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Abstract

Within a granular computing model of data mining, we
reformulate the consistent classification problems. The
granulation structures are partitions of a universe. A so-
lution to a consistent classification problem is a definable
partition. Such a solution can be obtained by searching a
particular partition lattice. The new formulation enables
us to precisely and concisely define many notions, and to
present a more general framework for classification.

1 Introduction

As a recently renewed research topic, granular com-
puting (GrC) is an umbrella term to cover any theories,
methodologies, techniques, and tools that make use of gran-
ules (i.e., subsets of a universe) in problem solving [7, 9,
10]. Formal concept analysis may be considered as a con-
crete model of granular computing. It deals with the char-
acterization of a concept by a unit of thoughts consisting of
two parts, the intension and extension of the concept [1, 6].
The intension of a concept consists of all properties or at-
tributes that are valid for all those objects to which the con-
cept applies. The extension of a concept is the set of objects
or entities which are instances of the concept.

Recently, a granular computing model for knowledge
discovery and data mining is proposed by combining results
from formal concept analysis and granular computing [8].
Each granule is viewed as the extension of a certain con-
cept and a description of the granule is an intension of the
concept. Knowledge discovery and data mining, especially
rule mining, can be viewed as a process of forming con-
cepts and finding relationships between concepts, in terms
of their intensions and extensions.

The objective of this paper is to apply the granular com-
puting model for the study of the consistent classification
problems with respect to partitions of a universe. We re-
express, precisely and concisely, many notions based on
partition lattice. Our reformulation of the consistent clas-
sification problems not only provides a formal treatment of

the problem, but also brings more insights into the solution
of the problem.

2 Formal Concept Analysis, Granular Com-
puting, and Data Mining

A close connection between formal concept analysis,
granular computing, and data mining can be established
by focusing on their two fundamental and related tasks,
namely, concept formation and concept relationship iden-
tification [8].

In the study of formal concepts, every concept is under-
stood as a unit of thoughts that consists of two parts, the
intension and extension of the concept [1, 6]. The inten-
sion (comprehension) of a concept consists of all properties
or attributes that are valid for all those objects to which the
concept applies. The extension of a concept is the set of
objects or entities which are instances of the concept. All
objects in the extension have the same properties that char-
acterize the concept. In other words, the intension of a con-
cept is an abstract description of common features or prop-
erties shared by elements in the extension, and the extension
consists of concrete examples of the concept. A concept is
thus described jointly by its intension and extension.

Basic ingredients of granular computing are subsets,
classes, and clusters of a universe [7, 10]. There are many
fundamental issues in granular computing, such as granu-
lation of the universe, description of granules, relationships
between granules, and computing with granules. Granula-
tion of a universe involves the decomposition of the uni-
verse into parts, or the grouping of individual elements into
classes, based on available information and knowledge. The
construction of granules may be viewed as a process of
identifying extensions of concepts. Similarly, finding a de-
scription of a granule may be viewed as searching for inten-
sion of a concept. Demri and Orlowska referred to such pro-
cesses as the learning of extensions of concepts and learning
of intensions of concepts, respectively [1]. The relation-
ships between concepts, such as sub-concepts, disjoint and
overlap concepts, and partial sub-concepts, can be inferred



from intensions and extensions,
It may be argued that some of the main tasks of knowl-

edge discovery and data mining are concept formation and
concept relationship identification [2, 8, 9]. The results
from formal concept analysis and granular computing can
be immediately applied.

In a recently proposed granular computing model of data
mining, it is assumed that information about a set of objects
is given by an information table [8]. That is, an object is
represented by a set of attribute-value pairs. A logic lan-
guage is defined for the information table. The semantics
of the language is given in the Tarski’s style through the
notions of a model and satisfiability. The model is an in-
formation table. An object satisfies a formula if the object
has the properties as specified by the formula. Thus, the
intension of a concept given by a formula of the language,
and extension is given the set of objects satisfying the for-
mula. This formulation enables us to study formal concepts
in a logic setting in terms of intensions and also in a set-
theoretic setting in terms of extensions.

In the following sections, we will demonstrate the appli-
cation of the granular computing model for the study of a
specific data mining problem known as the consistent clas-
sification problems.

3 Partition Lattices of Information Tables

In this section, we study the structures of several families
of partitions.

3.1 Partition lattice

A partition provides a simple granulated view of a uni-
verse.

Definition 1 A partition of a setU is a collection of non-
empty, and pairwise disjoint subset ofU whose union isU .
The subsets in a partition are called blocks.

WhenU is a finite set, a partitionπ = {Xi | 1 ≤ i ≤ m}
of U consists of a finite number of blocks. In this case, the
conditions for partitions can be simply stated by:

(i). each Xi is nonempty,

(ii). for all i 6= j,Xi ∩Xj = ∅,
(iii).

⋃
{Xi | 1 ≤ i ≤ m} = U.

There is a one-to-one correspondence between partitions of
U and equivalence relations (i.e., reflexive, symmetric, and
transitive relations) onU . Each equivalence class of the
equivalence relation is a block of the corresponding parti-
tion. In this paper, we will use partitions and equivalence
relations, and blocks and equivalence classes interchange-
ably.

Definition 2 A partition π1 is refinement of another parti-
tion π2, or equivalently,π2 is a coarsening ofπ1, denoted
byπ1 ¹ π2, if every block ofπ1 is contained in some block
of π2.

The refinement relation is a partial ordering of the set of
all partitions. Given two partitionsπ1 andπ2, their meet,
π1 ∧ π2, is the largest partition that is a refinement of both
π1 andπ2, their join,π1 ∨ π2, is the smallest partition that
is a coarsening of bothπ1 andπ2. An equivalence classes
of the meet are all nonempty intersections of an equivalence
class fromπ1 and an equivalence class fromπ2, equivalence
classes of the join are the smallest subsets which are exactly
a union of equivalence classes fromπ1 andπ2. Under these
operations, the poset is a lattice called the partition lattice,
denoted byΠ(U).

3.2 Information tables

An information table provides a convenient way to de-
scribe a finite set of objects called the universe by a finite
set of attributes [4, 9].

Definition 3 An information table is the following tuple:

S = (U,At,L, {Va | a ∈ At}, {Ia | a ∈ At}),

where
U is a finite nonempty set of objects,
At is a finite nonempty set of attributes,
L is a language defined using attributes inAt,
Va is a nonempty set of values for a∈ At,
Ia : U → Va is an information function.

Each information functionIa is a total function that maps
an object ofU to exactly one value inVa.

An information table represents all available information
and knowledge. That is, objects are only perceived, ob-
served, or measured by using a finite number of properties.
We can easily extend the information functionIa to subsets
of attribues. For a subsetA ⊆ At, the value of an objectx
overA is denoted byIA(x).

Definition 4 In the languageL, an atomic formula is given
by a = v, wherea ∈ At and v ∈ Va. If φ and ψ are
formulas, then so are¬φ, φ ∧ ψ, andφ ∨ ψ.

The semantics of the languageL can be defined in the
Tarski’s style through the notions of a model and satisfia-
bility. The model is an information tableS, which provides
interpretation for symbols and formulas ofL.

Definition 5 The satisfiability of a formulaφ by an object
x, writtenx |=S φ or in shortx |= φ if S is understood, is



defined by the following conditions:

(1) x |= a = v iff Ia(x) = v,

(2) x |= ¬φ iff not x |= φ,

(3) x |= φ ∧ ψ iff x |= φ and x |= ψ,

(4) x |= φ ∨ ψ iff x |= φ or x |= ψ.

If φ is a formula, the setmS(φ) defined by:

mS(φ) = {x ∈ U | x |= φ}, (1)

is called the meaning of the formulaφ in S. If S is under-
stood, we simply writem(φ).

The meaning of a formulaφ is therefore the set of all
objects having the property expressed by the formulaφ. In
other words,φ can be viewed as the description of the set
of objectsm(φ). Thus, a connection between formulas of
L and subsets ofU is established.

With the introduction of languageL, we have a formal
description of concepts. A concept definable in an informa-
tion table is a pair(φ,m(φ)), whereφ ∈ L. More specifi-
cally, φ is a description ofm(φ) in S, the intension of con-
cept(φ,m(φ)), andm(φ) is the set of objects satisfyingφ,
the extension of concept(φ,m(φ)).

To illustrate the idea developed so far, consider an infor-
mation table given by Table 1, which is adopted from Quin-
lan [5]. The following expressions are some of the formulas
of the languageL:

height = tall,
hair = dark,

height = tall ∧ hair = dark,

height = tall ∨ hair = dark.

The meanings of the formulas are given by:

m(height = tall) = {o3, o4, o5, o6, o7},
m(hair = dark) = {o4, o5, o7},
m(height = tall ∧ hair = dark) = {o4, o5, o7},
m(height = tall ∨ hair = dark) = {o3, o4, o5, o6, o7}.

By pairing intensions and extensions, we can obtain formal
concepts such as(height = tall, {o3, o4, o5, o6, o7}) and
(height = tall ∧ hair = dark, {o4, o5, o7}).

3.3 Definable partition lattices

In an information table, some objects have the same de-
scription and hence can not be differentiated. With the in-
discernibility of objects, a subset of objects may have to
be considered as a whole rather than individuals. Conse-
quently, for an arbitrary subset of the universe,X ⊆ U ,

Object height hair eyes class
o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

Table 1: An information table

it may be impossible to find a concept(φ,m(φ)) such that
m(φ) = X. For example, in Table 1,o4 ando5 have the
same description. The subset{o4, o5} must be considered
a unit. It is impossible to find a formula whose meaning
is {o4, o6, o7}. In the case where we can precisely de-
scribe a subset of objectsX, the description may not be
unique. That is, there may exist two formulas such that
m(φ) = m(ψ) = X. For example, the two formulas:

class = +,

hair = red ∨ (hair = blond ∧ eyes = blue),

have the same meaning set{o1, o3, o6}. Those observations
lead us to consider only certain families of partitions from
Π(U).

Definition 6 A subsetX ⊆ U is called a definable granule
in an information tableS if there exists at least one formula
φ such thatm(φ) = X.

Definition 7 A partition π is called a definable partition
in an information tableS if every equivalence class is a
definable granule.

In information table 1, two objectso4 and o5, as well
as o2 and o8, have the same description and are indistin-
guishable. Consequently, the smallest definable partition is
{{o1}, {o2, o8}, {o3}, {o4, o5}, {o6}, {o7}}. The partition
{{o1, o2, o3, o4}, {o5, o6, o7, o8}} is not a definable parti-
tion.

If π1 andπ2 are definable partitions,π1∧π2 andπ1∨π2

are definable partitions. The set of all definable partitions
ΠD(U) is a sub-lattice ofΠ(U).

In many machine learning algorithms, one is only inter-
ested in formulas of certain form. Suppose we restrict the
connectives of languageL to only the conjunction connec-
tive ∧. Each formula is a conjunction of atomic formulas
and such a formula is referred to as a conjunctor.

Definition 8 A subsetX ⊆ U is a conjunctively definable
granule in an information tableS if there exists a conjunc-



tor φ such thatm(φ) = X. A partition π is called a con-
junctively definable partition if every equivalence class is a
conjunctively definable granule.

The partition{{o1, o2, o6, o8}, {o3, o4, o5, o7}} is a de-
finable partition but not a conjunctively definable partition
in the information table 1. The join of two conjunctively
definable partitions{{o1, o2, o8}, {o3, o4, o5, o6, o7}} and
{{o1, o2, o6, o8}, {o3}, {o4, o5, o7}} is {U}, which is not a
conjunctively definable partition.

The meet,π1 ∧ π2, of two conjunctively definable par-
titions is a conjunctively definable partition. However, the
join, π1 ∨ π2, is not necessarily a conjunctively definable
partition. In this case, we only obtain a meet semi-lattice
ΠCD(U).

A lattice related toΠCD(U) is the lattice formed by par-
titions defined by various subsets ofAt. For a subset of
attributesA, we can define an equivalence relationEA as
follows:

xEAy ⇐⇒ for all a ∈ A, Ia(x) = Ia(y)
⇐⇒ IA(x) = IA(y). (2)

For the empty set, we obtain the coarsest partition{U}.
For a nonempty subset of attributes, the induced partition
is conjunctively definable. The family of partition defined
by subsets of attributes form a latticeΠAD(U), which is not
necessarily a sub-lattice ofΠ(U).

For the information table 1, we obtain the following par-
titions with respect to subsets of the attributes.

π0 : ∅,
{U},

π1 : {height},
{{o1, o2, o8}, {o3, o4, o5, o6, o7}},

π2 : {hair},
{{o1, o2, o6, o8}, {o3}, {o4, o5, o7}},

π3 : {eyes},
{{o1, o3, o4, o5, o6}, {o2, o7, o8}},

π4 : {height,hair},
{{o1, o2, o8}, {o3}, {o4, o5, o7}, {o6}},

π5 : {height, eyes},
{{o1}, {o2, o8}, {o3, o4, o5, o6}, {o7}},

π6 : {hair, eyes},
{{o1, o6}, {o2, o8}, {o3}, {o4, o5}, {o7}},

π7 : {height,hair, eyes},
{{o1}, {o2, o8}, {o3}, {o4, o5}, {o6}, {o7}}.

Since each subset defines a different partition, the partition
lattice has the same structure as the lattice defined by the
power set of the three attributesheight,hair, andeyes.

All the notions developed in this section can be defined
relative to a particular subsetA ⊆ At of attributes. A sub-
setX ⊆ U is called a definable granule with respect to a
subset of attributesA ⊆ At if there exists a least one for-
mulaφ overA such thatm(φ) = X. A partitionπ is called
a definable partition with respect to a subset of attributes
A if every equivalence class is a definable granule with re-
spect toA. Let ΠD(A)(U), ΠCD(A)(U), andΠAD(A)(U)
denote the partition (semi-) lattices with respect to a subset
of attributesA ⊆ At, respectively. We have the following
connection between partition (semi-) lattices:

ΠAD(U) ⊆ ΠCD(U) ∪ {U} ⊆ ΠD(U) ⊆ Π(U),
ΠAD(A)(U) ⊆ ΠCD(A)(U) ∪ {U} ⊆ ΠD(A)(U) ⊆ Π(U).

They provide a formal framework of classification prob-
lems.

4 Classification as Partition Lattice Search

Classification problem is one of the well studied prob-
lems in machine learning and data mining. In this section,
we reformulate the classification problem using partition
lattice.

4.1 Formulation of the problem

In supervised classification, it is assumed that each ob-
ject is associated with a unique class label. Objects are
divided into disjoint classes which form a partition of the
universe. We further assume that information about objects
are given by an information table. Without loss of general-
ity, we assume that there is a unique attributeclass taking
class labels as its value. The set of attributes is expressed as
At = C ∪ {class}, whereC is the set of attributes used to
describe the objects. The goal is to find classification rules
of the form,φ =⇒ class = ci, whereφ is a formula over
C andci is a class label.

Let πclass ∈ Π(U) denote the partition induced by the
attributeclass. An information table with a set of attributes
At = C ∪ {class} is said to provide a consistent clas-
sification if all objects with the same description overC
have the same class label, namely, ifIC(x) = IC(y), then
Iclass(x) = Iclass(y). Using the concept of partition lat-
tice, we immediately have the equivalent definition.

Definition 9 An information table with a set of attributes
At = C ∪ {class} is a consistent classification problem
if and only if there exists a partitionπ ∈ ΠAD(C)(U) such
thatπ ¹ πclass.

In the rest of this paper, we restrict our discussion to the
consistent classification problem.



Definition 10 The solution to a consistent classification
problem is a definable partitionπ such thatπ ¹ πclass.
For a pair of equivalence classesX ∈ π andY ∈ πclass

with X ⊆ Y , we can derive a classification ruleφ(X) =⇒
φ(Y ), whereφ(X) andφ(Y ) are the formulas whose mean-
ing sets areX andY , respectively.

For the information table 1, the definable partition,

{{o1, o6}, {o2, o7, o8}, {o3}, {o4, o5}} ¹
{{o1, o3, o6}, {o2, o4, o5, o7, o8}} = πclass,

is a solution to the classification problem. The classification
rules corresponding to the solution are given by:

hair = blond ∧ eyes = blue =⇒ class = +,

eyes = brown =⇒ class = −,

hair = red =⇒ class = +,

hair = dark ∧ eyes = blue =⇒ class = −.

The left hand side of a rule is a formula whose meaning is
a block of the solution partition. For example, for the first
rule, we havem(hair = blond∧eyes = blue) = {o1, o6}.

For a consistent classification problem, the partition de-
fined by all attributes inC is the smallest partition in the
three definable partition lattices. LetπA denote the parti-
tion defined by a subsetA ⊆ C of attributes. The smallest
partitionπC is a trivial solution to the consistent classifica-
tion problem.

Depending on the particular partition lattice used, one
can easily establish properties of the family of solution par-
titions. Let Πα(U), whereα = AD(C), CD(C),D(C),
denote a (semi-) lattice of definable partitions. LetΠS

α(U)
be the corresponding set of all solution partitions. We have:

(i). For α = AD(C), CD(C), D(C), if π′ ∈ Πα(U),
π ∈ ΠS

α(U) andπ′ ¹ π, thenπ′ ∈ ΠS
α(U);

(ii). For α = AD(C), CD(C), D(C), if π′, π ∈ ΠS
α(U),

thenπ′ ∧ π ∈ ΠS
α(U);

(iii). For α = D(C), if π′, π ∈ ΠS
α(U), thenπ′ ∨ π ∈

ΠS
α(U);

It follows that the set of all solution partitions form a lattice
or meet semi-lattice.

Mining classification rules can be formulated as a search
for a partition from a partition lattice. A definable lattice
provides the search space of potential solutions, and the
partial order of the lattice provides the search direction.
The standard search methods, such as depth-first search,
breadth-first search, bounded depth-first search, and heuris-
tic search, can be used to find a solution from a lattice of
definable partitions. Depending on the required proper-
ties of rules, one may use different definable partition lat-
tice introduced earlier. For example, by search the semi-
latticeΠCD(C)(U), we can obtain classification rules whose

left hand sides are only conjunction of atomic formulas.
The well known ID3 learning algorithm in fact searches
ΠCD(C)(U) for classification rules [5]. By searching the
latticeΠAD(C)(U), one can obtain a similar solution.

We can re-express many fundamental notions of classifi-
cation in terms of partitions.

Definition 11 For two solutionsπ1, π2 ∈ Πα of a con-
sistent classification problem, namely,π1 ¹ πclass and
π2 ¹ πclass, if π1 ¹ π2, we say thatπ1 is a more spe-
cific solution thanπ2, or equivalently,π2 is a more general
solution thatπ1.

Definition 12 A solutionπ ∈ Πα of a consistent classifi-
cation problem is called the most general solution if there
does not exists another solutionπ′ ∈ Πα, π 6= π′, such such
thatπ ¹ π′ ¹ πclass.

In the information table 1, consider three partitions:

π1 : {{o1}, {o2, o8}, {o3}, {o4, o5}, {o6}, {o7}},
π2 : {{o1, o6}, {o2, o8}, {o3}, {o4, o5, o7}},
π3 : {{o1, o6}, {o2, o7, o8}, {o3}, {o4, o5}}.

from the latticeΠCD(C)(U). We haveπ1 ¹ π2 ¹ πclass

andπ1 ¹ π3 ¹ πclass. Thus,π1 is a more specific solution
than bothπ2 andπ3. In fact,π2 andπ3 are two most general
solutions.

For a consistent classification problem, the partition de-
fined by all attributes inC is the smallest partition inΠα.
Thus, a most general solution always exists. However, a
most general solution may not be unique. There may exist
many more general solutions.

The roles played by each attribute, well studied in the
theory of rough sets [4], can be re-expressed as follows.

Definition 13 An attributea ∈ C is called a core attribute
if πC−{a} is not a solution to the consistent classification
problem.

Definition 14 An attributea ∈ C is called a superfluous
attribute ifπC−{a} is a solution to the consistent classifica-
tion problem, namely,πC−{a} ¹ πclass.

Definition 15 A subsetA ⊆ C is called a reduct ifπA is a
solution to the consistent classification problem andπB is
not a solution for any proper subsetB ⊂ A.

For a given consistent classification problem, there may
exist more than one reduct.

In the information table 1, attributeshair andeyes are
core attributes. Attributeheight is a superfluous attribute.
The only reduct is the set of attributes{hair, eyes}.



4.2 ID3 type search algorithms

ID3 type learning algorithms can be formulated as a
heuristic search of the semi-latticeΠCD(C)(U). The heuris-
tic used is based on an information-theoretic measure of de-
pendency between the partition defined byclass and an-
other conjunctively definable partition with respect to the
set of attributesC. Roughly speaking, the measure quanti-
fies the degree to which a partitionπ ∈ ΠCD(C)(U) satisfies
the conditionπ ¹ πclass of a solution partition.

Specifically, the direction of ID3 search is from coarsest
partitions ofΠCD(C)(U) to more refined partitions. Largest
partitions inΠCD(C)(U) are the partitions defined by single
attributes inC. Using the information-theoretic measure,
ID3 first selects a partition defined by a single attribute.
If an equivalence class in the partition is not a conjunc-
tively definable granule with respect toclass, the equiva-
lence class is further divided into smaller granules by us-
ing an additional attribute. The same information-theoretic
measure is used for the selection of the new attribute. The
smaller granules are conjunctively definable granules with
respect toC. The search process continues until a partition
π ∈ ΠCD(C)(U) is obtained such thatπ ¹ πclass.

4.3 Rough set type search algorithms

Algorithms for finding a reduct in the theory of rough
sets can be viewed as heuristic search of the partition lattice
ΠAD(C)(U). Two directions of search can be carried, either
from coarsening partitions to refinement partitions or from
refinement partitions to coarsening partitions.

The smallest partition inΠAD(C)(U) is πC . By dropping
an attributea from C, one obtains a coarsening partition
πC−{a}. Typically, a certain fitness measure is used for the
selection of the attribute. The process continues until no
further attributes can be dropped. That is, we find a subset
A ⊆ C such thatπA ¹ πclass and¬(πB ¹ πclass) for all
proper subsetsB ⊂ A. The resulting set of attributesA is a
reduct.

The largest partition inΠAD(C)(U) is π∅. By adding an
attributea, one obtains a refined partitionπa. The process
continues until we have a partition satisfying the condition
πA ¹ πclass. The resulting set of attributesA is a reduct.

5 Conclusion

The granular computing model for data mining is used
to reformulate the consistent classification problems. We
explore the structures of partitions of a universe. The con-
sistent classification problems are expressed as the relation-
ships between partitions of the universe. Three definable

partition lattices are introduced. Depending on the proper-
ties of classification rules, a solution to a consistent classifi-
cation problem is a definable partition in one of the lattices.
Such a solution can be obtained by searching that lattice.
Our formulation is similar to the well established version
space search method for machine learning [3].

The new formulation enables us to precisely and con-
cisely define many notions, and to present a more general
framework for classification. To illustrate its the potential
usefulness and generality, we briefly describe the ID3 and
rough set learning algorithms using the proposed model.

References

[1] Demri, S. and Orlowska, E. Logical analysis of indiscerni-
bility, in: Incomplete Information: Rough Set Analysis, Or-
lowska, E. (Ed.), Physica-Verlag, Heidelberg, pp. 347-380,
1998.

[2] Fayyad, U.M. and Piatetsky-Shapiro, G. (Eds.)Advances in
Knowledge Discovery and Data Mining, AAAI Press, 1996.

[3] Mitchell, T.M. Generalization as search,Artificial Intelli-
gence, 18, 203-226, 1982.

[4] Pawlak, Z.Rough Sets, Theoretical Aspects of Reasoning
about Data, Kluwer Academic Publishers, Dordrecht, 1991.

[5] Quinlan, J.R. Learning efficient classification procedures
and their application to chess end-games, in:Machine
Learning: An Artificial Intelligence Approach, Vol. 1,
Michalski, J.S., Carbonell, J.G., and Mirchell, T.M. (Eds.),
Morgan Kaufmann, Palo Alto, CA, pp. 463-482, 1983.

[6] Wille, R. Concept lattices and conceptual knowledge sys-
tems,Computers Mathematics with Applications, 23, 493-
515, 1992.

[7] Yao, Y.Y. Granular computing: basic issues and possible so-
lutions, Proceedings of the 5th Joint Conference on Infor-
mation Sciences, pp.186-189, 2000.

[8] Yao, Y.Y. On modeling data mining with granular comput-
ing, Proceedings of COMPSAC 2001, pp.638-643, 2001.

[9] Yao, Y.Y. and Zhong, N. Potential applications of granular
computing in knowledge discovery and data mining,Pro-
ceedings of World Multiconference on Systemics, Cybernet-
ics and Informatics, pp.573-580, 1999.

[10] Zadeh, L.A. Towards a theory of fuzzy information granu-
lation and its centrality in human reasoning and fuzzy logic,
Fuzzy Sets and Systems, 19, 111-127, 1997.


