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ABSTRACT

The key to granular computing is to make use of granules in prob-
lem solving. Classification is one of the well studied problems
in machine learning and data mining as it involves of discovery
knowledge from large databases. We presents a granular comput-
ing view to classification problems and propose a granular com-
puting approach to classification in this paper. The ID3 [8] and
PRISM [2] algorithma are studied and extended to granular com-
puting algorithm.

1. INTRODUCTION

Knowledge discovering and data mining are frequently refereed in
the literature as a process extracting interesting information or pat-
terns from large databases. It is actually a technique or program
doing automatic inductive reasoning. Learning, identification and
searching for knowledge, patterns, and regularities from data are
some of the major tasks of data mining. Knowledge is represented
in rules or black-box systems such as neural networks. Extensive
studies in the field have been focused on algorithms and method-
ologies for mining different types of rules [5], as well as speeding
up of existing algorithms [4]. Although plenty of experimental and
algorithmic studies have been reported in the literature, there is lit-
tle attention paid to the formal, general and mathematical model-
ing of data mining [13].

Taken logicians’ view point, data mining, especially rule min-
ing, can be molded in two steps, i.e., formation of concepts and
identification of relationship between concepts. There are two as-
pects of a concept, the intension and extension of the concept [3,
10]. The intension of a concept consists of all properties or at-
tributes that are valid for all objects to which the concept applies.
The extension of a concept is the set of objects or entities which
are instances of the concept. A concept is thus described jointly
by its intension and extension, i.e., a set of properties and a set of
objects. The extension of a concept, being a subset of the universe,
is also called a granule in granular computing.

Granular computing (GrC) is an umbrella term which covers
any theories, methodologies, techniques, and tools that make use
of granules (i.e., subsets of a universe) in problem solving [12,
16, 17]. A subset of the universe is called a granule in granular
computing. Basic ingredients of granular computing are subsets,
classes, and clusters of a universe. It deals with the characteriza-
tion of a concept by a unit of thoughts consisting of two parts, the
intension and extension of the concept.

One of the example of the granular computing data mining
models combines results from formal concept analysis and gran-
ular computing [13]. Each granule is viewed as the extension of

a certain concept and a description of the granule is an intension
of the concept. This paper adapts a similar point of views and dis-
cusses two special granulation cases namely covering and partition
in the process of data mining. With granular computing view, gran-
ulation oriented ID3 [8] can be extended to covering, and granule
oriented PRISM [2] can be extended to multi-class.

The organization of this paper is as follows. We introduce a
granular computing view of data mining, the granulation of cov-
ering and partition as well as information tables in the next sec-
tion. Classification problems are formalized in Section 3 with the
concepts of partition and covering. We discuss classification algo-
rithms in Section 4. A section concludes this paper is followed.

2. A GRANULAR COMPUTING VIEW OF DATA MINING

Granulation of a universe involves dividing the universe into sub-
sets or grouping individual objects into clusters. A granule is a
subset of the universe. A family of granules that contains every
object in the universe is called a granulation of the universe.

Partitions and coverings are two simple and commonly used
granulations of universe [15]. A partition consists of disjoint sub-
sets of the universe, and a covering consists of possibly overlap
subsets. Partitions are a special type of coverings. In granular
computing, we treat each element of a partition or covering as a
granule. Each granule can also be further divided through partition
or covering. For example, a universe{a, b, c, d} can be divided
into two granules{a,b} and{c,d} with partition{{a,b}, {c,d}}. It
can also be divided into another two granules{a,b,c} and{c,d,e}
with covering{{a,b,c}, {c,d,e}}.

Classification deals with grouping or clustering of objects based
on certain criteria. It is one of the basic learning tasks and is re-
lated to concept formation and concept relationship identification.
While concept formation involves the construction of classes and
description of classes, concept relationship identification involves
the connections between classes. These two related issues can
be studied formally in a framework that combines formal concept
analysis and granular computing [13].

There are two aspects of a concept, the intension and extension
of the concept [3, 10]. The intension of a concept consists of all
properties or attributes that are valid for all those objects to which
the concept applies. The intension of a concept is its meaning, or
its complete definition. The extension of a concept is the set of ob-
jects or entities which are instances of the concept. The extension
of a concept is the collection, or set, of things to which the concept
applies. A concept is thus described jointly by its intension and ex-
tension, i.e., a set of properties and a set of objects. The intension
of a concept can be expressed by a formula, or an expression, of a
certain language, while the extension of a concept is presented as



a set of objects satisfy the formula. This formulation enables us to
study formal concepts in a logic setting in terms of intension and
also in a set-theoretic setting in terms of extensions.

In order to formalize the problem, an information table was
introduced in [13, 14]. An information table can be formulated as
a tuple:

S = (U, At,L, {Va | a ∈ At}, {Ia | a ∈ At}),
whereU is a finite nonempty set of objects,At is a finite nonempty
set of attributes,L is a language defined using attributes inAt, Va

is a nonempty set of values for a∈ At, andIa : U → Va is
an information function. Each information functionIa is a total
function that maps an object ofU to exactly one value inVa. An
information table represents all available information and knowl-
edge [7, 16]. That is, objects are only perceived, observed, or
measured by using a finite number of properties. The information
function can be easily extended to a subset of attributes. Given
any subsetA ⊆ At, the value of an objectx on A is denoted by
IA(x). An information table as shown in Table 1 is adopted from
Quinlan [8].

Table 1: An information table

Object height hair eyes class
o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

In the languageL, an atomic formula is given bya = v, where
a ∈ At andv ∈ Va. Formulas can be formed by logical operators
negation, conjunction and disjunction. Ifφ andψ are formulas,
then so are¬φ, φ ∧ ψ, andφ ∨ ψ. The semantics of the lan-
guageL can be defined in the Tarski’s style through the notions
of a model and satisfiability. The model is an information table
S, which provides interpretation for symbols and formulas ofL.
The satisfiability of a formulaφ by an objectx, written x |=S φ
or in shortx |= φ if S is understood, is defined by the following
conditions:

(1) x |= a = v iff Ia(x) = v,

(2) x |= ¬φ iff not x |= φ,

(3) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(4) x |= φ ∨ ψ iff x |= φ or x |= ψ.

If φ is a formula, the setmS(φ) = {x ∈ U | x |= φ}, is called the
meaning of the formulaφ in S. If S is understood, we simply write
m(φ). The meaning of a formulaφ is the set of all objects having
the property expressed by the formulaφ. In other words,φ can
be viewed as the description of the set of objectsm(φ). Thus, a
connection between formulas ofL and subsets ofU is established.

We can have a formal description of concepts with the intro-
duction of languageL. A concept definable in an information ta-
ble is a pair(φ, m(φ)), whereφ ∈ L. More specifically,φ is a
description ofm(φ) in S, the intension of concept(φ, m(φ)), and

m(φ) is the set of objects satisfyingφ, the extension of concept
(φ, m(φ)).

By using the languageL, we can construct various granules.
For an atomic formulaa = v, we obtain a granulem(a = v).
If m(φ) andm(ψ) are granules corresponding to formulasφ and
ψ, we obtain granulesm(φ) ∩ m(ψ) = m(φ ∧ ψ) andm(φ) ∪
m(ψ) = m(φ∨ψ). In an information table, we are only interested
in granules, partitions and coverings that can be described by the
languageL.

In particular, we are only interested in the following granules,
i.e., definable granules, conjunctively definable granules [14]. A
subsetX ⊆ U is called a definable granule in an information table
S if there exists a formulaφ such thatm(φ) = X. A subset
X ⊆ U is a conjunctively definable granule in an information
tableS if there exists a formulaφ such thatφ is a conjunction of
atomic formulas andm(φ) = X.

With these two special type of granules, we have two special
granulations. A partitionπ is called a conjunctively definable par-
tition if every equivalence class ofπ is a conjunctively definable
granule. A coveringτ is called a conjunctively definable covering
if every granule ofτ is a conjunctively definable granule. With
granulation, one can obtain finer partition by further dividing an
equivalence class of a partition. Similarly, one can obtain a finer
covering by further decomposing a granule of a covering.

3. A TYPICAL MACHINE LEARNING PROBLEM

Classification is a typical machine learning problem. In supervised
classification, each object is associated with a unique and prede-
fined class label. Objects are divided into disjoint classes which
form a partition of the universe. Suppose an information table is
used to describe a set of objects. Without loss of generality, we
assume that there is a unique attributeclass taking class labels as
its value. The set of attributes is expressed asAt = F ∪ {class},
whereF is the set of attributes used to describe the objects. The
goal is to find classification rules of the form,φ =⇒ class = ci,
whereφ is a formula overF andci is a class label.

Let πclass ∈ Π(U) denote the partition induced by the at-
tributeclass. An information table with a set of attributesAt =
F ∪ {class} is said to provide a consistent classification if all ob-
jects with the same description overF have the same class label,
namely, ifIF (x) = IF (y), thenIclass(x) = Iclass(y).

For a subsetA ⊆ At, it defines a partitionπA of the universe.
The consistent classification problem can be formally defined [14].
An information table with a set of attributesAt = F ∪ {class}
is a consistent classification problem if and only ifπF ¹ πclass.
For the induction of classification rules, the partitionπF is not
very interesting. In fact, one is interested in finding a subset of
attributes fromF that also produces the correct classification. It
can be easily verified that a problem is a consistent classification
problem if and only if there exists a conjunctively definable parti-
tion π such thatπ ¹ πclass. Likewise, the problem is a consistent
classification problem if and only if there exists a non-redundant
conjunctively definable coveringτ such thatτ ¹ πclass. This
leads to kinds of solutions to the classification problem.

Formally, a partition solution to a consistent classification prob-
lem is a conjunctively definable partitionπ such thatπ ¹ πclass.
A covering solution to a consistent classification problem is a con-
junctively definable coveringτ such thatτ ¹ πclass.

Let X denote a granule in a partition or a covering of the uni-
verse, and letdes(X) denote its description using languageL.



If X ⊆ m(class = ci), we can construct a classification rule:
des(X) ⇒ class = ci. For a partition or a covering, we can
construct a family of classification rules. The main difference be-
tween a partition solution and a covering solution is that an object
is only classified by one rule in a partition based solution, while an
object may be classified by more than one rule in a covering based
solution.

Consider the consistent classification problem of Table 1, we
have the partition byclass, a conjunctively defined partitionπ,
and a conjunctively non-redundant coveringτ :

πclass : {{o1, o3, o6}, {o2, o4, o5, o7, o8}},
π : {{o1, o6}, {o2, o8}, {o3}, {o4, o5, o7}},
τ : {{o1, o6}, {o2, o7, o8}, {o3}, {o4, o5, o7}}.

Clearly,π ¹ πclass andτ ¹ πclass. A set of classification rules
of π is:

(r1) hair = blond ∧ eyes = blue =⇒ class = +,

(r2) hair = blond ∧ eyes = brown =⇒ class = −,

(r3) hair = red =⇒ class = +,

(r4) hair = dark =⇒ class = −.

A set of classification rules ofτ is:

(r1′) hair = red =⇒ class = +,

(r2′) eyes = blue ∧ hair = blond =⇒ class = +,

(r3′) eyes = brown =⇒ class = −.

(r4′) hair = dark =⇒ class = −.

In fact, the first set of rules is obtained by the ID3 learning algo-
rithm [8], and the second set by the PRISM algorithm [2]. Ob-
viously, (r1′), (r2′), and(r4′) are the same as (r3), (r1) and (r4)
respectively.(r3′) is a part of (r2).

4. CLASSIFICATION ALGORITHMS

With the concepts introduced so far, we can remodel some popular
classification algorithms. We study ID3 and PRISM from granular
computing view and propose a more general and flexible granula-
tion algorithm.

4.1. ID3

The ID3 [8] algorithm probably is the most popular algorithm in
data mining. It uses information gain as a criterion to find a suit-
able attribute to partition the universe until all granules can be un-
derstood or expressed by a formula. Much effort has been made to
extend the ID3 algorithm in order to get a better classification re-
sult. The C4.5 [9] proposed by Quinlan himself and fuzzy decision
tree [6] are among them. Figure 1 show the learning algorithm of
ID3.

Following the algorithm we start with the selection of the at-
tribute hair . The first step of granulation is to partition the uni-
verse with values ofhair as it is with the largest information gain.
Since there are three values forhair , now we have three granules
for this partition. Elements of (hair -dark) and (hair -red) granules
happened to belong to the same class, we will not conduct any
granulation to these two granules. As elements in granule (hair -
blond) do not belong to same class, we granulate the new universe

Figure 1: The learning algorithm of ID3

IF all cases in the training set belong to the same class

THEN Return the value of the class

ELSE

(1) Selectan attributea to split the universe.

(3) Divide the training set into non empty subsets, one for
each value of attributea.

(3) Return a tree with one branch for each subset, each
branch having a descendant subtree or a class value
produced by applying the algorithm recursively for
each subset in turn.

(hair -blond) with attributeeyes. We stop granulation when ele-
ments in the two new granules (eyes-blue) and (eyes-brown) are
in the same class. The partition tree is shown in Figure 2 which
happens to be our familiar decision tree.

Figure 2: An example of partition by ID3

The Universe
{o1,o2,o3,o4,o5,o6,o7,o8}

hair -blond
{o1,o2,o6,o8}

+/-

eyes-blue
{o1,o6}

+

eyes-brown
{o2,o8}

-

hair -dark
{o7,o4,o5}

-

hair -red
{o3}

+

4.2. The extension to ID3 type of algorithms

ID3 is granulation oriented search algorithm. It search a partition
of a problem at one time. We can extend this algorithm to another
granulation, covering, with modification to its algorithm. The top-
down construction of a decision tree for classification searches for
a partition solution to a classification problem. The induction pro-
cess can be briefly described as follows. Based on a measure of
connection between two partitions, one selects an attribute to di-
vide the universe into a partition [8]. If an equivalence is not a
subset of a user defined class, it is further divided by using another
attribute. The process continues until one finds a decision tree that
correctly classifies all objects. Each node of the decision tree is
labelled by an attribute, and each branch is labelled by a value of
the parent attribute.

When we search a covering solution, we can not immediately
use a decision tree to represent the results. We modify the decision
tree method and introduce the concept of granule network [15]. In
a granule network, each node is labelled by a subset of objects.
The arc leading from a larger granule to a smaller granule is la-



belled by an atomic formula. In addition, the smaller granule is
obtained by selecting those objects of the larger granule that sat-
isfy the atomic formula. The family of the smallest granules thus
forms a conjunctively definable covering of the universe.

4.3. PRISM

PRISM [2] is an algorithm proposed by Jadia Cendrowska in 1987.
Instead of using the principle of generating decision trees which
can be converted to decision rules, PRISM generates rules from
training set directly. Most important, PRISM is a covering based
method. The algorithm is described in Figure 3,

Figure 3: The learning algorithm of PRISM

For i=1 to n

repeat until all instances of class i have been removed

(1) Calculate the probability of occurrence of class i for
each attribute-value pair.

(2) Selectthe attribute-value pair with maximum probabil-
ity and create a subset of the training set comprising
all instances with the selected combination.

(3) Repeat(1) and (2) for this subset until it contains only
instances of class i. The induced rule is then the con-
junction of all the attribute-value pairs selected in cre-
ating this subset.

(4) Removeall instances covered by this rule from training
set.

From granular computing point of view, PRISM is actually
finding covering to the universe (training set). Let’s still use the
example of Table 1. The starting point of PRISM is the current
knowledge, classification + and -. For each class, a granule which
covers the current universe is selected. For the given example, we
know that the(class = +) is {o1, o3, o6}, the (class = −) is
{o2, o4, o5, o7, o8}. The largest probability isP (+|hair−red).
We use this attribute-value pair to form a granule{o3}. The sec-
ond largest probability isP (+|eyes−blue). We use this attribute-
value pair to form a second granule{o1, o3, o4, o5, o6}. So far
these two granules cover(class = +). We do the same for
(class = −) and find two granules{o2, o7, o8} and{o4, o5, o7}
which cover(class = −). The current covering of universe has
4 granules. All granules are in the same class except for gran-
ule eyes-blue. We calculate the new set of probabilities for the
second universe. The largest probability with high occurrence is
hair -blond pair. We form a new granule{o1, o6}. It is in fact the
intersection ofeyes-blue andhair -blond. The covering is shown
in Figure 4. Please note thato3 is in granule (hair -red) and granule
(eyes-blue). For this particular example, PRISM can provide short
rules than ID3. This is consistent with Cendrowska’s results and a
recent review [1].

4.4. The extension to PRISM search algorithm

PRISM is granule oriented search algorithm. It deals with one
class at one time. We can extend this algorithm to multi-class
search approach which is addressed in another paper.

Figure 4: An example of covering by PRISM

(a) +
{o1,o3,o6}

hair -red
{o3}

+

eyes-blue
{o1,o3,o4,o5,o6}

+/-

hair -blond
{o1,o6}

+

(b) -
{o2,o4,o5,o7,o8}

eyes-brown
{o2,o7,o8}

-

hair -dark
{o4,o5,o7}

-

4.5. Granular computing approach

With the extension of ID3 and PRISM, a granular computing ap-
proach to a particular machine learning problem is proposed. Atomic
formulas definebasic granules, which serve as the basis for the
granule network. The pair(a = v, m(a = v)) is called a basic
concept. Table 2 shows the basic granules for the example of Ta-
ble 1. Each node in the granule network is a conjunction of some
basic granules, and thus a conjunctively definable granule. The
granule network for a classification problem can constructed by a
top-down search of granules. Figure 5 outline an algorithm for the
construction of a granule network. The results of the example by
granular computing approach is shown in Figure 6.

Table 2: Basic granules for Table 1 example

Formula Granule
height = short {o1, o2, o8}
height = tall {o3, o4, o5, o6, o7}
hair = blond {o1, o2, o6, o8}
hair = red {o3}
hair = dark {o4, o5, o7}
eyes = blue {o1, o3, o4, o5, o6}
eyes = brown {o2, o7, o8}

The two importance issues of the algorithm is the evaluation
of the fitness of each basic concept and the modification of exist-
ing partial granule network [13, 15]. The algorithm is basically a
heuristic search algorithm. We can conduct depth first search or
breadth first search. The results of depth first search and breadth
first search are the same for ID3. PRISM is basically a depth first
search algorithm.

5. CONCLUSION

We present a granular computing view of data mining in particular
to classification problems. With the induce of partition and cover-
ing defined by a set of attribute values, one can find a solution by
granulation. ID3 and PRISM types of algorithms are examples of
partition and coving search algorithms. As suggested by No Free
Lunch theorem [11], there is no algorithm which performs bet-
ter than any other algorithm for all kinds of possible problems. It
is useless to judge an algorithm irrespectively of the optimization



Figure 5: An Algorithm for constructing a granule network

(1) Construct the family of basic concept with respect to atomic
formulas:

BC(U) = {(a = v, m(a = v)) | a ∈ F, v ∈ Va}.

(2) Setthe unused basic concepts to the set of basic concepts:

UBC(U) = BC(U).

(3) Set the granule network toGN = ({U}, ∅), which is a graph
consists of
only one node and no arc.

(4) While the set of smallest granules inGN is not a covering
solution of
the classification problemdo the following:

(4.1) Compute the fitness of each unused basic concept.

(4.2) Selectthe basic conceptC = (a = v, m(a = v))
with maximum
value of fitness.

(4.3) SetUBC(U) = UBC(U)− {C}.
(4.4) Modify the granule networkGN by adding new

nodes which are
the intersection ofm(a = v) and the original nodes
of GN ; connect
the new nodes by arcs labelled bya = v.

problem. For some data set, ID3 type may be better than PRISM
type and verse versa.

We provide a more general framework for consistent classi-
fication problem. The approach discussed in this paper provides
more freedom of choice on heuristic and measures according to
users needs. We will further examine on other data set and com-
pare the results in the future.
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