that is
used on the neurons within the neighbourhood set N;«(d).

The learning rate « in Equation (8.6) is derived from a decreasing
polynomial formula [23]. The learning rate o/ is a modified fractional
scalar of a.

Measuring SOM Quality with Clusters

The competitive layer in the traditional SOM model does not have the
ability to find a neuron which best represents the current input vector
as well as having the ability to improve the quality of neuron placement
and density. Improving quality in a SOM could include an increased
ability to create and define better clusters.

Defining Clusters in a SOM. In order to determine the quality
of a SOM, definitions on what is considered a high-quality cluster must
be discovered. Clusters in a SOM are simply groupings of neurons that
have strong weight vector similarities and physical adjacency. Clusters
are the most visible organizational construct when viewing a trained
SOM. Clusters can be defined in two ways: by the actual input data
that was used to adjust the weight vectors or by the neurons associated
with that data.

12

Cluster density is the ratio of neurons in a cluster with the number
of input vectors it represents, shown in Equation (8.8). For example,
two clusters K7 and K2 both have 8 neurons belonging to it. Kj has
40 input vectors associated with it whereas K5 has 70 input vectors.
Using Equation (8.8), we find that the density Dk, = 5 and Dg, = 8.75
vectors/neuron. Ky is more dense than Kj.

_ Hpilpi = wi, wi € Ki}|

Dx.
' | K|

(8.8)

With the two criteria for defining clusters, two methods of represent-
ing clusters arise. First, a centroid vector can be used as a representation
of the cluster. This vector could be calculated by taking the average of
all weight vectors that the cluster includes. Representation of clusters
are needed in order to give some pre-determined knowledge of SOM
quality. Clusters will be used as tools to improve SOM quality. We are
using cluster representation techniques in order to simplify calculations
and decrease runtime. Second, a neuron whose weight vector is most
similar to that of the average weight vector of all neurons could be given
representation status. In addition to the two methods of representing
clusters in a SOM, two methods can be used in order to find a neuron
required in the latter method:

1 Using vectors. If a centroid input vector for a cluster is known,
we can discover which neuron that centroid input vector is most
similar to.

2 Using strength. If we wish for the calculations of centroid to be
strictly neuron based, we can find groups of neurons and determine
which of those neurons have won more competitions.

Assuming a two-dimensional grid layout for neurons within a SOM,
horizontal and vertical calculations can be performed on all numerical
values associated with the sum of input vectors that have the closest
similarity to each neuron. To further illustrate this process, a 2x2 subgrid
of neurons is detected to be a cluster. A graphical representation of this
cluster is shown in Figure 8.2. Performing horizontal calculation on rows
rl and r2, summing the number of victories those neurons have been
awarded during the current iteration results in finding that the first row
of neurons have a higher winner concentration. Therefore, we know that
the centroid neuron for this cluster will be one of the two neurons on
the top row. Doing the same process for the vertical results in finding
that the second column has a higher winner concentration. Using these

GTSOM: Game Theoretic Self-Organizing Maps 13

Figure 8.2. A cluster of four neurons.

cl c¢2

B
12|2)|(6)|=38

Il
7 10

horizontal and vertical coordinates, we have found a good representing
neuron to be our centroid for this cluster, namely neuron w1 c2.

With the calculation of known neuron clusters and methods of defining
and representing them, a unique opportunity presents itself. As itera-
tions progress and both the learning rate o and neighbourhood distance
d decay, the possibility of significant change in neuron representation of
input decreases. We can now decide to invoke cluster-based representa-
tion and visitation of the SOM network in the competition layers. This
means that instead of searching and computing similarity measures for
all n neurons, we can find the cluster K; whose centroid neuron weight
vector is closest to the input. Once this occurs, we can locally search
the neurons in that particular cluster for the winner. This reduces the
search space and thus computation time significantly. That is, the total
distance calculations for an iteration is given by m input vectors X n
neurons.

Invoking cluster-based representation means k cluster centroids (for
all K clusters) will result in one cluster K to be chosen as the search
space. The number of distance calculations for each input is then k& X
|KF|. For the entire iteration, it concludes that,

m x k x |K| <m xn, (8.9)

since k x | K| will always be less then or equal to n. If n = k x |K}|,
then k& = n and |K}| = 1. Each neuron is its own cluster. Hardly the
correct decision to invoke cluster-based representation of a SOM.

A picture of how SOM quality (correct cluster density and cluster
distances) can be gathered using the above methods. Using the ability
to calculate physical distance between clusters on the feature map as
well as the ability to calculate the density of a particular cluster can
enable a new algorithm to determine which neuron is best suited to be

14

updated. These quality measures can be used together to see how much
a particular neuron, if updated, can improve the overall quality of the
feature map.

Measuring SOM Quality. A question that must be asked is
how dense should a cluster be in a SOM? In order for a feature map to
adequately represent the input, the density of a cluster should somehow
be proportionate to the ratio of the input it represents and the entire
input data set.

Let P, be the set of input that is associated with the neurons present
in K;, the cluster to be measured,

where p; — w; implies p; association by ;. w; was winner in competi-
tion for p; during the current iteration.

The number of input vectors in Pk, is given as |Pg,|. Therefore,
Equation (8.11):

IKZ' = ;
Pl

(8.11)

is called the total input-to-cluster ratio for cluster K;. If the ratio be-
tween the density of a cluster to total number of neurons approaches
the total input-to-cluster ratio, the density and size of the cluster are
correctly proportionate to the number of inputs it represents.

The density of a cluster is the number of input vector associations
versus the number of neurons in the cluster shown in 8.8. This density
over the number of neurons in the network will give us the correct input-
to-cluster neurons-to-total neurons ratio shown in Equation (8.12).

Dy

TKZ' = —17
W]

(8.12)

where W is the set of neurons in our map. We wish to ensure Equa-
tion (8.12) is as close as possible to our total input-to-cluster ratio in
Equation (8.11). It follows,

|PKi| ~ Dk;
1P| W
K| x [W[

(8.13)

(8.14)

GTSOM: Game Theoretic Self-Organizing Maps 15

Figure 8.3. The layers of GTSOM including the addition of another competition
layer used during the training process.

_—|C >

" Input Competition 1 Competition 2 Update

Equation (3.23) has been dubbed density unification to show the tar-
get density of all clusters should be similar to the total input-to-cluster
ratio.

Game-Theoretic Competitive Learning in SOM

Although individual neurons have the ability to improve their situ-
ation during each competition, a collective goal for the entire SOM is
not considered. We have found that this is one problem in traditional
SOM theory. Individual neurons that are updated have no indication on
whether the entire network benefits from the process.

The transition between local optimization techniques to those of global
optimization must occur in order to solve problems of density mismatch
and physical adjacency errors. The concept of overall SOM quality must
be defined in order to progress to a state in which properties between
overall neuron relationships and input vectors can be measured.

The GTSOM Training Model. With the ability to precisely
define neuron clusters within a SOM, measures can be used in order to
define overall quality of the network. These measures, such as the size
of clusters, the distance between clusters, and the appropriate cluster
size to represent input can be combined to give a certain payoff value
to a particular neuron, if chosen as a winner. The new training model
is called GTSOM, or Game-Theoretic Self-Organizing Maps. This new
model architecture is shown in Figure 8.3.

The GTSOM model consists of four layers, one more than the tradi-
tional model found in Figure 8.1 on page 6: the input layer, the first
competition layer, the second competition layer using game-theoretic
concepts, and the update layer. No changes were made to the input
layer which still governs the presentation of input vectors in the compe-

16

tition layer(s). We added an additional competition layer to handle the
game-theoretic aspects of the training.

When the competitive phase begins, a ranking can be associated with
each neuron according to its distance from the input vector. Using the
ranked list of neurons, a new competition layer is constructed in order to
determine which neuron and which strategy or action should be taken.

The first Competition layer is modified so that instead of determining
which neuron is most similar to the current input vector, the layer now
ranks neurons according to each similarity measure obtained. There is
an opportunity here to include a dynamic, user-defined threshold value
t1 that can deter any neurons that are beyond a certain similarity mea-
sure to be included in the ranked set as shown in Equation (8.15) and
Equation (8.16):

W’ = {ni(g), .., mi(a)} . (8.15)

where Vn}(q) € W,

1wy (q) —pi| <ta (8.16)

and 1 < ¢ < n. This allows the user to specify a degree of minimum
similarity desired when having the first competition layer computing
which neurons should enter the second competition layer.

This ranked set neurons is the main gateway of communication be-
tween the two competition layers. The second competition layer uses
this set to perform its special instructions.

We are starting to see competitive learning aspects of SOM being
expanded into a more complex, multi-tiered competition system. The
use of game theory for added decision making ability is needed because
of the increase of complexity of the competition between neurons.

The Game-Theoretic Competition Layer. Once a ranked set of
neurons has been created, the second competition layer starts to create
competition tables of the form shown in Table 8.1. A neuron n; with
possible actions S = {a;1,...,a;,} and payoffs calculated from corre-
sponding utility functions U = {p;1,...,pir} competes against neuron
nj with the same action and utility sets. The neuron whose specific ac-
tion a; j results in the greatest overall SOM quality is chosen to be the
winner. Table 8.1 shows a payoff result for each neuron using respective
actions. For example, < p; 1,51 > is the payoff for neuron n; using

action a;,1 versus the payoff of neuron n; using action a;,;. We wish to

GTSOM: Game Theoretic Self-Organizing Maps 17

Table 8.1. Payoff table created by second Competition layer.

nj(q)
aj,1 e aj,r
i1l | < Hi1, U510 > | - < Wi,1, fgr >
ni(q) | : :
Qiyr | < Py g1 > | e | < iy e >

look at this table and find the neuron whose payoff or increase in SOM
quality is largest.

With the addition of quality measures, neurons are now ranked in
partial order. For example, a particular neuron n; could have a higher
ranking than n} in terms of a particular similarity measure between itself
and the input vector, but the neuron may not have that same ranking
when additional quality measures are taken into account.

A ranked list of neurons created with input similarity as a focus could
be different then a ranked list of neurons created with both similarity and
cluster size taken into account. Likewise for lists created with similarity
to input and cluster density. The second competition layer must take
into consideration not only similarity to input, but also how much each
neuron can increase or decrease feature map quality. Many different
ranking of neurons in W’ can occur when more than one measure is
used.

There are two possible ways of creating tables to govern the second
phase of competition. First, neurons can be initially paired randomly
with each other. Victors of each “round” move on to the next round,
where new tables are created for the neurons that have been awarded
victories. This process proceeds until a total victory is declared for one
neuron. Second, for a set W = {nj(q),...,n’(q)} of ranked neurons,
an n-dimensional payoff table can be created. With n neurons ranked
and entering competition, each with r possible actions, a total of 7™ cells
must be observed to determine which neuron gives the best quality or
utility value for this iteration.

SOM Update Strategies. Actions performed by a particular neu-
ron could possibly include parameters such as adjustable learning rates
or adjustable neighborhood size. Such actions can be called strategies to
describe an action that can be modified in order to create new actions.

A strategy of adjusting the learning rate o can be modified so that
there is an action for an increased adjustment, decreased adjustment,
and a no-change scenario. This strategy can improve clusters by forcing

18

subsequent input vectors that are similar to the current input to have a
greater possibility to be more similar to a different neuron than it did
on a previous iteration in the case of an increased learning rate. That
is, the input vector will have an increased likelihood to be closer to a
different neuron next iteration. A decreased learning rate will result in
a diminished similarity adjustment between the victor and the current
input vector, resulting in negligible change from subsequent iterations.
A set of actions detailing neighborhood size for a particular neuron
is useful when cluster sizes are desired to either grow or diminish. An
increased neighborhood size will modify a larger number of neurons to
become more similar to the current input vector. This will result in
less dense clusters if desired. In contrast, a decreased neighborhood size
could have an exact opposite effect, decreasing the size and increasing
the density of clusters. If clusters are too far apart, the density of a
particular cluster could be diminished so that cluster boundaries become
closer. Also, if clusters are too compact, the density of some clusters
could be increased in order to increase distance between centroids.

GTSOM Implementation

The process of ranking neurons according to similarity, creating payoff
tables, and determining winning neurons is introduced. Training will
stop when either of the following three conditions is met.

1 If a maximum number of specified iterations have been performed.

2 If no neurons have won competitions for new input vectors that
were not won before during previous iterations.

3 If the overall quality of the SOM has reached or moved beyond
that of a user-defined threshold.

A traditional SOM stops training when either conditions of the first
two conditions is met. With the addition of the third condition, train-
ing time can be reduced if a certain quality has been reached. A lower
threshold will most likely result in a lower number of iterations per-
formed. As precision increases with respect to the number of iterations
performed (smaller learning rate), a lower number of iterations will re-
sult in the algorithm completing with a learning rate above that of the
final desired learning rate.

A large value for ¢; will result in increased computation time as it
will result in a larger W’. Since tables are created and observed for
each distinct pair of neurons within W/, the similarity threshold must

GTSOM: Game Theoretic Self-Organizing Maps 19

be considered carefully. If #; is too small, it will result in incomplete
competition, where neurons that may offer valuable actions could be
ignored based on their dissimilarity to the current input vector.

The threshold to gives the option of stopping the training process
when a certain overall SOM quality has been reached. If ¢5 is too high,
representing a high quality preference, will result in no computational
efficiency improvement. This threshold may never be reached before
maximum iterations have occurred.

If t9 is too low, it could result in too few iterations being performed.
Since the learning rate « is adjusted during each iteration, it will not
get an opportunity to become sufficiently small for precise weight vector
updating.

for each neuron n; € W

{
Initialize w; randomly ;
}
while (¢ < gm) or (Vpi € P,ni(q) #ni(qg—1)) or (u(A) <t2)
{

ag = adjusted ag—1 for iteratiom ¢ ;
dq = adjusted d,—1 for iteration g // neighborhood distance ;
for each pj € P

{
Find set W' = {ni(q),...,nn(q)} ;
for each < nj(g),nj(q) > pair in W’
{
T;; = (N, S:;, Fi,j), where
N ={ni(q),nj(@)},
Si,j =set of actions for n;(¢) and nj(q),
F; ; =set of utility functions returning quality of A.
g = *aj, where aj =the action that best improves A. ;
}
Choose nj(pi) whose utility u; has maximum payoff action ;
Update_w(n; (q), Pk, q) // update winning neuron ;
Update N (N, (g)(dq), Pk, ag) // update neighborhood of n” ;
}

20

4. GTSOM Algorithm Analysis

This section analyzes the GTSOM algorithm presented in Section 3
on page 19. The main disadvantage to the algorithm is the decreased
running time, due to additional complexity required for finding the sim-
ilarity ordering and calculating payoff matrices.

SOM and GTSOM Comparison

The training of the traditional SOM and new GTSOM was performed
on a color dataset [2]. We will be looking at two different types of results
from our training experiments when determining whether the GTSOM
algorithm is performing to our expectations. These two comparisons will
be runtime between SOM and GTSOM and the quality of the map during
the training of SOM and GTSOM. There are four different scenarios to
discuss when looking at findings, these are:

1 SOM vs non-cluster-based GTSOM over maximum iterations.
2 SOM vs cluster-based GTSOM over maximum iterations.

3 SOM vs non-cluster-based GTSOM over with user-defined quality

threshold.
4 SOM vs cluster-based GTSOM over with user-defined quality thresh-
old.
Runtime Comparison. Runtime finding demonstrate the total

length of time taken to train a SOM. Scenario 1 is shown in Table 8.2.
1000 iterations are performed for each method on a SOM with 100 neu-
rons.

Table 8.2. Scenario 1, maximum iterations, runtime in seconds (lower is better), 100
neurons.

Method gm | W] | runtime(seconds)
SOM 1000 | 100 392
GTSOM | 1000 | 100 | 491 (+20.1%)

Without cluster-based representation and quality thresholds defined
by the user, the traditional SOM training algorithm outperforms the new
GTSOM method by 20%. This is mainly due to the creation of payoff
tables between neurons and the added complexity of the algorithm.

Scenario 2 is shown in Table 8.3. 1000 iterations are performed for
each method on a SOM with 100 neurons.

GTSOM: Game Theoretic Self-Organizing Maps 21

Table 8.3. Scenario 2, maximum iterations, runtime in seconds (lower is better), 100
neurons.

Method gm | W] | runtime(seconds)
SOM 1000 | 100 385
GTSOM | 1000 | 100 362 (-5.9%)

With cluster-based representation, the amount of neurons visited dur-
ing competition layer 2 in GTSOM is dramatically reduced. This im-
proves performance over SOM by 5.9%, plus or minus 1.8%. This im-
provement in performance will only increase with an increase of itera-
tions.

For scenario 3, the user-defined quality threshold will be the quality
reached at the maximum last iteration performed by SOM. That is, if
a quality measure of u(gy,) is achieved by SOM at the end of training,
GTSOM will stop once it reaches that threshold. Findings are shown
in Table 8.4. 1000 iterations are performed for the SOM method. The
GTSOM method reached the target quality u(qy,,) in 823 iterations. The
SOM had 100 neurons in the network.

Table 8.4. Scenario 3, user-defined quality threshold, runtime in seconds (lower is
better), 100 neurons.

Method q [W| | p(gm) | runtime(seconds)
SOM 1000 | 100 73 386
GTSOM | 823 100 73 319 (-17.4%)

A significant improvement of 17.4% is seen for the GTSOM method.
This is due to the fact that the method reached pu(g,) 19.4% faster
than the traditional SOM approach. A decreased number of iterations
performed will decrease runtime. It is worth mentioning that the map
made by GTSOM was not the same as the map made by SOM.

Scenario 4 is shown in Table 8.5. 1000 iterations are performed for the
SOM method. The GTSOM method reached the target quality p(gm,)
in 778 iterations. The SOM had 100 neurons in the network.

A 22.8% decrease in runtime was measured when using cluster-based
GTSOM and a user-defined threshold. The combination of fewer itera-
tions and few neuron visits have given a significant performance increase
versus SOM.

GTSOM has increased performance in all but one test in regards to
runtime. These results show that even though complexity was added

22

Table 8.5. Scenario 4, user-defined quality threshold, runtime in seconds (lower is
better), 100 neurons.

Method q [W| | p(gm) | runtime(seconds)
SOM 1000 | 100 73 390
GTSOM | 778 | 100 73 301 (-22.8%)

to the methods of training, opportunities now exist to decrease runtime
while remaining at a consistent quality.

Quality Comparison. We will be looking at three main qual-
ity characteristics findings: final distance between clusters, final cluster
density and resulting a difference in unification, and overall quality of
the final trained map.

First, the distance between clusters should be at the largest level
possible since the main clusters signify primary colour groupings (red,
green, and blue). Results are shown in Table 8.6.

Table 8.6. SOM vs GTSOM, |k| = number of clusters, average distance (higher is
better).

Method | |k| | Average Distance
SOM 4 4.9
GTSOM | 4 5.2 (+5.8%)

The GTSOM algorithm results in a 5.8% increase in distance between
clusters, a marginal improvement.

Second, the density of clusters should be as close to unification as pos-
sible with the actual input classification. Results are shown in Table 8.7.

Table 8.7. SOM vs GTSOM, density is inputs/neuron, difference from unification
(lower is better).

Method | Average neurons | Average | Difference from
per cluster Density Unification
SOM 18 14.8 -18.4%
GTSOM 16 16.6 -11.2%

The GTSOM algorithm results in improved density of the map, as
unification is 39% closer to optimal. More iterations would improve
map density.

GTSOM: Game Theoretic Self-Organizing Maps 23

Third, the overall quality of the map is taken into consideration. The
results are shown in Table 8.8.

Table 8.8. SOM vs GTSOM overall quality (higher is better).

Method | Average | Difference from Overall
Distance Unification Quality
SOM 4.9 -18.4 73.0%
GTSOM 5.2 11.2 114.9 (+63.5%)

A 5.8% increase in distance between clusters and a 39% improvement
in unification results in a significant 63.5% increase of overall quality of
the map.

Results show that runtime is decreased for three of the four scenarios,
with a maximum improvement of 22.8% in scenario 4.

5. Conclusion

A SOM is a proven method for discovering similarities within a data
set. By performing distance measures between neuron weight vectors
and input vectors, a SOM can manipulate itself in order to represent
some of the patterns it finds. Although the method works well with
many types of data, local optimization occurs when having a one-to-one
comparison (one weight vector compared to one input vector).

In order to create a new type of SOM that is globally optimized to
input, multiple criteria is used to find a neuron that not only represent
the current input, but also ensures that the entire network improves
in representation. Cluster sizes, densities, and distances are used in
conjunction with input similarity to improve SOM quality. The added
measures remove the local optimization problem by looking at the entire
map and how it is performing.

The new competitive learning routines make use of game theory to
decide which neuron is chosen to represent current input. This required
the creation of additional metrics in order to measure map quality during
training. The notion of density unification ensures that neuron clusters
accurately portray the actual data. The use of game theory facilitated
the demonstration of possible strategies to improve SOM quality, includ-
ing dynamic decaying learning rates and neighbourhood sizes. This use
of game theory as an infrastructure ensures global optimization during
training by picking neurons that can improve overall SOM quality.

We have proposed a new approach to competitive learning in SOMs
called GTSOM. The opportunity to create a model to facilitate global

24

optimization of the feature map requires methods to acquire the overall
quality of the feature map. These methods take the form of measuring
distance between clusters, cluster density and cluster size. GTSOM al-
lows for global optimization using multiple criteria for choosing neurons.
The modification of the first competition layer to sort neurons according
to similarity to input and the addition of the second competition layer
for the game-theoretic aspects of training was presented.

The usefulness of the new GTSOM training model for classification
purposes was demonstrated using colour vector data. Results show that
runtime is decreased by a factor of 22.8% and a 63.5% increase of overall
quality of the map. This is a simple example of how our approach can
improve classification applications such as image recognition. This made
use of neuron cluster detection and representation within the SOM that
was introduced in this work.

References

[1] Herbert, J., Yao, J.T.: A game-theoretic approach to competitive
learning in self-organizing maps. In: Proceedings of the First In-
ternational Conference on Natural Computation . Volume 1. (2005)
129-138

[2] Herbert, J.: A new approach to competitive learning in self-
organizing maps. Master’s thesis, University of Regina (2006)

[3] Kohonen, T.: Automatic formation of topological maps of patterns
in a self-organizing system. In: Proceedings of the Scandinavian Con-
ference on Image Analysis. (1981) 214-220

[4] Huntsberger, T.L., Ajjimarangsee, P.: Parallel self-organizing feature
maps for unsupervised pattern recognition. International Journal of
General Systems 16(4) (1990) 357-372

[5] Tsao, E., Lin, W.C., Chen, C.T.: Constraint satisfaction neural net-
works for image recognition. Pattern Recognition 26(4) (1993) 553—
567

[6] Brachman, R.J., Anand, T.: The process of knowledge discovery in
databases: A human-centered approach. In: Advances in knowledge
discovery and data mining. (1996) 37-58

[7] Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining
to knowledge discovery: an overview. In: Advances in knowledge dis-
covery and data mining. (1996) 1-34

[8] Herbert, J., Yao, J.T.: Time-series data analysis with rough sets.
In: Proceedings of the Fourth International Conference on Compu-
tational Intelligence in Economics and Finance. (2005) 908-911

GTSOM: Game Theoretic Self-Organizing Maps 25

[9] von Neumann, J., Morgenstern, O.: Theory of Games and Economic
Behavior. Princeton University Press, Princeton (1944)

[10] Haykin, S.: Neural Networks: A Comprehensive Foundation - Sec-
ond Edition (1994) 30

[11] Hagan, M.T., Demuth, H.B., Beale, M.H. In: Neural Network De-
sign. PWS Publishing Company (1996)

[12] Fudenberg, D., Tirole, J., Game Theory. The MIT Press (1991)

[13] Chandrasekaran, V., Liu, Z.: Topology constraint free fuzzy gated
neural networks for pattern recognition. IEEE Transactions on Neu-
ral Networks 9(3) (1998) 483-502

[14] Pal, S.K., Dasgupta, B., Mitra, P.: Rough self organizing map. Ap-
plied Intelligence 21(3) (2004) 289-299

[15] Nash, J.: The bargaining problem. Econometrica 18(2) (1950) 155—
162

[16] Roth, A.: The evolution of the labor market for medical interns and
residents: a case study in game theory. Political Economy 92 (1984)
991-1016

[17] Bell, M.G.F.: The use of game theory to measure the vulnerability of
stochastic networks. IEEE Transactions on Reliability 52(1) (2003)
63-68

[18] Fischer, J.,Wright, R.N.: An application of game-theoretic tech-
niques to cryptography. Discrete Mathematics and Theoretical Com-
puter Science 13 (1993) 99-118

[19] Gossner, O.: Repeated games played by cryptographically sophisti-
cated players. Technical report, Catholique de Louvain - Center for
Operations Research and Economics (1998)

[20] Fritzke, B.: Some competitive learning methods. Technical report,
Institute for Neural Computation. Ruhr-Universit at Bochum (1997)

[21] Blackmore, J., Miikkulainen, R.: Incremental grid growing: Encod-
ing high-dimensional structure into a two-dimensional feature map.
In: Proceedings of the International Conference on Neural Networks.
Volume 1. (1993) 450-455

[22] Santini, S., Jain, R.: Similarity measures. IEEE Transactions: Pat-
tern Analysis and Machine Intelligence 21(9) (1999) 871-883

[23] Kolen, J.F., Pollack, J.B.: Back propagation is sensitive to initial
conditions. In: Advances in Neural Information Processing Systems
3 (1991) 860-867

