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Abstract

A partition-based framework is presented for a formal
study of consistent classification problems. An informa-
tion table is used as knowledge representation. Solutions
to, and solution space of, classification problems are for-
mulated in terms of partitions. Algorithms for finding so-
lutions are modeled as searching in a space of partitions
under a refinement order relation. We focus on a particular
type of solutions called conjunctively definable partitions.
Two level construction methods for decision trees are inves-
tigated. Experimental results are reported to compare the
two level construction methods.

1. Introduction

Classification is one of the main tasks in machine learn-
ing, data mining and pattern recognition [1, 3, 4]. It deals
with classifying labeled objects. Knowledge for classifica-
tion can be expressed in different forms, such as classifica-
tion rules, discriminant functions, decision trees and deci-
sion graphs.

Classification by decision trees is a popular method. The
typical algorithms for decision tree learning are the ID3 al-
gorithm [6] and its descendent, the C4.5 algorithm [7]. Typ-
ically, ID3-like algorithms build a decision in a top-down,
depth-first mode. Furthermore, the node splitting criteria
are based on local optimization. When splitting a node,
an attribute is chosen based on only information about this
node, but not on any other nodes in the same level. Conse-
quently, different nodes in the same level may use different
attributes, and the same attribute may be used at different
levels. The use of local optimal criteria makes it difficult to
judge the overall quality of the partial decision tree during
its construction process.

The main objective of the paper is to study a top-
down, breadth-first, level-wise mode for constructing deci-

sion trees. Two types of algorithms are proposed and stud-
ied. One is based on local optimization node splitting cri-
teria, and the other is based on global optimization criteria.
The former is referred to as the level construction version
of ID3 and is denoted by LID3. The latter is in fact a level-
wise, reduct based methods and is denoted bykLR. The
kLR algorithm combines the methods for constructing deci-
sion trees and the methods for searching for reducts [4, 5, 9].

The rest of the paper is organized in two layers. A for-
mal framework for classification is presented in Section 2,
which sets the stage for the algorithmic studies. Level con-
struction algorithms are discussed in Section 3 and their ex-
perimental evaluations are reported in Section 4. The pro-
posed methods offer a complementary approach to depth-
first ID3. The decision trees obtained from the algorithms
enables us to see the different aspects of knowledge embed-
ded in data.

2. Consistent Classification Problems

2.1. Information tables

An information table provides a convenient way to de-
scribe a finite set of objects by a finite set of attributes. It
deals with the issues of knowledge representation for clas-
sification problems [5, 11]. An information tableS is the
tuple:

S = (U,At,L, {Va | a ∈ At}, {Ia | a ∈ At}),
whereU is a finite nonempty set of objects,At is a finite
nonempty set of attributes,L is a language defined by using
attributes inAt, Va is a nonempty set of values fora where
a ∈ At, andIa : U → Va is an information function.

Formulas ofL are defined by the following two rules:
(i) An atomic formulaφ of L is a descriptora = v, where
a ∈ At andv ∈ Va; (ii) The well-formed formulas (wff)
of L is the smallest set containing the atomic formulas and
closed under¬, ∧, ∨,→ and≡.



If φ is a formula, the setmS(φ) defined by

mS(φ) = {x ∈ U | x |= φ},

is called the meaning of the formulaφ in S. If S is under-
stood, we simply writem(φ). The meaning of a formulaφ
is the set of all objects having the properties expressed by
the formulaφ. A connection between formulas ofL and
subsets ofU is thus established.

The notion of definability of subsets in an information
table is essential to data analysis. In fact, definable subsets
are the basic units that can be described and discussed, upon
which other notions can be developed. A subsetX ⊆ U is
called a definable granule in an information tableS if there
exists at least one formulaφ such thatm(φ) = X. For a
subset of attributesA ⊆ At, X is anA-definable granule
if there exists at least one formulaφA using only attributes
from A such thatm(φA) = X.

In many classification algorithms, one is only interested
in formulas of a certain form. Suppose we restrict the con-
nectives of languageL to only the conjunction connective
∧. A subsetX ⊆ U is a conjunctively definable granule in
an information tableS if there exists a conjunctorφ such
thatm(φ) = X.

2.2. Partitions in an information table

Classification involves the division of the setU of ob-
jects into many classes. The notion of partitions provides a
formal means to describe classification.

Definition 1 A partition π of a setU is a collection of
nonempty and pair-wise disjoint subsets ofU whose union
is U . The subsets in a partition are called blocks.

Different partitions may be related to each other. A par-
tition π1 is a refinement of another partitionπ2, or equiv-
alently, π2 is a coarsening ofπ1, denoted byπ1 ¹ π2, if
every block ofπ1 is contained in some block ofπ2. The
refinement relation is a partial order, namely, it is reflexive,
antisymmetric, and transitive. It defines a partition lattice
Π(U).

A partition π is called a definable partition in an infor-
mation tableS if every block ofπ is a definable granule.
A partition π is called a conjunctively definable partition
if every equivalence class ofπ is a conjunctively definable
granule. Consider two special families of conjunctively de-
finable partitions below.

The first family is the uniformly conjunctively defin-
able partitions, which has been studied extensively in
databases [2]. A partitionπ is called a uniformly conjunc-
tively definable partition in an information tableS if, given
a subsetA of attributes in a certain order, the blocks are fur-
ther refined in a process that the attributes are one-by-one

added to the conjunctor.π∅ = U is the coarsest partition,
andπAt is the finest partition, for anyA ⊆ At, we have
πAt ¹ πA ¹ π∅.

The second family is the non-uniformly conjunctively
definable partitions, which has been used extensively in ma-
chine learning [6]. A partitionπ is called a non-uniformly
conjunctively definable partition in an information tableS
if the partition blocks select their own optimal attributes to
further division, according to a consistent selection criteria.
This strategy results in that the partition blocks at the same
level may use different attributes for refinement partition.
Let Πtree be the set of non-uniformly conjunctively defin-
able partitions. The partial order¹ can be carried over to
Πtree. Supposeπt ∈ Πtree. It can be easily verified that
πAt ¹ πt ¹ π∅.

2.3 Solutions to consistent classification problems

In an information table for classification problems, we
have a set of attributeAt = F ∪ {class}. The problem can
be formally stated in terms of partitions.

Definition 2 An information table is said to define a consis-
tent classification if objects with the same description have
the same class value, namely, for any two objectsx, y ∈ U ,
IF (x) = IF (y) impliesIclass(x) = Iclass(y).

Supposeπ is anA-definable partition, that is, each block
of π is anA-definable granule. We say thatπ is a solution
to the consistent classification problem, ifπ ¹ πclass. A
solutionπ is called a most general solution if there does not
exist another solutionπ′ such thatπ ≺ π′ ¹ πclass, where
π ≺ π′ stands forπ 6= π′ andπ ¹ π′.

Supposeπ is a solution to the classification problem,
namely, π ¹ πclass. For a pair of equivalence classes
X ∈ π and C ∈ πclass with X ⊆ C, we can derive a
classification ruleDes(X) =⇒ Des(C), whereDes(X)
andDes(C) are the formulas that describe setsX andC,
respectively.

Let Πsol be the set of all solutions called solution space.
The partitionπF is the minimum element ofΠsol. For two
partitions withπ1 ¹ π2, if π2 is a solution, thenπ1 is also
a solution. For two solutionsπ1 andπ2, π1 ∧ π2 is also a
solution. The solution spaceΠsol contains the trivial solu-
tion πF , and is closed under meet∧. The solution space is
a meet sub-lattice.

In most cases, we are interested in the most general so-
lutions, instead of the trivial solutionπF . In many practical
situations, one is satisfied with an approximate solution of
the classification problem, instead of an exact solution.

Definition 3 Let ρ : π × π −→ <+, where<+ stands for
non-negative reals, be a function such thatρ(π1, π2) mea-
sures the degree to whichπ1 ¹ π2 is true. For a threshold



α, a partition π is said to be an approximate solution if
ρ(π, πclass) ≥ α.

The measureρ can be defined to capture various aspects
of classification. Two such measures are discussed below,
they are theratio of sure classification(RSC) , and theac-
curacyof classification.

Definition 4 For the partitionπ = {X1, X2, . . . , Xm}, the
ratio of sure classification (RSC) byπ is given by:

ρ1(π, πclass)=
∑m

i=1 |{Xi∈π | ∃Cj ∈πclass, Xi ⊆ Cj}|
|U | ,

(1)

where | · | denotes that cardinality of a set. The ratio of
sure classification represents the percentage of objects that
can be classified byπ without any uncertainty. The measure
ρ1(π, πclass) reaches the maximum value 1 ifπ ¹ πclass,
and reaches the minimum value 0 if for all blocksXi ∈ π
andCj ∈ πclass, Xi ⊆ Cj does not hold. For two partitions
with π1 ¹ π2, we haveρ1(π1, πclass) ≥ ρ1(π2, πclass).

Definition 5 For the partitionπ = {X1, X2, . . . , Xm}, the
accuracy of classification by a partition is defined by:

ρ2(π, πclass) =
∑m

i=1 |Xi ∩ Cj(Xi)|
|U | , (2)

whereCj(Xi) = arg max{|Cj ∩ Xi| | Cj ∈ πclass}. The
accuracy ofπ is in fact the weighted average accuracies
of individual rules. The measureρ2(π, πclass) reaches the
maximum value 1 ifπ ¹ πclass, and reaches the minimum
value|Ck0 |/|U |, whereCk0 is the class with the maximum
number of objects. For two partitions withπ1 ¹ π2, we
haveρ2(π1, πclass) ≥ ρ2(π2, πclass).

Additional measures can also be defined based on
the properties of partitions. For example, one may use
information-theoretic measures [12].

2.4. Classification as search

Conceptually, finding a solution to a classification prob-
lem can be modeled as a search in the space ofA-definable
partitions under the order relation¹. A difficulty with
this straightforward search is that the space is too large
to be practically applicable. One may avoid such a dif-
ficulty in several ways, for instance, only searching the
space of conjunctively definable partitions. In particular,
in searching the conjunctively definable partitions, two spe-
cial cases deserve consideration, namely, the space of uni-
formly conjunctively definable partitions, and the space of
non-uniformly conjunctively definable partitions.

Searching solutions in the space of uniformly conjunc-
tively definable partitions can be achieved by rough set
based classification methods [5, 9]. Suppose all the at-
tributes ofF have same priorities. The goal of solution
searching is to find a subset of attributesA so thatπA is
a most general solution to the classification problem. The
important notions of rough set based approaches are sum-
marized below.

Definition 6 An attributea ∈ A is called a core attribute,
if πF−{a} is not a solution, i.e.,¬(πF−{a} ¹ πclass).

Definition 7 A subsetA ⊆ F is called a reduct, ifπA is a
solution and for any subsetB ⊆ A, πB is not a solution.
That is,

(i) πA ¹ πclass;
(ii) for any proper subsetB ⊂ A, ¬(πB ¹ πclass).

Each reduct provides one solution to the classification
problems. There may exist more than one reduct. A core
attribute must be presented at each reduct, namely, a core
attribute is in every solution to the classification problem.
The set of core attributes is the intersection of all reducts.
The bias of searching solutions in the space of uniformly
conjunctively definable partitions is to find the reduct, a set
of individually necessary and jointly sufficient attributes.

The ID3-like algorithms search the space of non-
uniformly conjunctively definable partitions. Typically, a
classification is constructed in a depth-first manner until the
leaf nodes are subsets that consist of elements of the same
class with respect toclass. By labeling the leaves by the
class symbol ofclass, we obtain a decision tree for clas-
sification. The bias of searching solutions in the space of
non-uniformly conjunctively definable partitions is to find
the shortest tree construction.

One can combine these two searches together, i.e., con-
struct a classification tree by using a reduct set of attributes
derived from a reduct-based algorithm.

3. Level Construction of Decision Trees

Two level construction methods are discussed in this sec-
tion. One is the ID3-like approach, and the other is the
reduct-based approach.

3.1. The LID3 algorithm

The ID3 algorithm [6] is perhaps one of the most stud-
ied depth-first method for constructing decision trees. It
starts with the entire set of objects and recursively di-
vides the set by selecting one attribute at a time, un-
til each node is a subset of objects belong to one class.



A level construction method based ID3 is given below.

LID3: A level construction version of ID3
1. Let k = 0.
2. Thek-level,k > 0, of the classification tree is built

based on the(k − 1)th level described as follows:
if a node in(k − 1)th level does not consist of only
elements of the same class,then
2.1Choose an attribute based on a certain criterion

β : At −→ <;
2.2Divide the node based on the selected attribute

and produce thekth level nodes, which are the
subsets of that node;

2.3Label the node by the attribute name, and label
the branches coming out from the node by
values of the attribute.

The selection criterion used by ID3 is an information-
theoretic measures called conditional entropy. LetS denote
the set of objects in a particular node at level(k − 1). The
conditional entropy ofclass given an attributea is denoted
by:

HS(class|a) =
∑

v∈Va

PS(v)H(class|v)

= −
∑

v∈Va

PS(v)
∑

d∈Vclass

PS(d|v) log PS(d|v)

= −
∑

d∈Vclass

∑

v∈Va

PS(d, v) log PS(d|v), (3)

where the subscriptS indicates that all quantities are de-
fined with respect to the setS. An attribute with the mini-
mum entropy value is chosen to split a node.

For the information Table 1, we obtain a decision tree
shown in Figure 1, and the analysis of RSC and accuracy is
summarized in Table 2.

A B C D class
1 a1 b1 c1 d2 -
2 a1 b1 c2 d2 -
3 a1 b2 c1 d1 +
4 a1 b2 c2 d1 +
5 a2 b1 c1 d2 -
6 a2 b1 c2 d1 -
7 a2 b2 c1 d2 -
8 a2 b2 c2 d1 +
9 a3 b1 c1 d2 +
10 a3 b1 c2 d1 -
11 a3 b2 c1 d1 +
12 a3 b2 c2 d1 +

Table 1. An information table

Rules RSC Accuracy

k = 1 b1 ⇒ 5/6 − 0.00 0.83
B b2 ⇒ 5/6 +
k = 2 b1 ∧ a1 ⇒ 2/2 − 0.83 0.92
ABD b1 ∧ a2 ⇒ 2/2 +

b1 ∧ a3 ⇒ 1/2 +
b2 ∧ d1 ⇒ 5/5 +
b2 ∧ d2 ⇒ 1/1 −

k = 3 b1 ∧ a3 ∧ c1 ⇒ 1/1 + 1.00 1.00
ABCD b1 ∧ a3 ∧ c2 ⇒ 1/1 −

Table 2. Rules generated by ID3
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Figure 1. An ID3 decision tree

3.2. ThekLR algorithm

Recall that a reduct is a set of individually necessary and
jointly sufficient attributes that correctly classify the ob-
jects. An algorithm for finding a reduct can be easily ex-
tended into a level construction method for decision trees
calledkLR.

kLR: A reduct-based level construction method
1. Let k = 0.
2. Thek-level,k > 0, of the classification tree is built

based on the(k − 1)th level described as follows:
if there is a node in(k − 1)th level that does not
consist of only elements of the same classthen
2.1Choose an attribute based on a certain criterion

γ : At −→ <;
2.2Divide all the inconsistent nodes based on the

selected attribute and produce thekth level
nodes, which are subsets of the inconsistent
nodes;

2.3Label the inconsistent nodes by the attribute
name, and label the branches coming out from
the inconsistent nodes by the values of the
attribute.

Note that when choosing an attribute, one needs to con-
sider all the inconsistent nodes. In contrast, LID3 only con-



Rules RSC Accuracy

k = 1 b1 ⇒ 5/6 − 0.00 0.83
B b2 ⇒ 5/6 +
k = 2 b1 ∧ d1 ⇒ 2/2 − 0.67 0.92
BD b1 ∧ d1 ⇒ 3/4 −

b2 ∧ d1 ⇒ 5/5 +
b2 ∧ d2 ⇒ 1/1 −

k = 3 b1 ∧ d2 ∧ a1 ⇒ 2/2 − 1.00 1.00
ABD b1 ∧ d2 ∧ a2 ⇒ 1/1 −

b1 ∧ d2 ∧ a3 ⇒ 1/1 +

Table 3. Rules generated by kLR

siders one inconsistent node at a time.
Conditional entropy can also be used as the selection cri-

terionγ. In this case, the subset of examples considered at
each level is the union of all inconsistent nodes. LetA(k−1)

be the set of attributes used from level 0 to level(k − 1).
The next attributea for levelk can be selected based on the
following conditional entropy:

H(class|A(k−1) ∪ {a}). (4)

The use ofA(k−1) ensures that all inconsistent nodes at
level k − 1 are considered in the selection of levelk at-
tribute [9].

The decision trees generated by thekLR algorithm are
level-constructed trees. The idea is similar to oblivious de-
cision trees, in which all nodes at the same level test the
same attributes according to a given order. While the order
is not given, we can use the functionγ : At −→ < to decide
an order. The criterionγ can be one of the information mea-
sures, for example, conditional entropy (as shown above)
or mutual information, which indicate how much informa-
tion the attributes contribute to the decision attributeclass;
or the statistical measures, for example, theχ2 test or bi-
nomial distribution, which indicates the dependency level
between the test attribute and the decision attributeclass.
We can get such an order by testing all the attributes. How-
ever, we need to update the order level by level. There are
two reasons for level-wise updating. First, in respect that
some nodes of a classification tree are intended to halt the
partition when the solutions or the approximate solutions
are found. The search space is possibly changed for differ-
ent levels. Second, for each test that partitions the search
space into uneven-sized blocks, the value of functionγ is
the sum of the function value ofγ for each block multiplies
the probability distribution of the block.

Consider the earlier example, based on the conditional
entropy, the decision tree built bykLR algorithm is shown
in Figure 2. The analysis of RSC and accuracy is given by
Table 3.
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Figure 2. A kLR decision tree

Comparing these two decision trees in Figures 1 and 2,
we notice thatkLR decision tree can construct a tree pos-
sessing the same RSC and accuracy as the LID3 decision
tree with fewer attributes involved. In this example, the
set of attributes{A,B, D} is a reduct, sinceπ{A,B,D} ¹
πclass, and for any proper subsetX ⊂ {A,B,D}, ¬(πX ¹
πclass).

4. Experimental evaluations

In order to evaluate level construction methods, we
choose some well-known datasets from UCI machine learn-
ing repository [10]. SGI’s MLC++ utilities 2.0 [8] is used
to discretize the datasets into categorical attribute sets. Set
the accuracy thresholdα = 100%.

Dataset 1: Credit - 690 training objects, 14 attributes and
2 classes. Using all the attributes, neither LID3 norkLR can
100% consistently classify all the training instances.kLR
discovers that one attribute contributes little to the classi-
fication, namely, we can have the same RSC and accuracy
values with only 13 attributes.kLR generates more rules
than its counterpart. However comparing the trees where
the same number of attributes are used,kLR obtains higher
RSC and accuracy.

Dataset 2: Vote - 435 training objects, 16 attributes and
2 classes. It achieves 100% of RSC and accuracy for clas-
sification. In the case of LID3, the total tree length is 8
levels, but 15 attributes were required for 100% of RSC and
accuracy. In the case ofkLR, we can reach the same level
of RSC and accuracy by a 9-level-tree with only 9 related
attributes.

Dataset 3: Cleve - 303 training objects, 13 attributes and
2 classes. It cannot be 100% consistently classified either
by all its 13 attributes. In this dataset, thekLR tree is short
than the LID3 tree. ThekLR tree discovered consists of
11 attributes. This number is less than that is used for con-
structing a full LID3 tree. This observation is shown in all
the other experiments.

The experimental results of the above three datasets are



Dataset 1
Goal LID3 kLR
Accu. ≥ 85.00% k = 1 (1 attr) k = 1 (1 attr)
Accu. ≥ 90.00% k = 4 (14 attrs) k = 5 (5 attrs)
Accu. ≥ 95.00% k = 6 (14 attrs) k = 8 (8 attrs)
Accu. = 98.55% k = 11 (14 attrs) k = 13 (13 attrs)
RSC ≥ 85.00% k = 6 (14 attrs) k = 8 (8 attrs)
RSC ≥ 90.00% k = 7 (14 attrs) k = 9 (9 attrs)
RSC ≥ 95.00% k = 10 (14 attrs) k = 12 (12 attrs)
RSC = 95.80% k = 11 (14 attrs) k = 13 (13 attrs)

Dataset 2
Goal LID3 kLR
Accu. ≥ 95.00% k = 1 (1 attr) k = 1 (1 attr)
Accu. = 100.00% k = 8 (15 attrs) k = 9 (9 attrs)
RSC ≥ 95.00% k = 5 (11 attrs) k = 6 (6 attrs)
RSC = 100.00% k = 8 (15 attrs) k = 9 (9 attrs)

Dataset 3
Goal LID3 kLR
Accu. ≥ 85.00% k = 3 (6 attrs) k = 3 (3 attrs)
Accu. ≥ 90.00% k = 5 (11 attrs) k = 6 (6 attrs)
Accu. ≥ 95.00% k = 6 (12 attrs) k = 8 (8 attrs)
Accu. = 98.35% k = 13 (12 attrs) k = 11 (11 attrs)
RSC ≥ 80.00% k = 6 (12 attrs) k = 7 (7 attrs)
RSC ≥ 85.00% k = 7 (12 attrs) k = 8 (8 attrs)
RSC ≥ 90.00% k = 8 (12 attrs) k = 9 (9 attrs)
RSC = 94.72% k = 13 (12 attrs) k = 11 (11 attrs)

Table 4. Experimental results of the datasets
used in this paper

reported in Table 4.
¿From the results of experiments, we can have the fol-

lowing observations. The difference of local and global
selection causes different tree structures. Normally, LID3
may obtain a shorter tree. On the other hand, if we restrict
the height of decision trees, LID3 may use more attributes
thankLR. With respect to the RSC measure, LID3 tree is
normally better thankLR tree at the same level. With re-
spect to the accuracy measure, LID3 tree is not substantially
better thankLR tree at the same level. With respect to dif-
ferent levels of two trees with the same number of attributes,
kLR obtains much better accuracy and RSC than LID3. The
main advantage ofkLR method is that it uses fewer number
of attributes to achieve the same level of accuracy.

5. Conclusion

The contribution of this paper is twofold, the develop-
ment of a formal model and algorithms for level construc-
tion methods for building decision trees. The formal frame-
work is based on partitions in an information table. Within
the framework, we are able to define precisely and con-
cisely many fundamental notions. The concepts of solu-

tion and solution space are discussed. The structures of
several search spaces are studied. Two level construction
methods are suggested: a breath-first version of ID3 called
LID3 , which searches the space of non-uniformly conjunc-
tively definable partitions; and a reduct-based method called
kLR, which searches solutions in the space of uniformly
conjunctively definable partitions. Experimental results are
reported to compare these two methods. They show that
one needs to pay more attention to the less studied level
construction methods.
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