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Abstract

The analysis of time-series data is important in many ar-
eas. Various tools are used for financial time-series data
and there is no consensus for the best models. Rough sets is
a new mathematical theory for dealing with vagueness and
uncertainty. We apply rough set theory in the analysis of
New Zealand stock exchanges. A general model for time-
series data analysis is presented. The experimental results
show that forecasting of the future stock movement, with
reasonable accuracy, could be achieved with rough rules
obtained from training data.

1. Introduction

Time-series data analysis is an important research domain
of natural sciences, economics, and financial trading. It
is crucial to certain applications of data mining, machine
learning, and others in computer science. This type of
analysis plays an important role in forecasting future cir-
cumstances. Forecasting is essentially taking historical
time-series data, analyzing patterns and relationships be-
tween it, and producing a system or acquiring results that
facilitate the prediction of future events of like situations
[12, 14]. Many tools are available to assist in the analysis
of this data but no consensus on which tools are the best.

Time-series data often posses content that is conflicting
and redundant. The data may be imprecise, therefore a pre-
cise understanding of information cannot be derived from
the data. If a precise understanding is not present, the use
of hard computing techniques for the data analysis is diffi-
cult. Using soft computing techniques, or methods that do
not ignore uncertain aspects of information, may help solve
this problem. Rough sets may offer a powerful toolset for
confronting this situation by being able to deal with such
contradictory and superfluous records[8].

Using time-series data collected from the New Zealand
stock exchange, a rough set model for the analysis of un-
certain and redundant data will be used. The model that
is used in this study follows the Knowledge Discovery in
Database process given in [1, 3] closely.

2. Rough Sets and Applications
Rough set theory is a way of representing and reason-
ing imprecision and uncertain information in data [7, 16].
Based on the concept of indiscernibility, meaning that of
the inability to distinguish between objects, rough set the-
ory deals with the approximation of sets constructed from
empirical data. This is most helpful when trying to dis-
cover decision rules, important features, and minimization
of conditional attributes. There are four important concepts
to discuss when talking about rough set theory: informa-
tion systems, indiscernibility, reduction of attributes, and
dependency.

Decision Tables (DT) are of the form T = (U, C, D),
where U is a universe made up of a non-empty finite set of
objects, C is a set of conditional attributes, and D is a deci-
sion attribute. The union A = C∪D creates an attribute set
consisting of both condition and decision attributes. Table 1
is an example of a DT.

Table 1. A Decision Table (DT)
Object Index1 Index2 Index3 Decision

o1 56.21 41.22 87.10 1
o2 52.11 45.55 87.55 0
o3 55.21 42.33 80.42 0
o4 55.21 42.33 80.42 1

Discerning objects from each other is a major goal in
rough set theory. For example, how are objects o3 and o4

in Table 1 discerned from each other? The values for con-
ditional attributes are exactly the same, however, their de-
cision based on those attributes are quite different. This is
conveyed by saying that for any subset B ⊆ A,

INDT (B) = {(o, o′) ∈ U2|∀a ∈ B, a(o) = a(o′)}
where INDIS(B) is called the B-indiscernibility relation.
Therefore, if (o, o′) ∈ INDT (B), object o and o′ are in-
discernible from each other by attribute set B.

One of the important aspects in the analysis of deci-
sion tables extracted from data is the elimination of redun-
dant attributes and identification of the most important at-
tributes. Redundant attributes are any attributes that could
be eliminated without affecting the degree of dependency



between remaining attributes and the decision. The degree
of dependency is a measure used to convey the ability to
discern objects from each other. The minimum subset of at-
tributes preserving the dependency degree is termed reduct
[7, 8]. A reduct of knowledge is its essential part, which
suffices to define all basic concepts occurring in the consid-
ered knowledge.

Formally speaking, a subset B ⊆ C is a reduct of C if
B is independent and IND(B) = IND(C). An attribute
is considered independent if no loss of discerning power is
made from the removal of this attribute. Obviously C may
have many reducts. Obtaining reducts from time-series data
allows knowledge to be of minimum length. For example,
a DT with fifty conditional attributes and one decision at-
tribute. After computing reducts, the decision D is be suffi-
ciently discerned using only three of those attributes. Thus,
performing reducts on the data can significantly reduce the
amount of information required in order to discern between
decisions.

Rough sets have been used in numerous applications, in-
cluding feature selection [4, 17], fault diagnosis and other
neural network applications [5, 11], forecasting [10], and
other areas. The analysis of stock market time-series data
using rough sets has been done with moderate success
[9, 12, 13, 15]. The theory’s versatility at classifying data
is readily shown in numerous research endeavors.

3. The Rough Set Data Analysis Model

The model used in this study consists of three stages: data
preparation, rough set analysis, and validation. Data prepa-
ration includes tasks such as data cleaning, completeness,
correctness, attribute creation, attribute selection, and dis-
cretization. The rough set analysis generates preliminary
knowledge, such as decision rules. This step is the first to
directly create usable knowledge. The validation step con-
firms and filters knowledge with the validation data set.

The time-series data used was the stock market data
from the New Zealand Exchange Limited (NZX). The NZX
data begins July 31, 1991 and ends April 27, 2000. Data
representing the closing price, opening price, highest price
reached during the day, and the lowest price reached during
the day.

3.1. Data Preparation

In order to successfully analyze data with rough sets, a de-
cision table must be created. This is done with data prepa-
ration. The data preparation task includes data conver-
sion, data cleansing, data completion checks, conditional
attribute creation, decision attribute generation, discretiza-
tion of attributes, and data splitting into analysis and vali-
dation subsets. Data conversion must be performed on the
initial data into a form in which specific rough set tools can
be applied.

Computational finance techniques offered methods to
discover new conditional attributes that conveyed statistical

properties of the data [14]. The following statistics were
used: Moving Average Convergence/Divergence (MACD),
Moving Average over a 5-day period (MA5), Moving Av-
erage over a 12-day period (MA12), Price Rate of Change
(Price ROC), and Wilder Relative Strength Index (Wilder
RSI). The decision attribute is the associated closing price
of the next day, with values of either -1, 0, or 1. All at-
tributes were discretized using an equal frequency algo-
rithm. Data splitting created two subsets of size 1665 ob-
jects for the data analysis set and 555 objects for the vali-
dation set using a random seed.

3.2. Rough Set Analysis

Rough set analysis of data is used to obtain preliminary
information. Methods such as approximation, reduct and
core generation, classification, and rule generation can be
performed on data to gain knowledge.

The rough set analysis of the data involved acquiring
reducts (a minimum subset of attributes where the indis-
cernibility relation was unchanged), calculated from a sub-
set of the original data. Rules were generated from the ac-
quired reducts. The Rosetta Rough Set Toolkit [6] was used
to perform reducts and generate decision rules. A filter was
used to gather only those rules that met a minimum sup-
port threshold. Filtering a set of ninety-six original rules
produced a subset of ten candidate decision rules.

Table 2. Reducts Generated
# Reduct
1 {MA5, Price ROC, Wilder RSI}
2 {MACD, MA5, MA12, PriceROC}
...

...
17 {MA5, MA12, Price ROC}
18 {MA12, Price ROC, Wilder RSI}

The reducts that were generated from the data analysis
are shown in Table 2. From the NZX data, a set of 18
reducts was obtained. Some reducts were unable to gener-
ate rules with sufficient support of the data and were filtered
out.

The following is an example of a rule obtained from a
reduct:

Rule 1:
IF MA5 = 1 and Price ROC = [*, -1.82045) and

Wilder RSI = [*, 37.17850)
THEN Decision3 = 1 or 0

Support (LHS) = [334 obj]
Coverage (LHS) = [0.200601]
Accuracy (RHS) = [0.931138]

The rule has three conditional attributes corresponding
to the IF part. The rule has a decision of 1 (significant gain)
or 0 (marginal change). From this rule, the conditional at-
tributes have a support of 334 objects from a total of 1665
objects. Of those 334 objects, 93% have a decision value



of 1 or 0. Only rules with relatively high support and high
accuracy are considered.

3.3. Validation

Once preliminary results have been obtained, validation
procedures ensure that the knowledge is correct. If the pre-
liminary knowledge is in the form of decision rules, these
rules can be fired against the validation data set to confirm
support, accuracy, and confidence measures. Rule filtering
can be performed so that a subset of knowledge tailored to
specific thresholds of the researcher is obtained. Compar-
ison between measures obtained by firing the rules against
the analysis and validation data subsets is needed to make
certain that the knowledge is a correct depiction of the orig-
inal data. Measures that are not similar with respect to the
data set can be considered as being inferred from outlier or
abnormal data.

4. Result Analysis

The preprocessed data was split into analysis (1665 objects)
and validation (555 objects) sets. The analysis set was uti-
lized by rough sets, which acquired reducts and decision
rules. Each decision rule had measurements of support, ac-
curacy, and coverage. These rules were the primary output
of the rough set analysis process. The decision rules were
then validated by firing each individual rule in conjunction
with the validation data set. The new support, accuracy,
and coverage measures were observed for the validation
data set. The goal is to find rules that are accurate repre-
sentations of the data. Therefore, rules that have similar
measures in both the analysis and validation sets should be
considered as stable and accurate.

It is interesting to see the result of combining two deci-
sion classes. Two possible combinations can be performed:
the combination of a decrease and neutral, and the combi-
nation of an increase and neutral. The combination of de-
crease and increase potentially offers no value. However,
the combination of neutral and either increase or decrease
can tell us whether this rule can offer a large gain or loss
with the inclusion of a marginal change. Rule 1 is an exam-
ple of a rule with measurements obtained through both the
analysis and validation sets.

This transformation results in the disjunction of two de-
cision classes instead of one. It is interesting to see that the
rule above can forecast either a large gain or a minimal loss
or gain. This could be a powerful tool if the user so desired.

Each rule is applied to the validation data set corre-
sponding to that of the analysis set. Information is collected
regarding the support and accuracy of that rule in the new
data.

The results shown in Table 3 indicate that for rule 1, the
accuracy and coverage measures are extremely close ac-
cording to the percentage of data used. This translates into
a rule that is very stable. Rule 2, however, shows an ac-
curacy measure of almost twenty percentage points higher

Table 3. Reducts Generated
# Data Analysis Set Validation Set

Sup. Acc. Cov. Sup. Acc. Cov.
1 334 0.646 0.201 114 0.649 0.205
2 97 0.659 0.058 34 0.823 0.061
3 206 0.577 0.123 58 0.603 0.104
4 48 0.688 0.029 18 0.611 0.032
5 112 0.5 0.067 35 0.714 0.063
6 327 0.605 0.196 122 0.581 0.219
7 112 0.634 0.067 33 0.606 0.060
8 252 0.615 0.151 78 0.564 0.141
9 111 0.596 0.067 34 0.618 0.061
10 86 0.488 0.052 25 0.520 0.045

using the validation set. This may need to be concluded
as an unstable rule, since a margin of error of +/- 20% is
considerably high.

The ten rules that were acquired through the process
cover a total 1449 of 2220 objects in the data, 1090 and
359 objects in the analysis set and validation set respec-
tively. Table 4 shows some statistical results.

Table 4. Statistical Results
Analysis Set Validation Set

Total objects 1665 555
Objects covered 1090 359

Min. support 48 18
Max. support 334 122

Average support 168.5 55.1
Min. accuracy 0.4884 0.5200
Max. accuracy 0.6875 0.8235

Average accuracy 0.6000 0.6291

Approximately 65.5% of distinct objects are covered by
the ten rules in the analysis set. The same rules, when fired
against the validation set, cover 64.7% of distinct objects
in the validation set. Through the comparison of the ac-
curacy and support measures given in Table 3, the amount
of change in accuracy and support between the analysis set
and validation set for each rule is shown in Table 5.

A large jump in accuracy from the analysis set to the val-
idation set in rules 2 and 5 is observed. Although the sup-
port values for these two rules do not change significantly
between data sets, this may tell us that these two rules are
unstable since there is such a dramatic difference in accu-
racy. Rule 3 saw a significant decrease in support from the
analysis set to the validation set. Whereas rule 3 covered
12.37% of objects in the analysis set, the same rule only
covered 10.45% of objects in the validation set. Rule 1 is
by far the strongest, most stable rule - showing negligible
change in accuracy and support between data sets.

In order to determine which rules are the strongest, one
must compare the rules and how they react with data. To
analyze the rules that were have obtained, a ranking sys-
tem could be used. Individual rules are ranked according to
their strength (support and accuracy) and stability (change
in support and change in accuracy). Taking into account all
different types of rankings that were used, an overall rank
can be determined. The results of this process can be seen
in Table 6 where the header R1, R2, R3 and R4 are rank-



Table 5. Statistical Results
Rule change in support change in accuracy

(%) (%)
1 0.480 0.242
2 0.300 16.374
3 -1.922 2.578
4 0.360 -7.639
5 -0.420 21.429
6 0.541 -2.354
7 -0.781 -2.787
8 -1.081 -5.098
9 -0.541 3.206
10 -0.661 3.163

Table 6. Ranking of Rules - Lower is Better
Rule R1 R2 R3 R4 Final Rank

1 1 3 4 1 1
2 8 1 1 9 3
3 4 9 10 3 8
4 10 2 2 8 4
5 5 6 3 10 7
6 2 7 5 2 2
7 7 4 8 4 6
8 3 8 9 7 9
9 6 5 5 6 4
10 9 10 7 5 10

ings according to total support, total accuracy, change in
support and change in accuracy respectively. The final rank
is determined by the previous four rankings for each rule.

According to the rankings shown in Table 6, rule 1 is
suggested as the best with low rankings for measures in
support, accuracy, change in support, and change in ac-
curacy. Rule 10 is considered the worst of the ten rules
based on the high rankings of total support and total accu-
racy. Rules 4 and 9 both have a rank of four. This is due
to the fact that rule 4 has high rankings for total support
and change in accuracy but low rankings for accuracy and
change in support. Rule 9 has average rankings for each
measure.

A user may give different weights to different rankings.
For example, if a user wishes to rank rules according to sta-
bility, he or she may incorporate a higher level of attentive-
ness to change in support and change in accuracy, whereas
those measure contribute more to the final rankings of rules
that those of total support and total accuracy. Equal weight
was given to each measure.

5. Conclusion

The process of time-series data analysis could include the
use of rough set tools for knowledge discovery. Using time-
series data from the New Zealand stock exchange, rough set
analysis acquired reducts used to create rough rules. The
rules, after being tested for accuracy, are used as a fore-
casting tool to predict future configurations of data. Rough
sets succeed in this task since they are able to describe un-
certain data from information derived from precise, certain
data. The data should be prepared so that it contains at-
tributes that have minimal loss of information when they
are discretized.

The results obtained seem to be quite stable, with some
rules performing beyond expectations, especially those
rules that were obtain by merging two decision classes to-
gether. This may indicate that rough sets can be a powerful
tool for forecasting time-series data that is comprised of
uncertain and redundant values. Acquiring reducts is bene-
ficial to time-series data analysis, as it removes information
that does not need to be present in order to discern objects
or provide information about relationships between data.
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