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Abstract— Semantic interpretation of membership functions is
still one of the unsettled issues of fuzzy set theory, although some
proposals have been made and studied. In this paper, we present
an alternative formulation called the constructive model of fuzzy
sets, motivated by the concept of constructive mathematics. The
model makes explicit use of knowledge regarding relationships
between elements of a universal set, and a constructive method.
As an example, we show that s-fuzzy sets can be constructed
based on similarity and elementary fuzzy sets. Properties of the
constructed fuzzy set system are examined in qualitative and
quantitative terms.

I. INTRODUCTION

The theory of fuzzy sets [26] is a generalization of set
theory [9]. A fuzzy set is generated by changing two-value
memberships defining a crisp set to inexact or partial mem-
berships [10]. Although the semantic interpretation of fuzzy
memberships is interesting and significant, it is still one of
the unsettled issues in the literature of fuzzy sets. Dubois
and Prade examined three main semantics for fuzzy mem-
berships, namely, similarity, preference and uncertainty [5].
Each of them underlines a particular class of applications. The
fuzzy sets studied in a particular semantic context are called
qualitative fuzzy sets [13].

It is argued that fuzzy sets can be defined by primitive
notions with semantic interpretations, such as distance, fre-
quency and cost [21]. Equivalence classes can be treated as
primitive notions and they can be defined and explained using
an information table [17], [22]. A fuzzy set can be constructed
by equivalence classes. The membership value of an object
in the derived fuzzy set is interpreted as the conditional
probability that the object belongs to a prototype set given
that the object belongs to some equivalence class [16], [21].

The fuzzy sets that can work as primitive notions emerge
in the information-driven tasks where feature comparison is a
fundamental operation, such as approximate reasoning [7] and
pattern classification [18]. The similarity relationships between
objects can be defined and explained using a distance metric.
A fuzzy set is naturally derived in terms of similarity to a
prototype. The membership of an arbitrary object is the degree
of similarity of the object to the prototype; the more similar
an object is to the prototype, the greater its membership grade
should be. A method by which a qualitative fuzzy set can be
generated in terms of similarity relationships to prototypes in
a prototype set has previously been presented [4], [5], [6], [7],
but there still lacks of further exploration for these types of
fuzzy sets in a constructive view.

This paper presents a constructive model of fuzzy sets. The
model makes explicit use of knowledge regarding relationships
between objects, and a constructive method. As an example,
we study constructive fuzzy sets with similarity semantics.
This paper also examines the quantitative and qualitative
features of constructive fuzzy sets with similarity semantics.

II. CLASSICAL FORMULATION OF FUZZY SETS

Let U ba a finite and non-empty set. A fuzzy set A of U
is defined by a membership function:

µA : U → [0, 1].

One or several fuzzy sets can construct a new fuzzy set by
set-theoretic operations: complement, intersection and union.
The membership function of the derived fuzzy set is defined
on the membership functions of the fuzzy sets involved:

µ¬A(x) = co(µA(x)),
µA∩B(x) = t(µA(x), µB(x)),
µA∪B(x) = s(µA(x), µB(x)),

where the complement, intersection and union operators
are defined by negator, triangular norm and triangular
conorm [12], [19], respectively, which are generalizations of
the connectives from Boolean logic [2]. Different pairs of
triangular norm and triangular conorm can derive different
fuzzy set systems [24]. This paper considers the standard min-
max system proposed by Zadeh [26]:

µ¬A(x) = 1 − µA(x),
µA∩B(x) = max(µA(x), µB(x)),
µA∪B(x) = min(µA(x), µB(x)).

The above discussion shows that fuzzy set-theoretic operations
lack of the qualities regarding semantics of the fuzzy sets
involved.

On the other hand, Fuzzy set A can be approximately
described by its core and support:

core(µA) = {x ∈ U |µA(x) = 1},
support(µA) = {x ∈ U |µA(x) ≥ 0}.

Compared with abstract membership functions, the core-
support structure of a fuzzy set has clear semantic interpre-
tation: the core represents the intension or attributes of a
fuzzy concept and the support represents the extension of the
fuzzy concept. The following restrictions on abstract fuzzy



set-theoretic operations can be obtained from the set-theoretic
operations of the cores and supports [21]:

core(µA) = ¬support(µA),
support(µA) = ¬core(µA),
core(µA∩B) = core(µA) ∩ core(µB),
core(µA∪B) ⊇ core(µA) ∪ core(µB),
support(µA∩B) ⊆ support(µA) ∩ support(µB),
support(µA∪B) = support(µA) ∪ support(µB).

Since the above properties are unrelated with fuzzy set-
theoretic operators, they reflect the qualitative properties of
fuzzy set-theoretic operations.

The notion of fuzzy sets also provides a natural basis for
generalizing the binary relations between two objects [14].
The similarity [25] between objects is a pervasive fuzzy binary
relation, which may come from empirical perception:

S : U × U → [0, 1],

where [0, 1] may be viewed as a set of graded truth values
that represent the degree to which objects are similar. If
S(x, y) = 1, then x and y are perceived to be too similar
to be discernible, whereas S(x, y) = 0 indicates that x and y
are totally unrelated or independent.

Under a similarity relation S, U is a metric space, i.e.
for any two objects x, y ∈ U , they satisfy the following
conditions [15], [25]:

S(x, x) = 1, (1)

S(x, y) = S(y, x), (2)

S(x, t) ∗ S(t, y) ≤ S(x, y), t ∈ U. (3)

Condition (1) implies that any object cannot be distinguished
from itself under the similarity knowledge. Condition (2)
shows that judgement of similarity is symmetrical, which
has been viewed as a stand for all theoretical treatment of
similarity [20]. S(y, x) is also called the inverse relation
of S [14]. Condition (3) is a generalization of the triangle
inequality, where the binary operator ∗ is a triangular norm.
In the view of [19], condition (3) implies that our knowledge
of the similarity between x and y depends on our knowledge
of the similarity between x and t and likewise for t and y.

To summarize the discussion, the membership grades of a
fuzzy set are not explicitly related to a metric space; fuzzy
set-theoretic operations are not related to the semantics of
the fuzzy sets involved. As a consequence, there is a lack of
operational interpretations for membership grades and fuzzy
set-theoretic operations. The core-support structure of fuzzy
sets can partially interpret abstract fuzzy sets and fuzzy set-
theoretic operations. On the other hand, similarity is closely
related with basic measurement of quantities, and serves as a
measurement of the relationship between objects. Similarity
has intuitive qualities and empirical grounds. The quantities
of similarity can help measure fuzzy set memberships.

III. CONSTRUCTIVE FUZZY SETS

Instead of defining a fuzzy set with membership functions,
fuzzy sets could be constructed. A constructive fuzzy set
model can be expressed as a triplet (U,K,M) [21]. A similar
structure was used on the study of a granular computing
approach for problem solving [27]. The U in the triplet
represents a non-empty set and finite of objects. Knowledge
K is about relationships between objects of U . M refers
to a method by which fuzzy sets are constructed. Since the
construction of fuzzy sets is an inseparable part of the theory,
we may provide a semantic interpretation of fuzzy sets [21].

Let P ∈ U be a set of prototypes. For each object p ∈ P , a
fuzzy set can be defined by the membership function of [p]K
which is a class or neighborhood [23] of p formed by K:

µ{p}(x) = [p]K(x), (4)

where [p]K = {x ∈ U | pKx}. µ{p} can be interpreted in
terms of the semantics of K. µ{p} can therefore be viewed as
a primitive notion. We call µ{p} an elementary fuzzy set of
p. When K is an equivalence relation, [p]K is an equivalence
class and µ{p} a crisp set.

Generally, a fuzzy set can be constructed from a prototype
set P by method M :

µ{P}(x) = M({µ{p}(x)}), (5)

where {µ{p}(x)} represents the set of elementary fuzzy sets
derived from all prototypes of P . M may be a fuzzy set-
theoretic operator or a fuzzy aggregation operator. We call
µ{P} a constructive fuzzy set with semantics K. µ{P}(x)
can be interpreted in terms of method M and the elementary
fuzzy sets involved. A case is that when K is an equivalence
relation over U , a prototype set P can derive a fuzzy set as
follows [16]:

µ{P}(x) =
|[x]K ∩ P |
|[x]K | .

Here µ{P}(x) is actually the addition of all µ{p}(x), p ∈ P ,
which accords with the addition law of probability.

In practice, similarity may refer to the distance, cost, and
frequency measurement between objects. When a prototype
and a similarity measure are available, a fuzzy set is naturally
derived from the comparison of objects to the prototype [3],
[18]. We call the fuzzy set an elementary s-fuzzy set. Let
object p be a prototype abstracted from U . Assume that S
represents the similarity measure of objects. The elementary
s-fuzzy set looks like:

µ{p}(x) = [p]S = S(x, p). (6)

The prototype p can also be viewed as a seed from which µ{p}
is derived by the similarity measure S. µ{p}(x) is the degree
of similarity of x to p. Particularly, it is reasonable to assume
that

µ∅(x) = 0. (7)

Since p ∈ core(µ{p}), a s-fuzzy set is normal [11].



For any p′ ∈ core(µ{p}) and p′ 
= p, the following
inequalities co-exist:

S(x, p) = S(x, p) ∗ S(p, p′) ≤ S(x, p′),
S(x, p′) = S(x, p′) ∗ S(p, p′) ≤ S(x, p).

Therefore, p and p′ can derive the same s-fuzzy set, which
corresponds to the interpretation of S(x, y) = 1 in the
previous section. If p′ is not in core(µ{p}), S(p, p′) < 1,
which implies that µ{p} 
= µ{p′}. Therefore, different
prototypes derive distinct elementary s-fuzzy sets. Let
[p] = core(µ{p}). An elementary s-fuzzy set defined by the
membership function (6) can be denoted as µ[p].

Theorem 1: If prototypes p1 and p2 satisfy that S(p1, p2) <
1, µ[p1] 
= µ[p2] and [p1] ∩ [p2] = ∅.

Let P = {p1, p2}. According to the constructive method of
fuzzy sets given by [4], [5], [6], [7], consider the union of two
elementary s-fuzzy sets µp1 and µp2 :

µP (x) = max(µ[p1](x), µ[p2](x)), (8)

= max(S(x, p1), S(x, p2)).

Let [P ] = core(µP ). The fuzzy set µP satisfies that

[P ] = [p1] ∪ [p2].

More generally, for any subset P ⊆ U ,

µP (x) =
∨

p∈P

µ[p](x), (9)

and
[P ] =

⋃

p∈P

[p].

Membership function (9) can be rewritten as:

µP (x) =
∨

p∈[P ]

µ[p](x). (10)

We call fuzzy set µP a s-fuzzy set. A s-fuzzy set can be
represented by a union of the elementary ones derived from
prototypes of P . Since no strong scientific tradition supports
the constructive method of s-fuzzy sets, µP has no explicit
optional interpretation. µP may be interpreted as the image
of P through the relation S [4]. µP may also be interpreted
as a fuzzy set close to P [6].

Theorem 2: If a set of elementary s-fuzzy sets
µ[p1], µ[p2], . . . , µ[pn] satisfy the following conditions:

[pi] ∩ [pj ] = ∅, i 
= j,
n⋃

i=1

[pi] = U,

then these s-fuzzy sets constitute a fuzzy quotient set [8] of
U .

Proof: It is easy to verify the following properties:

n∨

i=1

µ[pi](x) = 1,

∨

x∈U

µ[pi](x) = 1,

∨

x∈U

(µ[pi](x) ∧ µ[pj ](x)) < 1 whenever i 
= j.

On the other hand, for any a, b ∈ U ,

µ[a](x)
∧

µ[b](x) ≤ µ[a](b)
∧

µ[b](a).

Therefore,
∨

x∈U

µ[a](x)
∧

µ[b](x) = µ[a](b)
∧

µ[b](a).

Corollary 1: If a set of elementary s-fuzzy sets constitute
a fuzzy quotient set

∏
S of U , then any s-fuzzy set is a union

of the members of some subset of
∏

S .

This section presents a constructive model for fuzzy sets.
Considering a set of prototypes, each prototype forms an
elementary fuzzy set based on knowledge K. Elementary
fuzzy sets can be interpreted by knowledge K. They are
atomic and act as building blocks of the constructive model.
A fuzzy set can be built on these elementary fuzzy sets by a
method. We examine constructive fuzzy sets under similarity
knowledge. An elementary s-fuzzy set directly comes from
the similarity of objects to a prototype. Any s-fuzzy set is the
union of some elementary s-fuzzy sets.

IV. THE CHARACTERIZATION OF s-FUZZY SET SYSTEMS

We study the set-theoretic operations as well as the core-
support structure of s-fuzzy sets. Quantitative and qualitative
characteristics of s-fuzzy sets are presented.

A. The Quantitative Characterization of s-Fuzzy Sets

The basic quantitative features of s-fuzzy sets include
inclusion, intersection and complement operation of the sets.

The first feature of s-fuzzy sets is about the relation
between the prototype sets and s-fuzzy sets:

Property 1:

P1 = P2 ⇒ µP1 = µP2 ,

P1 ⊆ P2 ⇒ µP1 ⊆ µP2 .

This property shows that s-fuzzy sets are nondecreasing with
respect to the the inclusion of prototype sets.



The next feature of s-fuzzy sets is about the intersection
between two s-fuzzy sets. The intersection of two s-fuzzy sets
may not be a s-fuzzy set, especially when [P1] ∩ [P2] = ∅.

(µP1 ∩ µP2)(x) =
∨

p1∈P1

µ[p1](x)
∧ ∨

p2∈P2

µ[p2](x)

=
∨

p1∈P1,p2∈P2

(µ[p1](x)
∧

µ[p2](x))

≤
∨

p1∈P1,p2∈P2

(µ[p1](p2)
∧

µ[p2](p1))

=
∨

p1∈P1,p2∈P2

S(p1, p2).

Property 2: The constraint for fuzzy intersection of s-fuzzy
sets is:

∨

p∈P1∩P2

S(x, p) ≤ (µP1 ∩ µP2)(x) ≤
∨

p1∈P1,p2∈P2

S(p1, p2).

The complement of a s-fuzzy set is not a s-fuzzy set. When
a prototype set is a singleton, (¬µp)(x) may be interpreted as
the degree of dissimilarity of object x to the prototype p:

(¬µ[p])(x) = 1 − S(x, p) = Sc(x, p).

Property 3:

(¬µP )(x) = 1 −
∨

p∈[P ]

µ[p](x) =
∧

p∈[P ]

µ[p](x).

Property 4: There at least exists an object in U satisfying

(¬µP )(x) = 0.

Property 5:

P1 ⊆ P2 ⇒ (¬µP1) ⊇ (¬µP2).

This property shows that s-fuzzy sets are non-increasing with
respect to the the inclusion of prototype sets.

Property 6: For any x ∈ [P ],

(µP ∪ ¬µP )(x) = 1,

(µP ∩ ¬µP )(x) = 0.

The Property 6 implies that we can know exactly which
object belongs to a s-fuzzy set or does not belong to the
complement of a s-fuzzy set. Finally, the boundary conditions
of s-fuzzy sets and their compliments are:

Property 7:

µU (x) = 1, µ∅(x) = 0,

(¬µ∅)(x) = 1, µ∅(x) = 1.

In this subsection, we examined the set-theoretic operations
of s-fuzzy sets. Besides the union of s-fuzzy sets, the intersec-
tion and complement of s-fuzzy sets cannot be compositional
under a similarity metric. Dubois and Prade have pointed
out that the min-max system widely used in the literature of
fuzzy set cannot precisely account for similarity semantics [5].
There exists a gap between pure set-theoretical methods and
constructive methods in the literature of fuzzy sets.

B. The Qualitative Characterization of s-Fuzzy Sets

We use core-support structure and its set-theoretic operation
to interpret the qualitative properties of s-fuzzy sets.

The relation between a prototype set and a core-support
structure is that the prototype set of a s-fuzzy set is a subset
of the core of the s-fuzzy set; the support of a s-fuzzy
set reflects the extension of prototype outspread under a
similarity measurement. We first explore the core-support
structure of s-fuzzy sets.

Property 8:

core(µP ) = {x ∈ U |µP (x) = 1}
= {x ∈ U | ∃p ∈ P, S(x, p) = 1}
=

⋃

p∈P

[p]

= apr(P ) = [P ]; (11)

core(¬µP ) = {x ∈ U | ∀p ∈ P, Sc(x, p) = 1}
= {x ∈ U | ∀p ∈ P, S(x, p) = 0}; (12)

support(µP ) = {x ∈ U |µP (x) > 0}
= {x ∈ U | ∃p ∈ P, S(x, p) > 0}
= U − {x ∈ U | ∀p ∈ P, S(x, p) = 0}
= U − core(¬µP ) = ¬core(¬µP ); (13)

support(¬µP ) = ¬core(µP )
= ¬apr(P )
= U − [P ]. (14)

The core-support structure of fuzzy sets in the theory of
rough sets can be described by the lower bound and upper
bound of the prototype set under the equivalence knowl-
edge E:

core(µE
P ) = ∪{x ∈ U | [x]E ⊆ P} = apr(P ),

support(µE
P ) = ∪{x ∈ U | [x]E ∩ P 
= ∅} = apr(P ).

The core-support structure of s-fuzzy sets is complex and has
to be described together by (11), (12), (13) and (14). The
relation between the two types of core-support structures can



be expressed as:

Property 9:

core(¬µ¬P ) ⊆ core(µE
P ) ⊆ support(µE

P ) ⊆ core(µP ).

We can easily get the boundary conditions of core(µP )
and support(µP ) as well as core(¬µP ) and support(¬µP ):

Property 10:

core(µ∅) = support(µ∅) = ∅,
core(µU ) = support(µU ) = U,

core(¬µ∅) = support(¬µ∅) = U,

core(¬µU ) = support(¬µU ) = ∅.

For the complement, intersection and union of prototype
sets, we can get the following conclusions:

Property 11:

core(µ¬P ) = apr(¬P ) = ¬apr(P );

support(µ¬P ) = ¬core(¬µ¬P )
⊇ ¬apr(P );

core(¬µ¬P ) = {x ∈ U | ∀p ∈ ¬P, Sc(x, p) = 1}
= {x ∈ U | ∀p ∈ ¬P, S(x, p) = 0}
⊆ apr(P );

support(¬µ¬P ) = ¬core(µ¬P )
= ¬apr(¬P );

core(µP1∩P2) = apr(P1 ∩ P2)
⊆ apr(P1) ∩ apr(P2)
= core(µP1) ∩ core(µP2);

support(µP1∩P2) = {x ∈ U | µP1∩P2(x) > 0}
= {x ∈ U | ∃p ∈ P1 ∩ P2, S(x, p) > 0}
⊆ {x ∈ U | ∃p ∈ P1, S(x, p) > 0}
∩ {x ∈ U | ∃p ∈ P2, S(x, p) > 0}
= support(µP1) ∩ support(µP2);

core(µP1∪P2) = apr(P1 ∪ P2)
= apr(P1) ∪ apr(P2)
= core(µP1) ∪ core(µP2);

support(µP1∪P2) = {x ∈ U | µP1∪P2(x) > 0}
= {x ∈ U | ∃p ∈ P1 ∪ P2, S(x, p) > 0}

= {x ∈ U | ∃p ∈ P1, S(x, p) > 0}
∪ {x ∈ U | ∃p ∈ P2, S(x, p) > 0}
= support(µP1) ∪ support(µP2).

For the complement, intersection and union of s-fuzzy sets,
the following properties hold.

Property 12:

core(µP1 ∩ µP2) = core(µP1) ∩ core(µP2)
= apr(P1) ∩ apr(P2)
⊇ apr(P1 ∩ P2) = core(µP1∩P2);

support(µP1 ∩ µP2) ⊆ support(µP1) ∩ support(µP2)
= ¬core(¬µP1) ∩ ¬core(¬µP2)
= ¬(core(¬µP1) ∪ core(¬µP2)),

Since,

core(¬µP1) ∪ core(¬µP2) ⊇ core(¬µP1∩P2),
¬(core(¬µP1) ∪ core(¬µP2)) ⊆ ¬core(¬µP1∩P2).

Therefore,

support(fP1 ∩ fP2) ⊆ ¬core(¬fP1∩P2);
support(µP1 ∪ µP2) = support(µP1) ∪ support(µP2)

= {x ∈ U | ∃p1 ∈ P1, S(x, p1) > 0}
∪ {x ∈ U | ∃p2 ∈ P2, S(x, p2) > 0}
= {x ∈ U | ∃p ∈ P1 ∪ P2, S(x, p) > 0}
= support(µP1∪P2);

core(µP1 ∪ µP2) ⊇ core(µP1) ∪ core(µP2)
⊇ apr(P1) ∪ apr(P2)
= apr(P1 ∪ P2).

We also get the following conclusions about a s-fuzzy set
and its complement:

Property 13:

core(µP ∩ ¬µP ) = core(µP ) ∩ core(¬µP )
= core(µP ) ∩ ¬support(µP ) = ∅;

support(µP ∩ ¬µP ) ⊆ support(µP ) ∩ support(¬µP )
= support(µP ) ∩ ¬core(µP )
= support(µP ) − core(µP );

core(µP ∪ ¬µP ) ⊇ core(µP ) ∪ core(¬µP )
= core(µP ) ∪ ¬support(µP );

support(µP ∪ ¬µP ) = support(µP ) ∪ support(¬µP )
= U.



The core-support structure of a s-fuzzy set connects the core
and support of the fuzzy set and the ones of its complement.
The cores and supports of fuzzy set-theoretic operations and
the set-theoretic operations of prototype sets are explored.

V. CONCLUSIONS

This paper presents a constructive model of fuzzy sets,
which is motivated by both the concept of constructive mathe-
matics [1] and the fact that we must have some information or
knowledge about the relationships between objects in dealing
with a vague concept [21]. In this model, a fuzzy set is derived
from a prototype set. Each prototype forms an elementary
fuzzy set based on the knowledge about relationships between
objects. The knowledge is related to the basic measurement of
quantities, such as distance, frequency and cost. Elementary
fuzzy sets are atomic and can be directly interpreted by the
knowledge. The fuzzy set is actually built on these elementary
fuzzy sets by a method.

Based on the constructive model, a fuzzy set can be
constructed via an explicit, finite procedure under similarity
knowledge. We call s-fuzzy sets the constructive fuzzy sets
with similarity semantics. The membership grades of an el-
ementary s-fuzzy set are the degrees of similarity of objects
to a prototype. Any s-fuzzy set can be constructed from a
set of elementary ones by union operations. The constructive
method can be interpreted as a projection of a crisp set through
similarity relations.

We also examined the quantitative and qualitative prop-
erties of s-fuzzy sets. The quantitative properties show that
the similarity knowledge cannot solely interpret set-theoretic
operations of s-fuzzy sets. The core and support of a s-fuzzy
set need to be described by the cores and supports of the s-
fuzzy set and its complement. The core of a s-fuzzy set and
the support of its complement are related to the prototype set,
whereas there is no direct relation connecting the support of a
s-fuzzy set and the core of its complement with the prototype
set.
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