
A Fast Tree Pattern Matching Algorithm for XML Query

J. T. Yao M. Zhang
Department of Computer Science

University of Regina
Regina, Saskatchewan

Canada S4S 0A2
{jtyao,zhang2mi }@cs.uregina.ca

Abstract

Finding all distinct matchings of the query tree pattern
is the core operation of XML query evaluation. The exist-
ing methods for tree pattern matching are decomposition-
matching-merging processes, which may produce large use-
less intermediate result or require repeated matching of
some sub-patterns. We propose a fast tree pattern match-
ing algorithm called TreeMatch to directly find all distinct
matchings of a query tree pattern. The only requirement for
the data source is that the matching elements of the non-leaf
pattern nodes do not contain sub-elements with the same
tag. The TreeMatch does not produce any intermediate re-
sults and the final results are compactly encoded in stacks,
from which the explicit representation can be produced effi-
ciently.

1 Introduction

The XML (eXtensible Markup Language) is gaining
popularity as a new standard for data representation and
exchange on the internet. The problem of querying XML
documents has been given much attention by researchers.
The XML documents can be considered as semi-structured
databases. There are generally two streams of query ap-
proaches to the XML data. The first one is to map the XML
documents into relational databases in order to use a struc-
tured query languages such as SQL [11, 12]. It usually pro-
duces too many relations and loses some important informa-
tion on relationships. For example, the explicit hierarchical
relationship between XML elements may be lost. The sec-
ond one is to design new query languages to extract infor-
mation from XML documents [1, 4, 6, 13]. These query
languages query not only the contents but also the structure.

The XML documents are usually modelled as trees and
queries in XML query languages and are typically twig (or
small tree) patterns with some nodes having value-based

predicates. Therefore, finding all distinct matchings of a
twig pattern becomes a core operation in an XML query
evaluation. The existing methods for tree pattern match-
ing in XML is typically a decomposition-matching-merging
process [2, 5, 9, 16, 10].

The drawback of the decomposition-matching-merging
methods is that the size of intermediate results may be
much larger than the final answers. The main reason of
having larger intermediate results and repeated matching of
sub-patterns is due to the consideration of self-containment
XML documents, i.e., an XML element that has the same
tag with its sub-elements. However, in the real applications,
we seldom find self-containment documents.

We propose a fast tree matching algorithm called
TreeMatch that can directly find all matchings of a tree pat-
tern in one step. The only requirement for the data source
is that the matching elements of the non-leaf pattern nodes
do not contain sub-elements with the same tag. There are at
least two advantages of TreeMatch. First, the TreeMatch al-
gorithm does not need to decompose the query tree pattern,
as it matches the pattern against the data source directly.
Therefore, it does not produce any intermediate results and
does not need the merging process. Second, the final results
are compactly encoded in stacks and explicit representation
of the results, either as a tree or a relation with each tuple
representing one matching, can be generated efficiently.

The paper is organized as follows: Section 2 introduces
the fundamentals of XML query and related work for XML
query evaluation. Section 3 discusses in detail the fast tree
pattern match algorithmTreeMatch. Section 4 is the con-
clusion.

2 The XML Query Fundamentals

We present the background information of the XML
query and notations used in this paper. An XML docu-
ment consists of nested elements enclosed by user-defined

tags, which indicate the meaning of the content contained.
Figure 1 shows an example of an XML document named
“pub.xml”, which contains some publication information.
The hierarchical structure of an XML documents can be
modelled as a tree. Figure 3 is the tree representation of the
XML file in Figure 1. The XML documents on the Internet
is an forest of XML trees and we call it an XML database.

<?xml version="1.0" ?>
<publication>

<journal title="DBMS">
<editor>Jack</editor>
<article>

<title>
Index Construction

</title>
<author>Smith</author>

</article>
</journal>
<journal title="Algorithm">
</journal>

</publication>

Figure 1. An example of an XML document

The semi-structured format of XML documents brings
the possibility of using database technology to query the
XML data instead of information retrieval techniques appli-
cable only to plain text documents. However, the mature
SQL queries can not be applied directly since XML doc-
uments do not necessarily conform to a predefined, rigid
schema required by the traditional database system [17].

Much research has been done on XML query languages.
Although the query languages differ in detailed grammars,
they share a common feature, that is: querying structure as
well as the contents or values of elements. Queries in XML
query languages make use of tree patterns to match portions
of data in the XML database. For example, the following is
a query expressed in Xquery [13] over the document in Fig-
ure 1 where “//” indicates ancestor-descendant relationship,
and “/” indicates parent-child relationship.

FOR $a IN document(“http://.../pub.xml”)//journal/article
$b IN $a/title

WHERE $a/author =“Smith” RETURN
<article>$b</article>

This query retrieves the titles of articles authored by
“Smith” and published in a journal. It contains both struc-
ture and content information. We can use a tree to depict
the query as shown in Figure 2. In other words, this query
will find all the matchings of the tree pattern in the XML
database.

journal

article

title author

Smith

Figure 2. The tree representation of the exam-
ple query

The existing methods for tree pattern matching in XML
is typically a decomposition-matching-merging process: 1)
decompose the tree pattern into linear patterns which might
be binary (parent-child or ancestor-descendant) relation-
ships between pairs of nodes or root-to-leaf paths; 2) find
all matchings of each linear pattern; and 3) merge-join them
to produce the result.

Most research in literature focuses on the second sub-
problem: find all matchings of a linear pattern. It can be
classified according to the type of linear pattern they deal
with, i.e., matching the binary structural relationships and
matching path patterns. To match the binary structural rela-
tionships, Zhanget al. [16] proposed the MPMGJN (multi-
predicate Merge Join) algorithm and Al-Khalifaet al. [9]
gave the Stack-Tree algorithms. The algorithms accept two
lists of sorted individual matching nodes and structurally
join pairs of nodes from both lists to produce the matchings
of the binary relationships.

The difference between the MPMGJN and Stack-Tree is
that the MPMGJN is a variation of the traditional merge-
join algorithm, requiring multiple scans of the input lists.
The Stack-Tree algorithm is more efficient as it uses stacks
to maintain the ancestor or parent nodes and it needs only
one scan of the input lists. Liet al. [10] and Chienet al. [5]
use an index to facilitate the structural join process and do
not require sorted input lists.

Recently, Brunoet al. [2] proposed algorithms called
PathStack and TwigStack. The former is for matching path
patterns and the latter is claimed to solve the problem of
twig pattern matching. Both of them use a chain of stacks
to encode the partial result. However, TwigStack does
not match the twig pattern directly. It still belongs to the
decomposition-matching-merging category.

All the algorithms discussed above use the format

(DocId, Start : End, Level)

to represent the nodes in the database.DocId is the identity
of the document the node belongs to,Start : End are the
start and end positions of the corresponding element in the
document andLevel is the depth of the node in the tree
hierarchy (e.g., for the root node,Level = 0).

2

publication
(1,1:23,0)

journal
(1,2:17,1)

title
(1,3:5,2)

DBMS
(1,4:4,3)

editor
(1,6:8,2)

Jack
(1,7:7,3)

article
(1,9:16,2)

title
(1,10:12,3)

Index
(1,11:11,4)

author
(1,13:15,3)

Smith
(1,14:14,4)

journal
(1,18:22,1)

title
(1,19:21,2)

Algorithm
(1,20:20,4)

Figure 3. The tree representation of the XML document example

The advantage of using(DocId, Start : End, Level) to
represent nodes is that we can determine the relationships
between nodes in a constant time. A simple definition of
the terms ancestor, descendant, parent and child is given as
follows,

Definition 1 Suppose thatx and y are two nodes from
an XML tree, we say thaty is an ancestor ofx
and x is a descendant ofy if y.DocId = x.DocId
and y.Start < x.Start < y.End. y is an parent of
x and x is a child of y if 1) y.DocId = x.DocId,
2) y.Start < x.Start < y.End, and 3) y.Level =
x.Level− 1.

For example, in Figure 3, the author node(1, 13 : 15, 3)
is a descendant of the journal node(1, 2 : 17, 1).

The TwigStack algorithm [2] partially solved the prob-
lem of larger intermediate results with decomposition-
matching-merging methods. When the patterns have only
ancestor-descendant edges, the intermediate result of each
path matching is guaranteed to be part of the final result.
However, TwigStack’s requirement of matching all the root-
to-leaf paths leads to repeated matching of the common
nodes shared by multiple paths. If the query twig pattern has
N leaf nodes, there will beN different root-to-leaf paths.
The matching of common nodes would be computed up to
N times. For example, in Figure 2, pattern Q will be decom-
posed to two root-to-leaf paths, “journal/article/title” and
“journal/article/author/Smith”. Sub-Path “journal/article”
are shared by two paths and will be matched repeatedly.

The difficulty of directly matching tree patterns comes
from the self-containment property of the XML elements,

that is, elements have the same tag with their sub-
elements. However, self-containment is seldom found in
real XML documents. Moreover, the self-containment
property is easily identifiable. For an XML document with
DTD(Document Type Definition), this property is indicated
by the DTD. For an XML document without DTD, it is eas-
ily identified during the index construction process.

Other works for XML queries focus on the preprocess-
ing of query patterns before the matching against the XML
data source is executed. Amer-Yahiaet al [14] proposed a
tree pattern minimization technique which aims at finding
the smallest equivalent tree pattern of the original pattern
by efficiently identifying and eliminating redundant nodes
in the pattern. Flescaet al [7] took one step forward by con-
sidering the minimization for general case tree pattern with
wildcard operators. Chenet al [3] proposed the concept of
GTP(generalized tree pattern) and presented an algorithm
to translate a general XQuery query expression, which con-
sists of more than one tree pattern and possibly involves
quantifiers, aggregation and nesting, into a GTP. Evaluating
the query expression reduces to finding distinct matches of
the GTP.

3. The TreeMatch Algorithm

3.1 Problem Definition

We first introduce some basic notations before giving the
formal definition of the problem. An XML document is
modelled as a treeD = (Nd, Ed), whereNd is a set of

3

root

a1

b1 c1

d1

a2

b2 b3 c2

d2 e1 e2

a3

c3 e3

a4

b4 c4

d3 e4

c5

d4 e5

Figure 4. The data source

labelled nodes,Ed is a set of edges. We callD a data source.
For a nodex ∈ Nd, the label ofx is denoted bylabelD(x).

A query tree pattern is a treeQ = (Nq, Eq), whereNq is
a set of labelled nodes andEq is a set of edges. Each edge
is represented by the pair of nodes it connects. There are
two kind of edges inEq, parent-child edges and ancestor-
descendant edges. An ancestor-descendant edge is repre-
sented byx//y and a parent-child edge is represented by
x/y, wherex, y ∈ Nq are the nodes connected by the edge.
For a nodex ∈ Nq, labelQ(x) denotes the label ofx.

Definition 2 Given two nodesx ∈ Nq andx′ ∈ Nd, we say
thatx′ is anoccurrenceof x in D if labelQ(x)= labelD(x′).

Definition 3 Given a query tree patternQ = (Nq, Eq)
and a data sourceD = (Nd, Ed), for any nodeq ∈
Nq, if there exist twooccurrencesof q that have ancestor-
descendant or parent-child relationship,q is said to have
occurrence with self-containment.

Definition 4 Given a query tree patternQ = (Nq, Eq)
and a data sourceD = (Nd, Ed), we callψ(Nq) a match-
ing of Q in D if there is a mappingψ : Nq −→ Nd that
satisfies the following properties for everyx, y ∈ Nq:

1. x 6= y ⇐⇒ ψ(x) 6= ψ(y);

2. labelQ(x)= labelD(ψ(x));

3. if x//y ∈ Eq =⇒ ψ(x) is an ancestor ofψ(y); if
x/y ∈ Eq =⇒ ψ(x)is the parent ofψ(y);

The TreeMatch algorithm works in the condition of no
occurrence of self-containment. In other words, the prob-
lem is defined as: given a tree patternQ where each non-
leaf node does not have occurrence with self-containment,
and a XML data sourceD that has index structures to iden-
tify occurrences ofQ’s nodes, find all the distinct matchings
of Q in D.

3.2 The TreeMatch Algorithm and Its Notions

The TreeMatch algorithm, presented in Section 3.3, can
find all distinct matchings of a tree pattern in the data source
directly. It is no longer a decomposition-matching-merging
process. The basic idea is as follows: given a tree pattern,
TreeMatchfinds all the matchings of the pattern by recur-
sively calling functionfind(q) to find the matchings of sub-
pattern rooted byq and compactly encodes the matchings
in the stacks associated with each pattern node. At any time
the stacks associated with pattern nodeq and its descendants
contain the matching nodes of sub-pattern rooted byq that
are possibly extended to the final result.

We first introduce the notations used in the TreeMatch.
In the algorithm, each pattern nodeq is associated with a
stackSq and a listTq. Sq is used to store the potential solu-
tion. Tq is a list of sorted occurrences ofq. Here we assume
the data source is a single XML document so each node
of Tq can be represented by a triplet(Start, End, Level).
The nodes inTq are sorted byStart. The algorithm can
easily be extended to deal with multiple XML documents by
adding an extra attributeDocId (document identity) to the
node representation triplet and testing the equality ofDocId
before manipulating the nodes. Since the occurrenceTq

lists can be obtained by accessing to an index structure [10],
TreeMatch accepts them as input.

a

b c

d e

Figure 5. The pattern tree

In the algorithm,Tq→current points to the current node
andAdvance(Tq) moves to the next node inTq. Isleaf(q)
checks if pattern nodeq is a leaf node.NumOfChildren(q)
returns the number of children of pattern nodeq and qi

(i = 0, 1, . . . NumOfChildren(q)− 1) are children of

4

q. For example, whenq = a as shown in Figure 5,
NumOfChildren(q) returns 2 andq0 = b, q1 = c. Tq0

and Tq1 are lists of matching nodes ofb and c, respec-
tively. In particular, given the data source shown in Fig-
ure 4,Tb = {b1, b2, b3, b4} andTc = {c1, c2, c3, c4, c5}.

The No-Self-Containment property of the non-leaf
node in the pattern brings about the possibility of compact
encoding of the final matching results. Given a tree pattern
with such a property, for any non-leaf pattern nodeq,
any pair of nodes in its occurrence listTq does not have
common descendants. Therefore, we can have a partition of
all matching nodes of the sub-tree pattern rooted byq with
each partition containing the nodes of matchings rooted by
one occurrence ofq. For example, given the tree pattern
of Figure 5 against data source of Figure 4, any node in
Tb = {b1, b2, b3, b4} has at most one ancestor or parent
in Ta = {a1, a2, a3, a4}. Thus, any pair of nodes inTa

do not have common descendants inTb. We can partition
the nodes of all matchings, with each node belonging to
exactly one partition. Each partition contains the nodes
of the matchings rooted by one occurrence ofa. In this
example, matching nodes can be partitioned into two parts:
{{a2, b2, b3, c2, d2, e1, e2}, {a4, b4, c4, d3, e4, c5, d4, e5}}.
Within each partition, the matching nodes of sub-
patterns can be further partitioned. This operation
can be recursively performed down to the leaf pat-
tern node. Finally, the matching nodes looks as
follows:{{a2, {b2, b3}, {c2, d2, {e1, e2}}},
{a4, b4, {{c4, d3, e4}, {c5, d4, e5}}}}.

Since the nodes of the matchings can be partitioned, we
can compactly encode the matching nodes and generate so-
lutions partition by partition.

3.3 Algorithm

All the nodes ofTq are occurrences of the pattern node
q in data source. FunctionFind(q) is called to determine
whether the current occurrenceTq→current is a partial so-
lution. Tq→current is a partial solution means matchings of
sub-tree patterns rooted byq have been found and encoded
in the stacks and these matchings are possibly extended to
final results. IfTq→current is found not to be a partial solu-
tion, functionCleanStack()is called to remove the recoded
nodes that are descendants ofTq→current. Function Gen-
erateSolution() and GenerateSolution2() produce two vari-
eties of explicit representation of the final result.

TreeMatch(q)
While (Tq is not empty)

if(Find(q)) push(Sq, Tq→current, root);
Advance(Tq);

GenerateSolution(q);

Find(q)

(1) if (Isleaf(q)) return true; /*q is leaf node*/
(2) N=NumofChildren(q);
(3) i=0; PartialSolution=false;
(4) While(PartialSolution ORTqi

is not empty)
/*qi(i = 0, 1, . . . , N − 1) areq’s children */

(5) if (Tqi is empty OR
Tqi
→current.start> Tq→current.end)

(6) if (PartialSolution)
(7) i = i + 1;
(8) PartialSolution=false;

else
(9) j = 0;
(10) while (j++ < i) CleanStack(qj);
(11) return false;
(12) if (i = N) return true;

else
(13) if (Tqi

→current.start< Tq→current.start)
(14) Advance(Tqi);

else
(15) if (Find(qi))
(16) push(Sqi , Tqi→current,Tq→current);
(17) PartialSolution=true;
(18) Advance(Tqi);
(19) return false;

Partial solutions can be recursively defined as follows:

Definition 5 The occurrences of leaf pattern nodes are par-
tial solutions. An occurrencexi of a non-leaf pattern nodex
is a partial solution if 1)xi has child nodes that are the oc-
currences of each child node ofx; and 2) these child nodes
of xi are partial solutions.

For example, given a tree pattern as shown in Figure 5
and data source in Figure 4,b1, b2, b3, b4 are all partial so-
lutions sinceb is a leaf pattern node.c2 is also a partial
solution since its childrend2, e1 match the children of node
c, andd2, e1 are partial solution. In comparison,c1 is not a
partial solution anda1 is not a partial solution.

According to above definition, a matching node is a par-
tial solution if its matching child nodes are partial solutions.
Find(q) finds Tq→current’s child nodes inTqi (qi is child
node ofq in the pattern) and recursively callsFind(qi) to
determine whether they are partial solutions. If a match-
ing child node inTqi is found to be a partial solution, it is
pushed into stackSqi (line 15-16). WhenTq→current has
child nodes matching each ofq’s child nodes,Find(q) re-
turns true (line 12).

(Start, End, Level) representation of node is used to
determine the relationship between nodes inTq and Tqi .
The algorithm checks only the ancestor/descendant rela-
tionships. To deal with the parent/child relationship, we
only need to test the Level of nodes by replacing line (15)
with “if (Tqi→current.Level= Tq→current.Level+1 AND
Find(qi))”.

5

If Tqi
→current.start is greater thanTq→current.end (line

5), nodeTqi
→current and its followers inTqi

are not de-
scendants ofTq→current. At this point, the algorithm has
to check the present status before taking further action. If
there is a node beforeTqi→current that is a partial solution,
the algorithm starts to checkTqi+1 (line6-8). Otherwise, the
algorithm cleans the stackSq1 , Sq2 , . . ., Sqi−1 by calling
function CleanStacksince the nodes in the stacks that are
descendants ofTq→current cannot be extended to produce
a final result.

If Tqi
→current.start is less thanTq→current.start, which

means nodeTqi
→current is not a descendant ofTq→current

but the nodes followingTqi→current might be, the algo-
rithm simply moves to check the next node inTqi

(line13-
14).

If Tqi
→current is a descendant ofTq→current,Find(qi)

is called recursively to determine whetherTqi
→current is

a partial solution. IfTqi→current is a partial solution, it is
pushed into the stackSqi

together withTq→current (line15-
17).

CleanStack(q)
N=NumOfChildren(q);
i = 0;
While (i++ < N) CleanStack(qi);
ParentNode=Sq→top.parent;
While(Sq is not empty ANDSq→top.parent=ParentNode)

Popup(Sq);

GenerateSolution(q)
(1) N=NumOfChildren(q);
(2) i = 0;
(3) while(i++ < N)
(4) GenerateSolution(qi);
(5) Sq=Join(Sq, Sqi);

GenerateSolution2(q, parent)
while(Sq→bottom.Parent=parent)

AppendtoSolution(Sq→bottom.Self);
N=NumOfChildren(q);
i = 0;
while (i++ < N)

GenerateSolution2 (qi, Sq→bottom.Self);
Sq→bottom=Sq→bottom→up;
If (Sq→bottom.Parent=parent)

AppendtoSolution(-1);
AppendtoSolution(-1);

The final results are compactly encoded in the stacks as-
sociated with each pattern node. For any pattern nodeq,
stackSq stores the occurrences ofq that are part of the
matchings. Each element in stackSq consists of a pair: (a
nodeq′ in Tq, the parent of nodeq′ in Tparent(q)). When
matching the pattern of Figure 5 in the data source of Fig-
ure 4, the encoded final result is shown in Figure 6.

Sa

a2 root

a4 root

Sb

b2 a2

b3 a2

b4 a4

Sc

c2 a2

c4 a4

c5 a4

Sd

d2 c2

d3 c4

d4 c5

Se

e1 c2

e2 c2

e4 c4

e5 c5

Figure 6. Encoded Result

TheGenerateSolution()function is called to produce ex-
plicit representation of the final result from the encoded
one. It generates the distinct matchings one by one. The
Join(Sq, Sqi) (line5) is an operation equivalent to the
equal join in relational databases, the content ofSq andSqi

being regarded as relations. The result ofJoin(Sq, Sqi)
is stored inSq. This operation is performed from bottom
to top of the pattern tree and the final result is stored in the
stack associated with the root pattern node. Figure 7 shows
the explicit representation of the encoded result in Figure 6.

TheGenerateSolution2()function gives a concise repre-
sentation of the final result. It organizes the matchings as
a tree, and produces the string representation of the tree
as illustrated in Figure 8. The string representation can
uniquely determine the tree [15]. In other words, the tree
can be uniquely recovered by scanning the string represen-
tation once. Specifically, it is recovered in a way of pre-
order-traversal: at first we only have a virtual root node,
while scanning the string, we add a child node to the cur-
rent node when an element is read and we backtrack to the
parent node when -1 is read.

4 Conclusion

The paper proposes a TreeMatch algorithm to directly
find all distinct matchings of a query tree pattern in XML
data sources. Unlike prior research for query tree pattern

6

Sa

a2,b2,c2,d2,e1 root

a2,b2,c2,d2,e2 root

a2,b3,c2,d2,e1 root

a2,b3,c2,d2,e2 root

a4,b4,c4,d3,e4 root

a4,b4,c5,d4,e5 root

Figure 7. Result of GenerateSolution()

a2, b2,−1, b3,−1, c2, d2,−1, e1,−1, e2,−1,−1,−1, a4,

b4,−1, c4, d3,−1, e4,−1,−1, c5, d4,−1, e5,−1,−1,−1

Figure 8. Result of GenerateSolution2()

matching, the TreeMatch algorithm does not need to de-
compose the tree patten into linear patterns and do not pro-
duce any intermediate results that are not part of the final
results. The TreeMatch algorithm is applicable when the
non-leaf pattern nodes do not have occurrences with self-
containment. The self-containment is seldom found in real
XML documents and such a property can easily be identi-
fied. Therefore, the TreeMatch algorithm is more efficient
than the existing methods under most cases.

Acknoledgements

Financial support through a grant of Natural Sciences
and Engineering Research Council (NSERC) of Canada is
gratefully acknowledged.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J.L. Wiener. The Lorel query language for semistruc-
tured data. International Journal on Digital Libraries,
1(1):68-88, April 1997.

[2] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig
joins: Optimal XML pattern matching. In SIGMOD,
pp310-321, 2002.

[3] Z.M. Chen, H.V. Jagadish, L.V.S. Lakshmanan, and
S. Paparizos, From Tree Patterns to Generalized Tree
Patterns: On Efficient Evaluation of XQuery. Proceed-
ings of VLDB Conference, Berlin, Germany, pp237-
248, September 2003.

[4] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An
XML query language for heterogeneous data sources.

In proceedings of International Workshop on the Web
and Database, pp53-62, May 2000.

[5] S.Y. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, C. Zan-
iolo. Efficient Structural Joins on Indexed XML Doc-
uments. Proceedings of the 28th VLDB Conference,
Hong Kong, China, pp263-274, 2002.

[6] A. Deutsch, M. Fernandez, D. Florescu, A. Levy and
D. Suciu. A Query Language for XML. In proceed-
ings of 8th International World Wide Web Conference,
pp77-91, May 1999.

[7] S. Flesca, F. Furfaro and E. Masciari. On the mini-
mization of Xpath queries. Proceedings of the 29th
VLDB Conference, Germany, pp153-164, 2003.

[8] H. Jiang, W. Wang, H.J. Lu and J.X. Yu. Holistic Twig
Joins on Indexed XML documents. Proceedings of
the 29th VLDB Conference, Berlin, Germany, pp273-
284, 2003.

[9] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Pa-
tel, D. Srivastava, Y. Wu. Structural Joins: A Primi-
tive for Efficient XML Query Pattern Matching. ICDE
2002:141-152.

[10] Q. Li and B. Moon. Indexing and querying XML data
for regular path expressions. Proceedings of the 27th
VLDB Conference, pp361-370, 2001.

[11] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational Databases
for Querying XML Documents: Limitations and Op-
portunities. Proceedings of VLDB Conference, Edin-
burgh, Scotland, pp302-314, 1999.

[12] A. Schmidt, M. Kersten, M. Windhouwer, F. Waas. Ef-
ficient Relational Storage and Retrieval of XML Doc-
uments. In proceedings of International Workshop on
the Web and Databases, pp47-52, 2000.

[13] W3C Recommendation. XQuery 1.0:
An XML Query Language. Available at
http://www.w3.org/TR/xquery.

[14] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Laksh-
manan, Divesh Srivastava: Tree pattern query mini-
mization. VLDB Journal 11(4): 315-331, 2002.

[15] M.J. Zaki. Efficiently Mining Frequent Trees in a
Forest. 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp71-80,
2002.

[16] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo and
G.M. Lohman. On supporting containment queries in
relational database management system. In proceed-
ings of ACM SIGMOD, pp425-436, 2001.

[17] M. Zhang, J.T. Yao. The XML Algebra for Data Min-
ing. In the proceedings of Data Mining and Knowl-
edge Discovery: Theory, Tools, and Technology, Or-
lando, USA, pp209-217, April 2004.

7

