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Abstract. Determining the correct threshold values for probabilistic
rough set models has been a heated issue among the community. This
article will formulate a game-theoretic approach to calculating these
thresholds to ensure correct approximation region size. By finding equi-
librium within payoff tables created from approximation measures and
modified conditional risk strategies, we provide the user with tolerance
levels for their loss functions. Using the tolerance values, new thresholds
are calculated to provide correct classification regions. Better informed
decisions can be made when utilizing these tolerance values.

1 Introduction

In rough sets [10], a set within the universe of discourse is approximated. Rough
set regions are defined with these approximations. One of the goals of improv-
ing the classification ability of rough sets is to reduce the boundary region,
thus, reducing the impact that this uncertainty has on decision making. The
decision-theoretic rough set [16] and variable-precision rough set [17] models
were proposed solutions to this problem of decreasing the boundary region.

The decision-theoretic rough set model (DTRS) [14] utilizes the Bayesian
decision procedure to calculate rough set classification regions. Loss functions
correspond to the risks involved in classifying an object into a particular clas-
sification region. This gives the user a scientific means for linking their risk
tolerances with the probabilistic classification ability of rough sets [12].

The decision-theoretic model observes a lower and upper-bound threshold
for region classification [13]. The thresholds α and β provide the probabilities
for inclusion into the positive, negative, and boundary regions. The α and β
thresholds are calculated through the analysis of loss function relationships, thus,
a method of reducing the boundary region materializes from the modification of
the loss functions. Utilizing game theory to analyze the relationships between
classification ability and the modification of loss functions, we can provide the
user with a means for changing their risk tolerances.

Classification ability of a rough set analysis system is a measurable charac-
teristic [4]. In this article, we introduce a method for calculating loss tolerance
using game theory to analyze the effects of modifying the classification risk. This
also provides an effective means of determining how much a loss function can
fluctuate in order to maintain effective classification ability.
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2 Decision-Theoretic Rough Sets

The decision-theoretic approach is a robust extension of rough sets for two rea-
sons. First, it calculates approximation parameters by obtaining easily under-
standable notions of risk or loss from the user [14, 15].

2.1 Loss Functions

Let P (wj |x) be the conditional probability of an object x being in state wj given
the object description x. The set of actions is given by A = {aP , aN , aB}, where
aP , aN , and aB represent the three actions to classify an object into POS(A),
NEG(A), and BND(A) respectively. Let λ(a¦|A) denote the loss incurred for
taking action a¦ when an object is in A, and let λ(a¦|Ac) denote the loss incurred
by taking the same action when the object belongs to Ac. This can be given as
loss functions λ¦P = λ(a¦|A), λ¦N = λ(a¦|Ac), and ¦ = P , N , or B. Through
the combination of the set of loss functions, α, β, and γ parameters can be
calculated to define the regions.

A crucial assumption when using this model is that the set of loss functions
is provided by the user. This is a drawback, as it is still dependant upon user-
provided information for calculating rough set region boundaries. In order to
pass this obstacle, a method of calculating loss functions from the relationships
found within the actual data must be found. Although this is beyond the scope
of this article, we can provide a method for determining how much these loss
functions can change, an equally important problem.

2.2 Conditional Risk

The expected loss R(a¦|[x]) associated with taking the individual actions can be
expressed as:

RP = R(aP |[x]) = λPP P (A|[x]) + λPNP (Ac|[x]),
RN = R(aN |[x]) = λNP P (A|[x]) + λNNP (Ac|[x]),
RB = R(aB |[x]) = λBP P (A|[x]) + λBNP (Ac|[x]), (1)

where λ¦P = λ(a¦|A), λ¦N = λ(a¦|Ac), and ¦ = P , N , or B. RP , RN , and RB

are the expected losses of classifying an object into the positive region, negative
region, and boundary region respectively. The Bayesian decision procedure leads
to the following minimum-risk decision rules (PN-BN):

(PN) If RP ≤ RN and RP ≤ RB , decide POS(A);
(NN) If RN ≤ RP and RN ≤ RB , decide NEG(A);
(BN) If RB ≤ RP and RB ≤ RN , decide BND(A);

These minimum-risk decision rules offer us a foundation in which to classify
objects into approximation regions. They give us the ability to not only collect
decision rules from data frequent in many rough set applications [6], but also the
calculated risk that is involved when discovering (or acting upon) those rules.



3 A Game-Theoretic Calculation for Conditional Risk

We stated previously that the user could make use of a method of linking their
notions of cost (risk) in taking a certain action and classification ability of the
classification system. Game theory can be a powerful mathematical paradigm for
analyzing these relationships and also provides methods for achieving optimal
configurations for classification strategies. It could also provide a means for the
user to change their beliefs regarding the types of decisions they can make [7].
They would not have to change the probabilities themselves, only their risk
beliefs. This is beneficial as many users cannot intuitively describe their decision
needs in terms of probabilities.

3.1 The Boundary Region and Conditional Risk

We wish to emphasize the relationship between the conditional risk, loss func-
tions, and boundary region. Classification can be performed by following the
minimum risk decision rules PN, NN, and BN or by using the α and β parame-
ters to define region separation. We wish to make the boundary region smaller
by modifying either method so that the positive region can be increased. To
measure the changes made to the regions, we use two measures: approximation
accuracy (φ) and approximation precision (ψ).

When increasing the size of the positive region, the size of the lower approx-
imation is made larger. By recording the accuracy and precision measures, we
can directly see the impact this has on classification ability. To increase the size
of the lower approximation, measured by φ and ψ, we can observe the changes in
the conditional risk found in Equation 1. That is, to increase the size of the lower
approximation, we can reduce the risk associated with classifying an object into
the positive region. This can be done by modifying the loss functions.

Furthermore, while doing this, we need to maintain the size of |apr(A)|.
Recalling rules (PN, NN, BN), we see that in order to increase the size of the
lower approximation, we need decrease the expected loss RP . This results in
more objects being classified into the positive region since it is less “risky” to do
so. An increase RN and RB may also have the desired effect. This is intuitive
when considering that in order for more objects to be classified into POS(A),
we need to lower the risk involved in classifying an object into this region.

We see that in order to decrease the value of RP , we need to decrease one or
both of the loss functions λPP and λPN (Equation 1: RP ). Likewise, to increase

Table 1. The strategy scenario of increasing approximation accuracy.

Action (Strategy) Goal Method Result

a1 (−RP ) Decrease RP Decrease λPP or λPN Larger POS region
a2 (+RN ) Increase RN Increase λNP or λNN Smaller NEG region
a3 (+RB) Increase RB Increase λBP or λBN Smaller BND region



RN , we need to increase either λNP or λNN . Finally, to increase RB , we need
to increase λBP or λBN . This is summarized in Table 1.

We want to increase approximation precision when considering the second
measure, ψ. For the deterministic case, in order to increase precision, we need to
make |apr(A)| as large as possible. Again, recalling rules (PN, NN, BN), we see
that in order to increase the size of the lower approximation, we need to decrease
the expected loss RP and to increase RN and RB . It has the same strategy set as
the first player because we wish to increase the size of the lower approximation.

Of course, there may be some tradeoff between the measures φ and ψ. An
increase in one will not have a similar increase in the other. This implies some
form of conflict between these measures. We can now use game theory to dic-
tate the increases/decreases in conditional risk for region classification and as a
method for governing the changes needed for the loss functions.

3.2 Game-Theoretic Specification

Game theory [9] has been one of the core subjects of the decision sciences,
specializing in the analysis of decision-making in an interactive environment.
The disciplines utilizing game theory include economics [8, 11], networking [1],
and machine learning [5].

When using game theory to help determine suitable loss functions, we need
to correctly formulate the following: a set of players, a set of strategies for each
player, and a set of payoff functions. Game theory uses these formulations to
find an optimal strategy for a single player or the entire group of players if
cooperation (coordination) is wanted. A single game is defined as,

G = {O,S, F}, (2)

where G is a game consisting of a set of players O using strategies in S. These
strategies are measured using individual payoff functions in F .

To begin, the set of players should reflect the overall purpose of the competi-
tion. In a typical example, a player can be a person who wants to achieve certain
goals. For simplicity, we will be using competition between two players. With
improved classification ability as the competition goal, each player can represent
a certain measure such as accuracy (φ) and precision (ψ). With this in mind, a
set of players is formulated as O = {φ, ψ}. Through competition, optimal values
are attempting to appear for each measure. Although we are measuring accuracy
and precision, the choice of measures is ultimately up to the user to decide. We
wish to analyze the amount of movement or compromise loss functions can have
when attempting to achieve optimal values for these two measures.

Each measure is effectively competing with the other to win the “game”.
Here, the game is to improve classification ability. To compete, each measure in
O has a set of strategies it can employ to achieve payoff. Payoff is the measurable
result of actions performed using the strategies. These strategies are executed
by the player in order to better their position in the future, e.g., maximize
payoff. Individual strategies, when performed, are called actions. The strategy
set Si = {a1, . . . , am} for any measure i in O contains these actions. A total



of m actions can be performed for this player. The strategic goal for φ would
be along the lines of “acquire a maximal value for approximation accuracy as
possible”. Likewise, the strategy for ψ would be to “acquire a maximal value for
approximation precision as possible”.

Approximation accuracy (φ), is defined as the ratio measured between the
size of the lower approximation of a set A to the upper approximation of a set A.
A large value of φ indicates that we have a small boundary region. To illustrate
the change in approximation accuracy, suppose we have player φ taking two
turns in the competition. For the first turn, player φ executes action a1 from it’s
strategy set. When it is time to perform another turn, the player executes action
a2. Ultimately, since the player’s goal is to increase approximation accuracy, we
should measure that φa1 ≤ φa2 . If this is not the case (φa1 > φa2), the player
has chosen a poor second action from it’s strategy set.

The second player, approximation precision (ψ), observes the relationship
between the upper approximation and a set. In order to increase precision, we
need to make |apr(A)| as large as possible. For non-deterministic approximations,
Yao [13] suggested an alternative precision measure.

In general, the two measures φ and ψ show the impacts that the loss functions
have on the classification ability of the DTRS model. Modifying the loss functions
contribute to a change in risk (expected cost). Determining how to modify the
loss functions to achieve different classification abilities requires a set of risk
modification strategies.

3.3 Measuring Action Payoff

Payoff, or utility, results from a player performing an action. For a particular
payoff for player i performing action aj , the utility is defined as µi,j = µ(aj).
A set of payoff functions F contains all µ functions acting within the game G. In
this competition between accuracy and precision, F = {µφ, µψ}, showing payoff
functions that measure the increase in accuracy and precision respectively.

A formulated game typically has a set of payoffs for each player. In our
approach, given two strategy sets S1 and S2, each containing three strategies,
the two payoff functions µφ : S1 7→ P1 and µψ : S2 7→ P2 are used to derive the
payoffs for φ and ψ containing:

P1 = {φ1,1, φ1,2, φ1,3}, (3)
P2 = {ψ2,1, ψ2,2, ψ2,3}, (4)

reflecting payoffs from the results of the three actions, i.e., µφ(aj) = φ1,j . This
is a simple approach that can be expanded to reflect true causal utility based
on the opposing player’s actions. This means that not only is an action’s payoff
dependant on the player’s action, but also the opposing player’s strategy.

After modifying the respective loss functions, the function µφ calculates the
payoff via approximation accuracy. Likewise, the payoff function µψ calculates
the payoff with approximation precision for deterministic approximations. More
elaborate payoff functions could be used to measure the state of a game G,
including entropy or other measures according to the player’s overall goals [2].



Table 2. Payoff table for φ, ψ payoff calculation (deterministic).

ψ

−RP +RN +RB

−RP < φ1,1, ψ1,1 > < φ1,2, ψ1,2 > < φ1,3, ψ1,3 >

φ +RN < φ2,1, ψ2,1 > < φ2,2, ψ2,2 > < φ2,3, ψ2,3 >

+RB < φ3,1, ψ3,1 > < φ3,2, ψ3,2 > < φ3,3, ψ3,3 >

The payoff functions imply that there are relationships between the measures
selected as players, the actions they perform, and the probabilities used for region
classification. These properties can be used to formulate guidelines regarding the
amount of flexibility the user’s loss function can have to maintain a certain level
of consistency in the data analysis. As we see in the next section, the payoffs are
organized into a payoff table in order to perform analysis.

3.4 Payoff Tables and Equilibrium

To find optimal solutions for φ and ψ, we organize payoffs with the corresponding
actions that are performed. A payoff table is shown in Table 2, and will be the
focus of our attention.

The actions belonging to φ are shown row-wise whereas the strategy set
belonging to ψ are column-wise. In Table 2, the strategy set S1 for φ contains
three strategies, S1 = {−RP ,+RN , +RB}, pertaining to actions resulting in a
decrease in expected cost for classifying an object into the positive region and an
increase in expected cost for classifying objects into the negative and boundary
regions. The strategy set for ψ contains the same actions for the second player.

Each cell in the table has a payoff pair < φ1,i, ψ2,j >. A total of 9 payoff
pairs are calculated. For example, the payoff pair < φ3,1, ψ3,1 > containing
payoffs φ3,1 and ψ3,1 correspond to modifying loss functions to increase the risk
associated with classifying an object into the boundary region and to decrease
the expected cost associated with classifying an object into the positive region.
Measures pertaining to accuracy and precision after the resulting actions are
performed for all 9 cases. These payoff calculations populate the table with
payoffs so that equilibrium analysis can be performed.

In order to find optimal solutions for accuracy and precision, we determine
whether there is equilibrium within the payoff table [3]. This intuitively means
that both players attempt to maximize their payoffs given the other player’s
chosen action, and once found, cannot rationally increase this payoff.

A pair < φ∗1,i, ψ
∗
2,j > is an equilibrium if for any action ak, where k 6= i, j,

φ∗1,i ≥ φ1,k and ψ∗2,j ≥ ψ2,k. The < φ∗1,i, ψ
∗
2,j > pair is an optimal solution for

determining loss functions since no actions can be performed to increase payoff.
Thus, once an optimal payoff pair is found, the user is provided with the

following information: a suggested tolerance level for the loss functions and the



amount of change in accuracy and precision resulting from the changed loss
functions. Equilibrium is a solution to the amount of change loss functions can
undergo to achieve levels of accuracy and precision noted by the payoffs.

3.5 Loss Tolerance Calculation

Observed from decision rules (PN, NN, BN), we can calculate how much the loss
functions need to be modified to acquire a certain level of accuracy or precision.
There is a limit to the amount of change allowable for loss functions. For example,
the action of reducing the expected cost RP . We can reduce this cost any amount
and rule (PN) will be satisfied. However, the rules (NN) and (BN) are also
sensitive to the modification of RP , denoted R∗P . R∗P must satisfy R∗P ≥ (RP −
RN ) and R∗P ≥ (RP −RB). This results in upper limit of tmax

PP for λPP and lower
limit of tmin

PN for λPN . Assuming that λPP ≤ λBP < λNP and λNN ≤ λBN <
λPN , we calculate the following,

tmax
PP ≤ λBP − λPP

λPP
, tmin

PN <
λPN − λBN

λPN
. (5)

That is, tPP is the tolerance that loss function λPP can have (tPP for λPN ).
Tolerance values indicate how much change a user can have to their risk be-
liefs (loss functions) in order to maintain accuracy and precision measures of
< φ∗1,i, ψ

∗
2,j >. In brief, when selecting a strategy, i.e., (+RP ), the game cal-

culates payoffs by measuring the approximation accuracy and prediction that
result from modifying the loss functions λPP and λPN . The new loss functions,
λ∗PP and λ∗PN are used to calculate a new expected loss R∗P . In order to maintain
the levels of accuracy and precision stated in the payoffs, the user must have new
loss functions within the levels of tPP for λPP and tPN for λPN .

For example, let λPP = λNN = 4, λBP = λBN = 6, and λPN = λNP = 8.
The inequality restrictions for the loss functions hold. We calculate that tmax

PP =
0.5 and tmin

PN = 0.25†. This means that we can increase the loss function λPP

by 50% and increase the loss function λPN by 25%† and maintain the same
classification ability. This new information was derived from the analysis of the
conditional risk modifications made possible through the use of game theory.

4 Conclusions

We provide a preliminary study on using game theory for determining the re-
lationships between loss function tolerance and conditional risk. By choosing
measures of approximation accuracy and approximation precision as players in
a game, with goals of maximizing their values, we set up a set of strategies that
each can perform. We investigate the use of three strategies for the deterministic
approximation case. The strategies involve decreasing or increasing the expected
losses for classifying objects into rough set regions.

† An incorrect value of −0.125 for tmin
PN was written in the original publication. A

decrease of 12.5% has been changed to an increase of 25%



Ultimately, taking an action within the strategy set involves modifying user-
provided loss functions. We provide a method for indicating how much a loss
function can be modified in order to provide optimal approximation accuracy
and precision. This is very useful for the users as determining the amount of
tolerance they should have when modifying loss functions is difficult.

By finding an equilibrium in the payoff tables, we may find the correct values
for the loss functions, and thus, the optimal values of α and β parameters for
determining the region boundaries. Based on this, we express the consequences of
an increased or decreased expected loss of classification with the approximation
accuracy and precision measures.
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