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Abstract. A game-theoretic approach for learning optimal parameter
values for probabilistic rough set regions is presented. The parameters
can be used to define approximation regions in a probabilistic decision
space. New values for loss functions are learned from a sequence of risk
modifications derived from game-theoretic analysis of the relationship be-
tween two classification measures. Using game theory to maximize these
measures results in a learning method to reformulate the loss functions.
The decision-theoretic rough set model acquires initial values for these
parameters through a combination of loss functions provided by the user.
The new game-theoretic learning method modifies these loss functions
according to an acceptable threshold.

1 Introduction

Rough set theory is a method of approximating uncertain information in data [9].
However, the traditional model is often too strict when including objects into
the approximation regions and may require additional information [6], or require
several approximations [1]. A key tenet in the introduction of probabilistic rough
sets was to loosen the extreme membership requirements of equivalence classes
to the object set found in conventional rough sets [12]. The decision-theoretic
rough set (DTRS) model is a powerful solution to this problem of decreasing the
boundary region through the use of conditional risk of a classification action [14].
However, it still remains that the loss functions used to calculate the region
parameters are provided by the user [5, 15].

In general, probabilistic rough set approaches require that parameter values
be provided from an external user, which are then used to relax the acceptance
of uncertainty. The use of machine learning techniques to learn parameter val-
ues from the evaluation of a partial solution would be a beneficial addition.
Game-theoretic learning is an approach that uses game theory to govern the
optimization of one or more characteristics of a soft computing technique [3].

Preliminary studies of game-theoretic rough sets (GTRS) overcomes these
challenges by interpreting classification ability as a decision problem within a
game [5, 10]. Utilizing game theory, we can provide a sequence of risk modifica-
tions that find correct loss function values for an optimal classification ability. In
this article, we provide a general approach for using a game-theoretic learning
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method to govern the modification of loss functions in order to improve these
measures. In addition, we will detail some side-effects that arise from using this
approach repeatedly. A learning method is formulated and explained.

2 Decision-Theoretic and Game-Theoretic Rough Sets

2.1 Decision-Theoretic Rough Sets

A key contribution of the decision-theoretic rough sets is to considering costs
associated when classifying an equivalence class into a particular region [7]. Let
λ¦P = λ(a¦|A) denote the loss incurred for taking action a¦ when an object is in
A, and λ¦N = λ(a¦|Ac) denote the loss incurred by taking the same action when
the object belongs to Ac, where ¦ = P , N , or B and aP , aN , and aB represent
the three actions to classify an object into POS(A), NEG(A), and BND(A)
respectively. The expected loss R(a¦|[x]) associated with taking the individual
actions is expressed as:

RP = R(aP |[x]) = λPP P (A|[x]) + λPNP (Ac|[x]),
RN = R(aN |[x]) = λNP P (A|[x]) + λNNP (Ac|[x]),
RB = R(aB |[x]) = λBP P (A|[x]) + λBNP (Ac|[x]), (1)

where P (a¦|[x]) be the conditional probability of an object x being in state a¦
given the description of [x]. The Bayesian decision procedure leads to minimum-
risk decision rules (PN-BN):

(PN) If RP ≤ RN and RP ≤ RB , decide POS(A);
(NN) If RN ≤ RP and RN ≤ RB , decide NEG(A);
(BN) If RB ≤ RP and RB ≤ RN , decide BND(A);

The probability for classifying an element into positive region, α, and the
probability for putting an element into boundary region, β, can be derived using
loss functions [14],

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
, β =

λBN − λNN

(λBN − λNN ) + (λNP − λBP )
. (2)

Various configurations of loss functions results in the DTRS model having
the same functionality of other intermediate approaches [13]. In addition, two
fundamental questions need to be answered regarding the use of loss functions
in the DTRS model. First, given a set of initial values for all loss functions,
how much may they change in order to achieve similar classification ability?
Second, can a method be proposed to learn optimal values for all loss functions
based only upon the analysis of the data? An extension using game theory was
proposed [5, 10] to answer the first question, which is reviewed below.



Table 1. The strategy scenario of increasing approximation accuracy [5].

Action (Strategy) Method Outcome

a1 (↓RP ) Decrease λPP or λPN Larger POS region
a2 (↑RN ) Increase λNP or λNN Smaller NEG region
a3 (↑RB) Increase λBP or λBN Smaller BND region

2.2 Game-Theoretic Rough Sets

Many applications or problems can be expressed as a game between two or more
players, so that some aspects of game theory can be utilized [8]. We proposed a
game-theoretic rough set model [5]. In particular, a game is formulated in such a
way that each player represents a classification measure, such as approximation
accuracy (φ) and approximation precision (ψ). The actions these players choose
are summarized in Table 1. They either increase or decrease the conditional risk
by modifying the associated loss functions in (1). This, in turn, changes the sizes
of the classification regions.

For a particular payoff for player i performing action aj , the utility is defined
as µi,j = µ(aj). A payoff is simply the benefit or cost each player acquires after
performing a given action. A set of payoff functions F is a set of all µ functions
used to derive payoff within the game. In this competition between accuracy and
precision, F = {µφ, µψ}, showing payoff functions that measure the increase in
accuracy and precision respectively [5].

A game typically has a set of strategies Si for each player i. Given player 1
employs an accuracy-seeking strategy within S1 and player 2 employs a precision-
seeking strategy in S2, the two payoff functions µφ : S1 7→ P1 and µψ : S2 7→ P2

are used to derive the payoffs for φ and ψ containing:

P1 = {φ1,1, φ1,2, φ1,3}, (3)
P2 = {ψ2,1, ψ2,2, ψ2,3}, (4)

reflecting payoffs from the results of the three actions, i.e., µφ(aj) = φ1,j [10].
This simple approach can be expanded to reflect true causal utility based on
the opposing player’s actions. A view of the correspondence between players,
strategies, and payoffs can seen in Table 2. It means that not only is an action’s
payoff dependant on the player’s action, but also the opposing player’s strategy.

After modifying the respective loss functions, the function µφ calculates the
payoff via approximation accuracy. Likewise, the payoff function µψ calculates
the payoff with approximation precision for deterministic approximations. More
elaborate payoff functions could be used to measure the state of a game, including
entropy or other measures according to the player’s overall goals [2].

The payoff functions imply that there are relationships between the measures
selected as players, the actions they perform, and the probabilities used for region
classification. These properties can be used to formulate guidelines regarding the



Table 2. Payoff table for φ, ψ payoff calculation (deterministic).

Precision (ψ) S2

↓RP ↑RN ↑RB

↓RP φ1,1, ψ1,1 φ1,2, ψ1,2 φ1,3, ψ1,3

Accuracy (φ) ↑RN φ2,1, ψ2,1 φ2,2, ψ2,2 φ2,3, ψ2,3

S1 ↑RB φ3,1, ψ3,1 φ3,2, ψ3,2 φ3,3, ψ3,3

amount of flexibility the user’s loss function can have to maintain a certain level
of consistency in the data analysis.

The players, actions, and payoffs are organized into a payoff table in order to
perform analysis, as shown in Table 2. If one is interested in maximizing accuracy,
all needed is to choose a suitable action that fits with his or her acceptable risk.

There is a limit to the amount of change allowable for loss functions. For
example, the action of reducing the expected cost RP . We can reduce this cost
any amount and rule (PN) will be satisfied. However, the rules (NN) and (BN)
are also sensitive to the modification of RP , denoted R∗P . R∗P must satisfy R∗P ≥
(RN − RP ) and R∗P ≥ (RB − RP ). This results in upper limit of tmax

PP for λPP

and lower limit of tmin
PN for λPN [5]. Assuming that λPP ≤ λBP < λNP and

λNN ≤ λBN < λPN , we calculate the following,

tmax
PP ≤ λBP − λPP

λPP
, tmin

PN <
λPN − λBN

λPN
. (5)

That is, tmax
PP is the tolerance that loss function λPP can have (tmin

PP for λPN ).
Tolerance values indicate how much change a user can have to their risk be-
liefs (loss functions) in order to maintain accuracy and precision measures of
< φ∗1,i, ψ

∗
2,j >. In brief, when selecting a strategy, i.e., (↓RP ), the game cal-

culates payoffs by measuring the approximation accuracy and prediction that
result from modifying the loss functions λPP and λPN . The new loss functions,
λ∗PP and λ∗PN are used to calculate a new expected loss R∗P . In order to maintain
the levels of accuracy and precision stated in the payoffs, the user must have new
loss functions within the levels of tmax

PP for λPP and tmin
PN for λPN [10].

We will see in the next section that having this game repeat results in a
sequence of loss function modifications that optimize the classification region
sizes for a given classification measure.

3 Learning Optimal Parameters

We stated previously that the user could make use of a method of linking their
notions of cost (risk) in taking a certain action and classification ability of the
classification system. Game theory can be a powerful mathematical paradigm for
analyzing these relationships and also provides methods for achieving optimal
configurations for classification strategies. It could also provide a means for the



user to change their beliefs regarding the types of decisions they can make [4].
They would not have to change the probabilities themselves, only their risk
beliefs. This is beneficial as many users cannot intuitively describe their decision
needs in terms of probabilities.

3.1 General Approach

We define a general approach for using game theory in conjunction with the
DTRS model to aid in decision making [10]. There are five steps to be performed:

1. Game Formulation.
2. Strategy Formulation.
3. Payoff Measurement.
4. Competition Analysis (repeated).

– Every time a loss function is modified, competition analysis must be
performed on updated measurements.

– New payoff tables are created after each learning iteration.
– Observation of the game within payoff tables and examining the re-

lationships between the actions undertaken and the payoffs associated
with those actions.

5. Result Acquisition (repeated).
– This step is repeated so that the loss functions will be modified in a

correct manner.
– The action selected is used to learn new values of loss functions.
– The result acquisition step interprets the results of the competition.

To arrive at the stage where loss functions are modified to optimize a given
measure, we must continually repeat Steps 4 and 5. Once result acquisition
occurs (meaning that a suitable action has been chosen and recorded), we must
repopulate the payoff table to reflect new payoffs that will arise if more actions
are undertaken. The actions that each measure may undertake remain the same.

This repetition continues until the next action that should be performed
exceeds the acceptable levels of tolerance a user may have. R∗P must satisfy
R∗P ≥ (RN −RP ) and R∗P ≥ (RB−RP ). That is, the new value of the respective
loss function, denoted by ∗, must remain satisfied:

0 < λ∗PP ≤ λBP − λPP

λPP
, 0 < λ∗PN <

λPN − λBN

λPN
. (6)

3.2 Repetitive Risk Modifications

Repeatedly modifying the conditional risk changes the sizes of the regions. Re-
ferring to Table 1, choosing action ↓RP (decreasing RP ) will increase the size of
the positive region. Likewise, choosing action ↑RN , will decrease the size of the
negative region. The last option, choosing action ↑RB will decrease the size of
the boundary region. Performing these actions repeatedly allows for the learning
of loss functions.

Using New Zealand Stock Exchange data [11], Table 3 summarizes new region
sizes (in total universe percentage) that result in changing loss functions given



Table 3. Region sizes with changes in conditional risk.

Region Size (% of universe)

Strategy Method α β POS NEG BND

↓Rp Decrease λPP 0.75 0.25 23% 37% 40%
0.72 0.25 33% 37% 30%
0.60 0.25 48% 37% 15%

↑RN Increase λNP 0.75 0.25 23% 37% 40%
0.75 0.20 23% 34% 43%
0.75 0.10 23% 13% 64%

↑RB Increase λBP 0.75 0.25 23% 37% 40%
0.67 0.29 43% 37% 20%
0.60 0.33 48% 43% 9%

a chosen strategy. As we decrease λPP , we see the parameter α decrease. This
results in objects in the BND region moving into the POS region. Likewise,
increasing λNP results in a decreased β and objects moving from the NEG
region to BND region. The last strategy, increasing λBP , results in α decreasing,
β increasing, and objects in the BND region moving into both the POS and
NEG regions.

When increasing or decreasing a region size, the remaining two regions are
decreased or increased respectively. This is intuitive if one thinks that to in-
crease the positive region, one may decrease the risk associated with classifying
an object into that region. Essentially, a decreased risk, or cost, will result in
more objects being classified to that region. Decreasing the risk of a correct clas-
sification will result in a increased risk of an incorrect classification. This is a
side-effect. That is, if λPP is lowered, λBP and λNP will increase to some extent.

The repetitive modification of the conditional risk associated with a given
action can be thought of as a learning procedure. The new value for a loss
function should exhibit a measurable change, dependant on its previous value,
the probability that an object will be classified into that region, and the amount
of classification ability changes.

3.3 The Parameter Learning Sequence

We learn optimal values for loss functions through the use of game theory to
find better values of classification measures. Using the payoff tables created, we
choose a sequence of strategies that will result in an increase in the classification
measure. Recording these actions into a sequence of choices can give us learning
criteria for adjusting these loss functions.

Let Γ be the measure we wish to optimize and µ(Γ ) be the actual value of
that measure given the current conditions. The modification of a loss function,
resulting in a new loss function, given the choice of action ai and classification
into a set A, is as follows:



λ∗¦P = λ¦P ±
(
λ¦P · P (A|[x]) · (µ(Γ )− µ(ai)

)
, (7)

where ¦ = P , N , or B. The original loss function is changed by the proportion of
the difference in classification ability (µ(Γ )− µ(ai)) multiplied by the expected
cost (λ¦P · P (A|[x])). This allows for gradual learning based on the significance
of the objects and the degree of change in classification ability. Referring to
Table 1, if we wish to increase the size of the positive region, we would choose
action ↓RP . The corresponding modification into a A’s complement is given by:

λ∗¦N = λ¦N ± (
λ¦N · P (Ac|[x]) · (µ(Γ )− µ(ai)

)
. (8)

From Table 1, we could decrease either λPP or λPN . To accomplish this, we
would solve either of the following two equations:

λ∗PP = λPP +
(
λPP · P (A|[x]) · (µ(Γ )− µ(ai)

)
, (9)

λ∗PN = λPN +
(
λPN · P (Ac|[x]) · (µ(Γ )− µ(ai)

)
. (10)

P (Ac|[x]) is used since it has a loss function that measures the cost of classify-
ing an object into a set’s complement. For example, let λPP = 2, P (Ac|[x]) = 0.7,
Γ = φ, µ(φ) = 0.5, and µ(a1) = 0.55. Using (9), we acquire a new loss function
λ∗PP = 1.93, or a decrease of 3.5%. This procedure can be repeated by repopu-
lating the payoff table and choosing a suitable action to increase φ, given that
the loss functions remain within the tolerance defined above.

4 Conclusions

We provide a parameter learning method using game theory that defines loss
functions according to an optimal value of classification ability. Measures of
classification ability, such as approximation accuracy and approximation pre-
cision, are given as players in a game - each with a goal of optimizing their
values. Actions performed in this game consist of increasing or decreasing the
size of the classification regions. This is achieved by modifying the values of loss
functions within an acceptable range. We formulate this process of acquiring
new loss functions gradually through a learning process. Generally speaking, an
increase in risk for one classification action will result in a decrease in risk for
other classification actions.

The game-theoretic rough set model (GTRS), further studied in this article,
overcomes some challenges presented by the decision-theoretic model. Loss func-
tions used to calculate region parameters are no longer needed to be provided,
as they can be derived from the data with game-theoretic analysis. Game theory
shows great potential in solving decision problems such as those seen in parame-
ter estimation. It allows for the observation of many possible outcomes of taking
actions in improving classification ability. We believe that game theory should
be used to analyze the effects of modifying the users’ notions of risk, as it is fully
capable of deriving a learning sequence in order to achieve a classification goal.



Many new avenues of research are opened up by the GTRS model. By inter-
preting fundamental notions of rough sets with game theory, additional insights
into the competition and cooperation between measures, parameters, and risk
can be observed. For example, the scope of the game does not necessarily have
to be limited to approximation accuracy and precision. Other classification mea-
sures can be used to provide other insights into the performance of classification.
New directions in the choice of players could be considered. As well, cooperative
games could be formulated if we wish to achieve balance between classification
measures.
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