
Sensitivity Analysis of Neural Control

Chin-Wang Tao Hung T. Nguyen J. T. Yao Vladik Kreinovich
Dept. of Electrical Engineering Dept. of Mathematics Computer Science Computer Science

Nat’l I-Lan Inst. Technology New Mexico State Univ. University of Regina University of Texas
260 I-Lan, Taiwan Las Cruces, New Mexico Regina, Saskatchewan, El Paso, Texas

cwtao@mail.ilantech.edu.tw USA 88003 Canada S4S 0A2 USA 79968
hunguyen@nmsu.edu jtyao@cs.uregina.ca vladik@cs.utep.edu

Abstract: We provide explicit formulas that describe how sensitive the resulting signal
of a neural network is to the measurement errors with which we measure the inputs.

Keywords: neural networks, interval uncertainty

1 What are neural networks
Artificial neural networks (see, e.g., [2]) simulate a
highly parallel way the human brain works. In the
simplest 3-layer back-propagation neural network,
inputs signals �������������	��
 first go to

�
“hidden” neu-

rons. Each of these neurons produces a signal
�������������������������������� ���!
"���#
�� ���$��%�'&�(*)+(� %!�
where � � �-,.%/� &&0� 1�2435�76�,8%
is an activation function. Signals from these neurons
are collected at the (linear) output neuron, producing
the final signal
9��:;�<��
8�=�>�������?:A@B��
C@D�E:F���
i.e.,
"�@G��HI� :;�J�����9K
G L HI� ��� L ��� L � ���$��MB�?:F�C� �7&N%
Neurons in the hidden layer are called hidden be-
cause their signals are not directly outputted to the
outside world, they are only fed to the output neuron
that produces the final result.

2 Why neural networks
Neural networks are known to be universal ap-
proximators, i.e., every continuous function
O�P ��� � ���������7�
 % on a boxQ 6SR+�$RUTIVA�����WV Q 6SR+�$RUTX�

and for every positive real number Y[Z]\ , there
exists a function of the type (1) that approximatesP �-� � ���������	�
 % within a given accuracy Y .
At the same time, they are fast to compute: if we
implement all neurons in hardware, then a 3-layer
neural network means that no matter how complex
the function is, and how many variables it has, it only
needs the processing time of two layers to compute
the desired value of the function.

3 We want a neural network to be
trained

A typical application of neural networks, e.g., in con-
trol, is based on the following idea. Often, we have
skilled operators who can control a given plant, but
who cannot describe their control in precise terms.

So, what we can do is collect the record of their
skillful control, i.e., find out what control
_^a`�b these
skilled operators applied for different combinations� ^a`�b� ���������7� ^c`�b
 of input variables, and train a neural
network in such a way that it will produce the same
control for all given inputs.

4 How neural networks are trained

The universal approximation result does not tell us
how to train a neural network, i.e., how to find the
values of the weights � � L and : � that approximate a
given function. For this training, one of the most suc-
cessful algorithms is back-propagation, which is, in
effect, a gradient descent method for the least square

error. Namely, if we want the neural network to pro-
duce the output
�^a`�b for given inputs � ^a`�b� ���������	� ^a`�b
 ,
i.e., if we want to minimize the squared difference� � ��
 ^a`�b 6A
��-� ^a`�b� ���������7� ^c`�b
 %7%���� ���C%
where
��-�������������7��
W% denotes the expression (1), then
we must update the previously known weights to the
new values � � L � � � L 6�� � � �� ��� L
	 ����%

:A@ � :F@�6��"� � �� : @ � ��
8%
where � Z \ is a step. Back-propagation is, in ef-
fect, a fast algorithm for computing the correspond-
ing partial derivatives.

While computation of
 from given �5� ���������7�#
 starts
at the hidden neurons and then goes to the output
neuron, in the forward direction, the algorithm for
computing these derivatives starts with computing
the derivatives corresponding to the output neuron,
and then moves to computing the derivatives corre-
sponding to the hidden layer, i.e., goes backwards.
Thus, this algorithm is called back-propagation.

5 How neural networks are used
In accordance with our description:� first, we train the neural network to produce ex-

actly the desired values, and� then, we “freeze” the weights, and use the
neural network solely in forward propagation
mode.

6 Problem
The problem that we discuss in this paper is that in
real-life control applications, the values � L of input
variables come from measurements, and measure-
ments are never 100% accurate. As a result, the val-
ues �� L that we measure may be slightly different from
the actual (unknown) � L values of the correspond-
ing physical quantities, i.e., the measurement errorR � L�� ���� �� L 6;� L is, in general, different from 0.

How does this uncertainty affect the result of the neu-
ral network? In other words, how is the computed

value �
 � ����
�� �� � ��������� ��
 % different from the desired

value
 � ����
���� � ���������7�
 % ? In yet other words, how
sensitive is the neural network to the inaccuracy with
which we know the inputs?

7 Measurement errors are usually rela-
tively small

Measurement errors are usually relatively small. So,
to find the bounds onR
 � ���� �
96A
9�
�� ���� ��������� ���
 % 6;
������ ���������7�#
W%��
�� ���� ��������� ��#
 %!6
�� ����<6 R ������������� ���
96 R �#
 %!� ���C%
we can expand the dependence (5) in Taylor series
and retain only linear terms in this expansion:R
"� �
� ��� �NR ���/������� � �
� ��
 �NR �#
�� ����%
8 Two cases: interval and statistical

The resulting estimate on R
 depends on what we
know about the measurement errors R � L . In all
cases, the manufacturer of the measuring instrument
provides us with an upper bound R L on the measure-
ment error: � R � L � (DR L .
In some situations, this is the only information that
we have. In such situations (see, e.g., [4, 5, 6, 7, 8]),
the largest possible value of R
 is equal toR ������ �
� ��� ���� ��R � �>������������ �
� ��
 ���� ��R
 � ����%
In other cases, in addition to the upper bound on
the measurement errors, we know the probabilities
of different values of these errors. Usually (see, e.g.,
[10]), the corresponding probability distributions ofR � L are independent, and each R � L is normally dis-
tributed with 0 average and known standard devia-
tion � L . In this case, the variance � Q
8T , i.e., the mean
squared value of R
 , can be computed as follows:

� Q
�T�� � �
� � �"! � � � �� �>��������� �
� �
#! � � � �
 � ��$�%
In both cases, to estimate the effect, we must know
the values of the partial derivatives�
� � L � ��%�%

9 What is known
Several papers (see, e.g., [1, 3]) describe how to com-
pute the desired derivatives (9) on the training stage.
On this stage, we know the partial derivatives of

�
w.r.t. weights, and from these derivatives, we can
easily estimate the derivative (9).

Specifically, due to the chain rule, the derivative of
�

w.r.t � �!� is equal to � �� ���$� �
�J��R
 ^c`�b ��:;�J��� �� K
G L HI� ��� L ��� L � ���$� M � �'& \ %

where we denotedR
 ^a`�b � ����[
��-� ^a`�b� ���������7� ^a`�b
 % 6;
 ^c`�b �
while �
� � L �@G�!HI� :;�J��� �� K
G L HI� ��� L ��� L � ���$� M ����� L � �'&�&N%
Therefore, �
� � L � &��R
 ^c`�b @G�!H � � �� � �$� ����� L � �'& �C%
10 What we will do
In this paper, we will provide an estimate for the de-
sired partial derivative on the usage stage, when no
partial derivatives are known.

Preliminary results of this research were first an-
nounced in [11].

11 Our formula
The resulting formula is as follows:����

�
� � L ���� (&
 ����� 2_����� �	��
 %�� �'& ��%
where

���
� ���� G � � :A�J����� L %
� �7& ���4%

and
��

� ���� G � � :;�J����� L %�
<� �'& ����%

and for each real number � , � �
� ����������5���#� \ % and

�

� ����������I�76���� \ % .

In other words, � � is the sum of all positive terms:;������� L , and �
 is the sum of the absolute values
of all negative terms.

12 Proof of correctness
Let us first prove that this formula is indeed correct.
Indeed, due to (11), we have�
� � L �@G�!HI� :A� ����� L �N� �� K
G L HI� ��� L ��� L � ���$� M � �7&
.%
It is known that � �� � ,8% � ����� ,8%����'& 6*����� ,8%	% . The
value �N���-,.% goes from 0 to 1, hence � �� � ,8% is always
non-negative, and its largest value is attained when� � �-,.%�� \ � � ; then � �� � ,8%�� \ � �J�8�'&�6 \ � �C%�� &��
 (in
this case, , � \). So, � �� � ,8%<(&��
 for all , .
If the desired partial derivative is positive, then its
value cannot exceed the sum of all the positive terms
in the expression (14). Since � �� �-,.% is always posi-
tive, the sign of a term is determined by the product:;� �8��� L . Thus, if the desired partial derivative is
positive, then����

�
� � L ���� � �
� � L (G � � :;�J�����
L % � �N� �� �-,.%<(&
 � G � � :A�J����� L %
� � �7& ��%

Similarly, if the desired partial derivative is negative,
then its absolute value cannot exceed the sum of ab-
solute values of the negative terms in the sum, i.e.,����

�
� � L ���� (G � � : � ��� �
L %�
 �N� �� � ,8%<(&
 � G � � :A�J����� L %�
�� �7& �8%

Combining (15) and (16), we conclude that in both
cases, the absolute value of the desired partial deriva-
tive cannot exceed the largest of these two bounds. In
other words, the formula (13) is indeed correct.

13 Can we get a better estimate?
A natural question is: can we get a better estimate?
We will show if the number of hidden neurons does
not exceed the number of inputs (i.e.,

� (��), then,
in “almost all” cases, the above estimate cannot be
improved.

By “almost all” cases, we mean that these es-
timates cannot be improved in the generic case,

when the corresponding weight vectors �J� � �����-�����C���������	����
 % are linearly independent.

Let us show that in this case, for every Y Z \ , there
exist values �_� ���������7��
 for which the upper bound is
(13) is attained within accuracy Y , i.e., for which����

�
� � L ���� � &
 ����� 2_��� � �	�
 %=6 Y � �'& ��%
Without losing generality, let us consider the case
when G � � :A�J����� L %
� � G � � :;�J����� L %�
0�
In this case, the desired equality (17) takes the equiv-
alent form �
� � L � &
 � G � � : � ��� � L %
�A6 Y � �'& $�%
Let � be the set of all the indices) for which : � ���� L Z \ . Let us fix a large number � and find the
values � L for which:� ��� ��� � �������N� � �!
 ���
 � � �$� � \

�����)	� � � �'& %�%�����<�����/�>�����N� ���!
"����
U� ���!�J� �
�����)�
� � � ��� \ %

Since
� (� , and the vectors �S� are linearly inde-

pendent, this system of equations always has a solu-
tion, For this solution, the formula (14) leads to:�
� � L �&
 � G � � : � � � � L % � 6 � � � � %W� G � � : � � � � L %
 �U���W&N%
As � �
� , we have� �� � � %/��� � � � % �8�'&�6 � � � � %7% � \ �
hence, for large enough � , we have the inequality
(18).

Thus, our bound cannot indeed be improved. The
statement is proven.

It should be mentioned that if the number of hidden
neurons exceeds the number of inputs – which hap-
pens in many situations – then an improvement may
be possible.

Acknowledgments
This work was supported in part by NASA under
cooperative agreement NCC5-209, by the Future
Aerospace Science and Technology Program (FAST)
Center for Structural Integrity of Aerospace Sys-
tems, effort sponsored by the Air Force Office of
Scientific Research, Air Force Materiel Command,
USAF, under grant F49620-00-1-0365, by NSF
grants EAR-0112968 and EAR-0225670, by the
Army Research Laboratories grant DATM-05-02-
C-0046, by the Hewlett-Packard equipment grants
89955.1 and 89955.2, by the Personal Interface Ac-
cessGrid awarded by the Education, Outreach and
Training Partnership for Advanced Computational
Infrastructure EOT-PACI, and by the IEEE/ACM
SC2003 Minority Serving Institutions Participation
Grant.

The authors are thankful to the anonymous referees
for valuable suggestions.

References

[1] C. Alippi, V. Piuri, and M. Sami, “Sensitivity to
errors in Artificial Neural Networks: a behav-
ioral approach”, IEEE Transactions on Circuits
and Systems, I: Fundamental Theory and Ap-
plications, 1995, Vol. 42, No. 6, pp. 358–361.

[2] L. Fausett, Fundamentals of neural networks:
Architectures, algorithms, and applications,
Prentice Hall, Englewood Cliffs, NJ, 1994.

[3] S. Hashem, “Sensitivity analysis for feedfor-
ward Artificial Neural Networks with differ-
entiable activation functions”, Proceedings of
the 1992 International Joint Conferences on
Neural Networks, Baltimore, MD, IEEE Press,
1992, Vol. 1, pp. 419–424.

[4] L. Jaulin, M. Keiffer, O. Didrit, and E. Wal-
ter, Applied Interval Analysis, Springer-Verlag,
Berlin, 2001.

[5] R. B. Kearfott, Rigorous Global Search: Con-
tinuous Problems, Kluwer, Dordrecht, 1996.

[6] R. B. Kearfott and V. Kreinovich (eds.), Appli-
cations of Interval Computations, Kluwer, Dor-
drecht, 1996.

[7] R. E. Moore, Methods and Applications of In-
terval Analysis, SIAM, Philadelphia, 1979.

[8] A. Neumaier, Introduction to Numerical Anal-
ysis, Cambridge Univ. Press, Cambridge, 2001.

[9] H. T. Nguyen and V. Kreinovich, Applications
of continuous mathematics to computer sci-
ence, Kluwer, Dordrecht, 1997.

[10] S. Rabinovich, Measurement Errors: Theory
and Practice, American Institute of Physics,
New York, 1993.

[11] J. T. Yao, “Sensitivity analysis for data min-
ing”, Proceedings of the 22nd International
Conference of the North American Fuzzy In-
formation Processing Society NAFIPS’2003,
Chicago, Illinois, July 24–26, 2003, pp. 420–
425.

