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Abstract

One of the challenges a decision maker faces is choos-
ing a suitable rough set model to use for data analysis. The
traditional algebraic rough set model classifies objects into
three regions, namely, the positive, negative, and bound-
ary regions. Two different probabilistic models, variable-
precision and decision-theoretic, modify these regions via
l,u user-defined thresholds and α, β values from loss func-
tions respectively. A decision maker whom uses these mod-
els must know what type of decisions can be made within
these regions. This will allow him or her to conclude which
model is best for their decision needs. We present an out-
line that can be used to select a model and better analyze
the consequences and outcomes of those decisions.

1. Introduction

Rough set theory is a way of representing and reasoning
imprecision and uncertain information in data [4]. It deals
with the approximation of sets constructed from descriptive
data elements. This is helpful when trying to discover de-
cision rules, important features, and minimization of condi-
tional attributes. Rough sets creates three regions, namely,
the positive, negative and boundary regions. These regions
can be used for making decisions regarding “yes”, “no”, and
“wait-and-see” cases. This method of data analysis is very
useful for data mining [2, 6].

Researchers have extended the algebraic rough set model
into probabilistic approaches. The variable-precision rough
set model [14] and decision theoretic rough set model [12,
10] expand the POS and NEG regions by using l, u thresh-
olds and α, β values respectively. The purpose of expanding
the POS and NEG regions is to increase our certainty about
the knowledge (rules) obtained through rough set analysis.

Decision makers that use these rough sets to aid in their
decision making are now faced with the challenge of which

model to choose from. An outline that details the kinds of
decisions that can be made could be very beneficial.

The organization of this paper is as follows. Section 2
will discuss rough set theory and the extended probabilistic
models that expand the positive and negative regions. Sec-
tion 3 will state the outline based on all three models. We
conclude this paper in Section 4.

2. Rough Set Models

We will review the algebraic, variable-precision, and
decision-theoretic rough set models in this section.

2.1. Algebraic Rough Set Model

Discerning objects from each other is a major purpose in
rough set theory. It may be impossible to precisely describe
A ⊆ U . Equivalence classes are descriptions of objects in
U . Approximations are formed around these equivalence
classes. The regions, derived from the approximations, are
used as a guiding principle in what decisions a user can
make. Definitions of lower and upper approximations fol-
low [5]:

apr(A) = {x ∈ U |[x] ⊆ A},
apr(A) = {x ∈ U |[x] ∩ X �= ∅}. (1)

The lower approximation of A, apr(A), is the union of
all elementary sets that are included in A. The upper ap-
proximation A, apr(A), is the union of all elementary sets
that have a non-empty intersection with A. This approxi-
mates unknown sets with equivalence classes. The positive,
negative, and boundary regions [4] of A can be defined as:

POS(A) = apr(A),
NEG(A) = U − apr(A),
BND(A) = apr(A) − apr(A). (2)
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2.2. Variable-Precision Rough Set Model

The variable-precision rough set (VPRS) model aims at
increasing the discriminatory capabilities of the rough set
approach by using parameter grades of conditional proba-
bilities. Two parameters, the lower-bound l and the upper-
bound u, are provided by the user.

The u-positive region POSu(A) reflects the least ac-
ceptable degree of the conditional probability P (A|[x]) to
include an object x with description [x] into a set A,

POSu(A) = {x ∈ A|P (A|[x]) ≥ u}. (3)

Likewise, the l-negative region NEGl(A) is controlled
by the lower-bound l, such that,

NEGl(A) = {x ∈ A|P (A|[x]) ≤ l}. (4)

The boundary region is now smaller in size since the u-
positive and l-negative regions increase the size of the pos-
itive and negative regions. That is,

BNDl,u(A) = {x ∈ A|l < P (A|[x])lu}. (5)

Since the l and u parameters are given by the user, the
quality is user-driven. Precision, or accuracy of classifica-
tion, is greatly effected by these values.

An upper-bound u set too low decreases the certainty that
any object is correctly classified. Likewise, a lower-bound
l that is set too high suffers from the same outcome. The
special case u = 1 and l = 0 results in this model perform-
ing exactly like the algebraic model. The VPRS model has
been used in many areas [1, 15, 16]

2.3. Decision-Theoretic Rough Set Model

The decision-theoretic rough set (DTRS) model uses the
Bayesian decision procedure which allows for minimum
risk decision making based on observed evidence. Let
A = {a1, . . . , am} be a finite set of m possible actions and
let Ω = {w1, . . . , ws} be a finite set of s states. P (wj |x)
is calculated as the conditional probability of an object x
being in state wj given the object description x. λ(ai|wj)
denotes the loss, or cost, for performing action ai when the
state is wj . The expected loss (conditional risk) associated
with taking action ai is given by [11, 13]:

R(ai|x) =
s∑

j=1

λ(ai|wj)P (wj |x). (6)

Object classification with the approximation operators
can be fitted into the Bayesian decision framework. The
set of actions is given by A = {aP , aN , aB}, where aP ,

aN , and aB represent the three actions in classifying an ob-
ject into POS(A), NEG(A), and BND(A) respectively. To
indicate whether an element is in A or not in A, the set of
states is given by Ω = {A, Ac}. a� when an object belongs
to A, and let λ(a�|Ac) denote the loss incurred by take the
same action when the object belongs to Ac.

Let λP1 denote the loss function for classifying an ob-
ject in A into the POS region, λB1 denote the loss function
for classifying an object in A into the BND region, and let
λN1 denote the loss function for classifying an object in A
into the NEG region. A loss function λ�2 denotes the loss
of classifying an object that does not belong to A into the
regions specified by �.

The expected loss R(a�|[x]) associated with taking the
individual actions can be expressed as:

R(aP |[x]) = λP1P (A|[x]) + λP2P (Ac|[x]),
R(aN |[x]) = λN1P (A|[x]) + λN2P (Ac|[x]),
R(aB|[x]) = λB1P (A|[x]) + λB2P (Ac|[x]), (7)

where λ�1 = λ(a�|A), λ�2 = λ(a�|Ac), and � = P , N ,
or B. If we consider the loss functions λP1 ≤ λB1 < λN1

and λN2 ≤ λB2 < λP2, the following decision rules are
formulated (P, N, B) [11]:

P: If P (A|[x]) ≥ γ and P (A|[x]) ≥ α, decide POS(A);
N: If P (A|[x]) ≤ β and P (A|[x]) ≤ γ, decide NEG(A);
B: If β ≤ P (A|[x]) ≤ α, decide BND(A);

where,

α =
λP2 − λB2

(λB1 − λB2) − (λP1 − λP2)
,

γ =
λP2 − λN2

(λN1 − λN2) − (λP1 − λP2)
,

β =
λB2 − λN2

(λN1 − λN2) − (λB1 − λB2)
. (8)

The α, β, and γ values define the different regions, giv-
ing us an associated risk for classifying an object. When
α > β, we get α > γ > β and can simplify (P, N, B) into
(P1, N1, B1) [11]:

P1: If P (A|[x]) ≥ α, decide POS(A);
N1: If P (A|[x]) ≤ β, decide NEG(A);
B1: If β < P (A|[x]) < α, decide BND(A).

These minimum-risk decision rules offer us a basic foun-
dation in which to build a rough set risk analysis component
for a WSS [8]. This model has also been successfully used
for data mining [7], feature selection [9], and information
retrieval [3]. They give us the ability to not only collect
decision rules from data, but also the calculated risk that is
involved when discovering (or acting upon) those rules.



3. Practical Decision Making for Rough Sets

The basic approach to make decisions with a rough set
model is to analyze a data set in order to acquire lower and
upper approximations. Based on the regions from these ap-
proximations, rules can be gathered. These rules can then
be used for guiding decisions. With the three regions (POS,
BND, and NEG), there are two types of decisions that the
rough set components can offer for decision making:

1. Immediate Decisions (Unambiguous) - These types
of decisions are based upon classification within the
various POS and NEG regions. The user can interpret
the findings as:

(a) Classification to POS regions are a “yes” answer.

(b) Classification to NEG regions are a “no” answer.

2. Delayed Decisions (Ambiguous) - These types of de-
cisions are based on classification in the various BND
regions. Proceeding with a “wait-and-see” agenda
since there is uncertainty present. Rough set theory
may be meaningless when these cases are too large and
unambiguous rules are scarce. Two approaches may be
applied to decrease ambiguity:

(a) Obtain more information [4]. The user can insert
more attributes to the information table. They
may also conduct further studies to gain knowl-
edge in order to make a immediate decision from
the limited data sets.

(b) A decreased tolerance for acceptable loss [11,
12] or user thresholds [14]. The probabilistic as-
pects of the rough set component allows the user
to modify the loss functions or thresholds in or-
der to increase certainty.

3.1. Decisions from the Algebraic Rough
Set Model

1. Immediate - We can definitely classify x in this situa-
tion. According to the probability of an object x is in
A given the description [x], the following happens:

(a) If P (A|[x]) = 1, then x is in POS(A).

(b) If P (A|[x]) = 0, then x is in NEG(A).

2. Delayed - There is a level of uncertainty when classi-
fying x in this situation. According to the probability
of an object x is in A given the description [x], the
following happens:

If 0 < P (A|[x]) < 1, then x is in BND(A).

Region Decision Type

POS(A) Immediate
BND(A) Delayed
NEG(A) Immediate

Table 1. Decision types for the algebraic
rough set model

The decision regions are given as follows:

POS(A) = apr(A)
= {x ∈ U |P (A|[x]) = 1}, (9)

BND(A) = apr(A) − apr(A)
= {x ∈ U |0 < P (A|[x]) < 1}, (10)

NEG(A) = U − apr(A)
= {x ∈ U |P (A|[x]) = 0}. (11)

The available decisions that can be made from the alge-
braic model is summarized in Table 1. From this table, there
are two types of decisions that can be made.

3.2. Decisions from the Variable-Precision
Rough Set Model

1. Pure Immediate - We can definitely classify x in this
situation. According to the probability of an object x is
in A given the description [x], the following happens:

(a) If P (A|[x]) = 1, then x is in POS1(A).

(b) If P (A|[x]) = 0, then x is in NEG0(A).

2. User-Accepted Immediate - The classification abil-
ity is greater than a user-defined upper-bound thresh-
old. According to the probability of an object x is in A
given the description [x], the following happens:

If u ≤ P (A|[x]) < 1, then x is in POSu(A).

3. User-Rejected Immediate - The classification ability
is less than a user-defined lower-bound threshold. Ac-
cording to the probability of an object x is in A given
the description [x], the following happens:

If 0 < P (A|[x]) ≤ l, then x is in NEGu(A).

4. Delayed - There is a level of uncertainty when classify-
ing x in this situation, between the user thresholds. Ac-
cording to the probability of an object x is in A given
the description [x], the following happens:



Region Decision Type

POS1(A) Pure Immediate
POSu(A) User-accepted Immediate
BNDl,u(A) Delayed
NEGl(A) User-rejected Immediate
NEG0(A) Pure Immediate

Table 2. Decision types for the variable-
precision rough set model

If l < P (A|[x]) < u, then x is in BNDl,u(A).

The positive decision regions show an expanded sense of
certainty. POS1 implies that there is no uncertainty when
classifying object x. POSu implies that there is no uncer-
tainty from the decision maker perspective when classifying
object x. They are given as follows:

POS1(A) = apr1(A)
= {x ∈ U |P (A|[x]) = 1}, (12)

POSu(A) = aprα(A)
= {x ∈ U |u ≤ P (A|[x]) < 1}. (13)

Classification into the boundary region occurs when the cal-
culated probability lies between the user-defined thresholds
l and u.

BNDl,u(A) = apr(A) − (apru(A) ∪ apr1(A))
= {x ∈ U |l < P (A|[x]) < u}. (14)

NEG0 implies that there is no uncertainty when object
x does not belong in A. NEGl implies that there is no un-
certainty from the decision maker perspective when x does
not belong to A. They are given as follows:

NEG0(A) = U − (NEGl(A) − apr1(A)
= {x ∈ U |P (A|[x]) = 0}, (15)

NEGl(A) = U − (NEG0(A) − apr1(A)
= {x ∈ U |0 < P (A|[x]) ≤ l}. (16)

We see that there are five types of decisions that can
be made with the VPRS model in Table 2. From a theo-
retical perspective, three decision types are apparent since
the regions POS1 and NEG0 are special binary cases for
POSu and NEGl for u = 1 and l = 0 respectively. How-
ever, from a practical decision perspective, the types of de-
cisions that can be made from these special cases are dis-
tinct enough to warrant their own decision type, increasing
this total to five types.

3.3. Decisions from the Decision-Theoretic
Rough Set Model

1. Pure Immediate - We can definitely classify x in this
situation. According to the probability of an object x is
in A given the description [x], the following happens:

(a) If P (A|[x]) = 1, then x is in POS1(A).

(b) If P (A|[x]) = 0, then x is in NEG0(A).

2. Accepted Loss Immediate - The classification ability
is greater than a α-based loss function. According to
the probability of an object x is in A given the descrip-
tion [x], the following happens:

If α ≤ P (A|[x]) < 1, then x is in POSα(A).

3. Rejected Loss Immediate - The classification ability
is less than a β-based loss function. According to the
probability of an object x is in A given the description
[x], the following happens:

If 0 < P (A|[x]) ≤ β, then x is in NEGβ(A).

4. Delayed - There is a level of uncertainty when classify-
ing x in this situation, between the user thresholds. Ac-
cording to the probability of an object x is in A given
the description [x], the following happens:

If β < P (A|[x]) < α, then x is in BNDα,β(A).

The positive decision regions show an expanded sense
of certainty. Using the DTRS model, two immediate deci-
sions can arise from this classification (pure immediate and
accepted loss immediate). The POS1 region implies that
there is no uncertainty when classifying object x. POSα

implies that there is an acceptable risk (loss) associated with
classifying object x into A. They are given as follows:

POS1(A) = apr1(A)
= {x ∈ U |P (A|[x]) = 1}, (17)

POSα(A) = aprα(A)
= {x ∈ U |α ≤ P (A|[x]) < 1}. (18)

Classification into the boundary region occurs when the cal-
culated probability lies between the derived α and β loss
values. That is, those objects that do not meet acceptable
loss criteria are considered uncertain in their classification.
Delayed decisions arise from the following situation in the
DTRS model:

BNDα,β(A) = apr(A) − (aprα(A) ∪ apr1(A))
= {x ∈ U |β < P (A|[x]) < α}. (19)



Region Decision Type

POS1(A) Pure Immediate
POSα(A) Accepted Loss Immediate
BNDα,β(A) Delayed
NEGβ(A) Rejected Loss Immediate
NEG0(A) Pure Immediate

Table 3. Decision types for the decision-
theoretic rough set model

Again, the DTRS model allows for two more immediate de-
cisions to arise (pure immediate and rejected loss immedi-
ate). The NEG0 region implies that there is no uncertainty
when object x does not belong in A. The NEGβ region im-
plies that there is an acceptable risk of not classifying object
x into A. They are given as follows:

NEG0(A) = U − (NEGβ(A) − apr(A)
= {x ∈ U |P (A|[x]) = 0}, (20)

NEGβ(A) = U − (NEG0(A) − apr(A)
= {x ∈ U |0 < P (A|[x]) ≤ β}. (21)

From a theoretical perspective, the regions POS1 and
NEG0 are again special binary cases for POSα and
NEGβ for α = 1 and β = 0 respectively, similar to that of
the VPRS-based decisions. A practical decision perspective
shows that there are five distinct types of decisions.

The decision regions derived from the VPRS model
allow for the classification of objects from the decision
maker’s perspective. Although the VPRS model and the
DTRS model look remarkably similar, they are fundamen-
tally different in respect to the types of decisions that they
can provide. We can see that there are five types of deci-
sions that can be made with the DTRS model in Table 3.

In choosing a probabilistic rough set model for decision
making purposes, one should consider the amount of de-
scriptive information that is available. If the user’s decision
has no risk or cost consideration and if the user is capable
of providing meaningful thresholds for defining the deci-
sion regions, the VPRS model is suitable. Otherwise, the
DTRS model is useful if cost or risk elements are beneficial
for the decisions as well as the decreased user involvement.

4. Conclusions

We present a decision outline based on rough set regions
created by three models: algebraic, variable-precision, and
decision-theoretic. First, three types of decisions can be
made when the algebraic model is used. Second, five types
of decisions can be made using the VPRS model, with two

of these decisions user-driven. Third, five types of deci-
sions can be made using the DTRS model. Two of these
decisions are based on an acceptable loss and rejected loss
derived from loss functions. In total, our outline details thir-
teen types of decisions that can be made using rough sets.
The outline helps decision makers to choose which particu-
lar rough set model is best for their decision goals.
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