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Abstract the problem, but also brings more insights into the solution
of the problem.

Within a granular computing model of data mining, we
reformulate the consistent classification problems. The
granulation structures are partitions of a universe. A so-2 Formal Concept Analysis, Granular Com-
Iut|0_n_ to a consistent c_IaSS|f|cat|on proplem is a defm_able puting, and Data Mining
partition. Such a solution can be obtained by searching a
particular partition lattice. The new formulation enables
us to precisely and concisely define many notions, and to
present a more general framework for classification.

A close connection between formal concept analysis,
granular computing, and data mining can be established
by focusing on their two fundamental and related tasks,
namely, concept formation and concept relationship iden-
) tification [8].

1 Introduction In the study of formal concepts, every concept is under-
stood as a unit of thoughts that consists of two parts, the

As a recently renewed research topic, granular com-intension and extension of the concept [1, 6]. The inten-
puting (GrC) is an umbrella term to cover any theories, sion (comprehension) of a concept consists of all properties
methodologies, techniques, and tools that make use of graner attributes that are valid for all those objects to which the
ules (i.e., subsets of a universe) in problem solving [7, 9, concept applies. The extension of a concept is the set of
10]. Formal concept analysis may be considered as a con-objects or entities which are instances of the concept. All
crete model of granular computing. It deals with the char- objects in the extension have the same properties that char-
acterization of a concept by a unit of thoughts consisting of acterize the concept. In other words, the intension of a con-
two parts, the intension and extension of the concept [1, 6]. cept is an abstract description of common features or prop-
The intension of a concept consists of all properties or at- erties shared by elements in the extension, and the extension
tributes that are valid for all those objects to which the con- consists of concrete examples of the concept. A concept is
cept applies. The extension of a concept is the set of objectshus described jointly by its intension and extension.
or entities which are instances of the concept. Basic ingredients of granular computing are subsets,

Recently, a granular computing model for knowledge classes, and clusters of a universe [7, 10]. There are many
discovery and data mining is proposed by combining resultsfundamental issues in granular computing, such as granu-
from formal concept analysis and granular computing [8]. lation of the universe, description of granules, relationships
Each granule is viewed as the extension of a certain con-between granules, and computing with granules. Granula-
cept and a description of the granule is an intension of thetion of a universe involves the decomposition of the uni-
concept. Knowledge discovery and data mining, especially verse into parts, or the grouping of individual elements into
rule mining, can be viewed as a process of forming con- classes, based on available information and knowledge. The
cepts and finding relationships between concepts, in termsconstruction of granules may be viewed as a process of
of their intensions and extensions. identifying extensions of concepts. Similarly, finding a de-

The objective of this paper is to apply the granular com- scription of a granule may be viewed as searching for inten-
puting model for the study of the consistent classification sion of a concept. Demri and Orlowska referred to such pro-
problems with respect to partitions of a universe. We re- cesses as the learning of extensions of concepts and learning
express, precisely and concisely, many notions based orof intensions of concepts, respectively [1]. The relation-
partition lattice. Our reformulation of the consistent clas- ships between concepts, such as sub-concepts, disjoint and
sification problems not only provides a formal treatment of overlap concepts, and partial sub-concepts, can be inferred



from intensions and extensions, Definition 2 A partition 7, is refinement of another parti-

It may be argued that some of the main tasks of knowl- tion 5, or equivalently,r; is a coarsening ofr;, denoted
edge discovery and data mining are concept formation andby 7, < o, if every block ofr; is contained in some block
concept relationship identification [2, 8, 9]. The results of ms.
from formal concept analysis and granular computing can
be immediately applied. The refinement relation is a partial ordering of the set of

In a recently proposed granular computing model of data all partitions. Given two partitions; and ., their meet,
mining, it is assumed that information about a set of objects 71 A 72, is the largest partition that is a refinement of both
is given by an information table [8]. That is, an object is 7 andns, their join,m; V 7y, is the smallest partition that
represented by a set of attribute-value pairs. A logic lan- is a coarsening of both; andm,. An equivalence classes
guage is defined for the information table. The semantics of the meet are all nonempty intersections of an equivalence
of the language is given in the Tarski's style through the class fromr; and an equivalence class from, equivalence
notions of a model and satisfiability. The model is an in- classes of the join are the smallest subsets which are exactly
formation table. An object satisfies a formula if the object a union of equivalence classes framandr,. Under these
has the properties as specified by the formula. Thus, theoperations, the poset is a lattice called the partition lattice,
intension of a concept given by a formula of the language, denoted bylI(U).
and extension is given the set of objects satisfying the for-
mula. This formulation enables us to study formal concepts 3.2 Information tables
in a logic setting in terms of intensions and also in a set-
theoretic setting in terms of extensions. An information table provides a convenient way to de-

In the following sections, we will demonstrate the appli- scribe a finite set of objects called the universe by a finite
cation of the granular computing model for the study of a set of attributes [4, 9].
specific data mining problem known as the consistent clas-
sification problems. Definition 3 An information table is the following tuple:

S=(UAt LAV, |a€ At}, {1, | a € At}),
3 Partition Lattices of Information Tables

where
In this section, we study the structures of several families U is a finite nonempty set of objects,
of partitions. At is a finite nonempty set of attributes,
L is a language defined using attributesAn,
3.1 Partition lattice V. is a nonempty set of values foraAt,

N _ _ _ . 1, : U — V, is an information function.
A partition provides a simple granulated view of a uni- Each information functiord,, is a total function that maps
verse. an object ofU to exactly one value if,.

Definition 1 A partition of a setlU is a collection of non-
empty, and pairwise disjoint subsetl@fwhose union i$/.
The subsets in a partition are called blocks.

An information table represents all available information
and knowledge. That is, objects are only perceived, ob-
served, or measured by using a finite number of properties.

WhenU is a finite set, a partition = {X; | 1 <i <m} We can easily extend the information functifnto subsets
of U consists of a finite number of blocks. In this case, the of attribues. For a subset C At, the value of an object
conditions for partitions can be simply stated by: over A is denoted by 4 (z).

(®). each X; is nonempty, Definition 4 In the language’, an atomic formula is given
(ii). foralli # j, X; N X; =0, by a = v, wherea € At andv € V,. If ¢ and are
(iii). U{Xi |[1<i<m}=U. formulas, then so are¢, ¢ A, andg V 1.

There is a one-to-one correspondence between partitions of The semantics of the languagecan be defined in the
U and equivalence relations (i.e., reflexive, symmetric, and Tarski's style through the notions of a model and satisfia-
transitive relations) ori/. Each equivalence class of the bility. The model is an information tablg, which provides
equivalence relation is a block of the corresponding parti- interpretation for symbols and formulas 6f

tion. In this paper, we will use partitions and equivalence

relations, and blocks and equivalence classes interchangebefinition 5 The satisfiability of a formula by an object
ably. x, writtenx =g ¢ or in shortz = ¢ if S is understood, is



defined by the following conditions: Object | height hair eyes | class
01 short blond blue +
(1) xEa=viff I,(z) =, 09 short  blond brown
(2) z E —¢iff notz | @, 03 tall red blue +
@ ehonvinsomisk o | W o pe
. 05 -
4) zEovyiffrEporzEy. 06 tall  blond blue | +
. . . o7 tall dark  brown -
If ¢ is a formula, the setns(¢) defined by: 05 short  blond brown -

ms(¢) ={zeU|z|= ¢}, 1)

is called the meaning of the formudain S. If S is under-
stood, we simply writex (o).

Table 1: An information table

] ] it may be impossible to find a concefat, m(¢)) such that
The meaning of a formula is therefore the set of all m(¢) = X. For example, in Table 3, andos have the

objects having the property expressed by the formultn - same description. The subsiet;, o5} must be considered
other words can be viewed as the description of the set 5 ypit. It is impossible to find a formula whose meaning
of objectsm(¢). Thus, a connection between formulas of g {04,06,07}. In the case where we can precisely de-

L and subsets df’ is established. scribe a subset of object¥, the description may not be

With the introduction of languag€, we have a formal  ypique. That is, there may exist two formulas such that
description of concepts. A concept definable in an informa- ;) = m(y) = X. For example, the two formulas:

tion table is a paif¢, m(¢)), where¢ € L. More specifi-
cally, ¢ is a description ofn(¢) in S, the intension of con- class = +,
cept(o, m(¢)), andm(¢) is the set of objects satisfying
the extension of concep, m(o)).

To illustrate the idea developed so far, consider an infor- naye the same meaning et , s, o }. Those observations
mation table given by Table 1, which is adopted from Quin- |ead us to consider only certain families of partitions from
lan [5]. The following expressions are some of the formulas I(U).

of the language:

hair = red V (hair = blond A eyes = blue),

. Definition 6 A subsetX C U is called a definable granule
height = tall, in an information tableS if there exists at least one formula
hair = dark, ¢ such thatm(¢) = X.

height = tall A hair = dark,

Definition 7 A partition 7w is called a definable partition
height — tall \ hair — dark. P i p

in an information tableS if every equivalence class is a

The meanings of the formulas are given by: definable granule.

In information table 1, two objects, andos, as well
as o, andog, have the same description and are indistin-
guishable. Consequently, the smallest definable partition is

m(height = tall) = {03, 04, 05, 06, 07},

m(hair = dark) = {04, 05, 07},

(
(
(
(

m(height = tall A hair = dark) = {04, 05,07}, {{o1},{02,08},{03},{04,05},{06},{07}}. The partition
m height = tall V hair = dark) = {037 04, 05, Og, 07}, {{01, 09, 03, 04}, {05, 0g, 07, Og}} is not a definable parti—
tion.

By pairing intensions and extensions, we can obtain formal  If 7; andr, are definable partitions;; A 7wy andm; V o
concepts such aheight = tall, {03, 04, 05,06, 07}) and are definable partitions. The set of all definable partitions

(height = tall A hair = dark, {04, 05, 07}). IIp (U) is a sub-lattice of I(U).
) N _ In many machine learning algorithms, one is only inter-
3.3 Definable partition lattices ested in formulas of certain form. Suppose we restrict the

connectives of language to only the conjunction connec-
In an information table, some objects have the same de-tive A. Each formula is a conjunction of atomic formulas
scription and hence can not be differentiated. With the in- and such a formula is referred to as a conjunctor.
discernibility of objects, a subset of objects may have to
be considered as a whole rather than individuals. Conse-Definition 8 A subsetX C U is a conjunctively definable
quently, for an arbitrary subset of the universé,C U, granule in an information tablé' if there exists a conjunc-



tor ¢ such thatm(¢) = X. A partition = is called a con- All the notions developed in this section can be defined
junctively definable partition if every equivalence class is a relative to a particular subset C At of attributes. A sub-

conjunctively definable granule. setX C U is called a definable granule with respect to a
- ) subset of attributegl C At if there exists a least one for-
The partition{{o1, 02,06, 08}, {03, 04,05, 07} } is ade-  ylae over A such thatn(¢) = X. A partition is called

finable partition but not a conjunctively definable partition 5 gefinable partition with respect to a subset of attributes
in the information table 1. The join of two conjunctively 4 it every equivalence class is a definable granule with re-
definable partitiong{{o1, 02, 03}, {03, 04, 05,06, 07}} and spect toA. Let HD(A)(U), HCD(A)(U)1 and HAD(A)(U)
{{01,02,06, 08}, {03}, {04, 05,07} } is {U}, whichisnota  genote the partition (semi-) lattices with respect to a subset
conjunctively definable partition. of attributesA C At, respectively. We have the following

The meet;t; A 72, of two conjunctively definable par-  -gnnection between partition (semi-) lattices:
titions is a conjunctively definable partition. However, the

join, 7 V mo, is not necessarily a conjunctively definable TI,p(U) C Ilcp(U) U {U} C TIp(U) C T(U),
%a;rStggr;: In this case, we only obtain a meet semi-lattice Mapa)(U) C Hapeay (U) U{U} C T (U) € TIU).
A lattice related tdIcp (U) is the lattice formed by par-  They provide a formal framework of classification prob-
titions defined by various subsets df. For a subset of |ems.
attributesA, we can define an equivalence relatib as
follows:

vEay = forallac A, I(z) = L(y) 4 Classification as Partition Lattice Search

— Ia(z) = 1a(y). @) Classification problem is one of the well studied prob-

lems in machine learning and data mining. In this section,
we reformulate the classification problem using partition
lattice.

For the empty set, we obtain the coarsest partitior}.
For a nonempty subset of attributes, the induced partition
is conjunctively definable. The family of partition defined
by subsets of attributes form a lattifle,, (U ), which is not
necessarily a sub-lattice df(U).

For the information table 1, we obtain the following par-
titions with respect to subsets of the attributes.

4.1 Formulation of the problem

In supervised classification, it is assumed that each ob-
ject is associated with a unique class label. Objects are
0 : 0, divided into disjoint classes which form a partition of the

) universe. We further assume that information about objects
X are given by an information table. Without loss of general-
mi i {height}, ity, we assume that there is a unique attribeitess taking
{{o1,02,08}, {03, 04,05, 06,07} }, class labels as its value. The set of attributes is expressed as
T {hair}, At = C U {class}, whereC is the set of attributes used to
describe the objects. The goal is to find classification rules

01,09, Og, O, o 04,05, 0 .
Hor, 02,06, 05}, {03} {01, 05, 071}, of the form,¢ = class = ¢;, where¢ is a formula over

73 {eyes}, C andg; is a class label.
{{01,03,04, 05,06}, {02, 07,08} }, Let merass € I(U) denote the partition induced by the
T4 {height, hair}, attributeclass. An information table with a set of attributes
({01, 02,08}, {03}, {oa, 05,07}, {06} ], At = C U {class} is said to provide a consistent clas-

sification if all objects with the same description ov&r

75 {height, eyes}, have the same class label, namelyldfz) = Ic(y), then
{{o1},{02,08},{03,04, 05,06}, {o7}}, Ietass(z) = Ieiass(y). Using the concept of partition lat-
e {hair, eyes}, tice, we immediately have the equivalent definition.
{{o1, 06}, {02, 08}, {03}, {04, 05}, {or}}, Definition 9 An information table with a set of attributes
m7:  {height, hair, eyes}, At = C U {class} is a consistent classification problem
{{o1},{02,08},{03},{04,05}, {06}, {07}}. if and only if there exists a partition € II,p(c)(U) such

that T < Telass-
Since each subset defines a different partition, the partition

lattice has the same structure as the lattice defined by the In the rest of this paper, we restrict our discussion to the
power set of the three attributbgight, hair, andeyes. consistent classification problem.



Definition 10 The solution to a consistent classification left hand sides are only conjunction of atomic formulas.

problem is a definable partitiom such thatr < 7cjass. The well known ID3 learning algorithm in fact searches
For a pair of equivalence classes € m andY € 7¢jass Hepeey(U) for classification rules [5]. By searching the
with X C Y, we can derive a classification ruig X ) — latticeIIp(cy (U), one can obtain a similar solution.

o(Y), wherep(X) ando(Y') are the formulas whose mean- We can re-express many fundamental notions of classifi-
ing sets areX andY’, respectively. cation in terms of partitions.

For the information table 1, the definable partition, " .
P Definition 11 For two solutionsm, ™ € II, of a con-

{{01,06},{02,07,08},{03},{04,05}} = sistent classification problem, namely; =< mcass and
{{01703706}7 {02704705a07708}} = ﬂ—ClasS7 7T2 j 7Tcla551 If m j 7T2' we Say thatﬂ'l IS a more Spe-

. ) o _cific solution tharr,, or equivalentlysr, is a more general
is a solution to the classification problem. The classification sp|ytion thatr;.

rules corresponding to the solution are given by:

Definition 12 A solutionw € II,, of a consistent classifi-
cation problem is called the most general solution if there

does not exists another solutiah € 11, 7 # «’, such such
hair = red = class = +, thatm < 7/ < Telass-

hair = blond A eyes = blue = class = +,

eyes = brown = class = —,

hair = dark A eyes = blue = class = —.

The left hand side of a rule is a formula whose meaning is In the information table 1, consider three partitions:
a block of the solution partition. For example, for the first ) ) _
rule, we haven (hair = blondAeyes = blue) = {01, 06}. i Hoih {0z, 05} {0a) {00, 05, {os} or}),
For a consistent classification problem, the partition de- ™2 1101,06}, {02, 08}, {03}, {04, 05, 07}},
fined by all attributes irC' is the smallest partition in the m3: {{o1,06}, {02, 07,08}, {03}, {04,05}}.
three definable partition lattices. Lel denote the parti-
tion defined by a subset C C of attributes. The smallest from the latticellcp ¢ (U). We haver; < m = Telass
partition ¢ is a trivial solution to the consistent classifica- @Ndm1 = 3 = Telass. Thus,my is a more specific solution
tion problem. than bothry andrs. In fact, 75 andrs are two most general
Depending on the particular partition lattice used, one Solutions.
can easily establish properties of the family of solution par-  For a consistent classification problem, the partition de-
titions. LetII,(U), wherea = AD(C),CD(C),D(C), fined by all attributes irC' is the smallest partition ifl,.
denote a (semi-) lattice of definable partitions. LE}(U) Thus, a most general solution always exists. However, a
be the corresponding set of all solution partitions. We have: Most general solution may not be unique. There may exist

(@i). For AD(C),CD(C),D(C), if #' € T,(U) many more general solutions.
. a = T . . .

) ) ' al\t /)y Th I [ h attribut Il st th
e Hi(U) andr’ < . thenr’ ¢ H(S;(U); e roles played by each attribute, well studied in the

theory of rough sets [4], can be re-expressed as follows.
(il). Fora = AD(C),CD(C),D(C), if ',7 € II5(U),

thent’ A € II5(U); Definition 13 An attributea € C'is called a core attribute
. s , if mc_¢q) IS NOt a solution to the consistent classification
(). Fora = D(C), if n/,m € I3(U), thenn’ V& € problem.

s (U);
It follows that the set of all solution partitions form a lattice Definition 14 An attributea € C'is called a superfluous
or meet semi-lattice. attribute if7_,) is a solution to the consistent classifica-

Mining classification rules can be formulated as a searchtion problem, namelyrc_ (4} = 7class-
for a partition from a partition lattice. A definable lattice
provides the search space of potential solutions, and theDefinition 15 A subsetd C C'is called a reduct ifr 4 is a
partial order of the lattice provides the search direction. solution to the consistent classification problem anglis
The standard search methods, such as depth-first searcmot a solution for any proper subsgt C A.
breadth-first search, bounded depth-first search, and heuris-
tic search, can be used to find a solution from a lattice of  For a given consistent classification problem, there may
definable partitions. Depending on the required proper- exist more than one reduct.
ties of rules, one may use different definable partition lat-  In the information table 1, attributdsir andeyes are
tice introduced earlier. For example, by search the semi-core attributes. Attributheight is a superfluous attribute.
latticeIIop oy (U), we can obtain classification rules whose The only reduct is the set of attributéhair, eyes}.



4.2 1D3 type search algorithms partition lattices are introduced. Depending on the proper-
ties of classification rules, a solution to a consistent classifi-
heuristic search of the semi-latti€&:p (¢ (U). The heuris- Such a solution can be obtained by searching that lattice.
tic used is based on an information-theoretic measure of de-Our formulation is similar to the well established version
pendency between the partition defined digss and an- ~ SPace search method for machine learning [3].
other conjunctively definable partition with respect to the ~ The new formulation enables us to precisely and con-
set of attribute”'. Roughly speaking, the measure quanti- Cisely define many notions, and to present a more general
fies the degree to which a partitiane Ilop oy (U) satisfies framework for classification. To illustrate its the potential
the conditionr < Te1ass Of a solution partition. usefulness and generality, we briefly describe the ID3 and
Specifically, the direction of ID3 search is from coarsest 0Ugh set learning algorithms using the proposed model.

partitions oflIcp () (U) to more refined partitions. Largest

partitions inllcp ) (U) are the partitions defined by single
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5 Conclusion

The granular computing model for data mining is used
to reformulate the consistent classification problems. We
explore the structures of partitions of a universe. The con-
sistent classification problems are expressed as the relation-
ships between patrtitions of the universe. Three definable



