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Abstract— Researchers have been attracted for years to studies
on solving imprecise problems. The first step for solving an
imprecise problem is to clarify the problem itself. However, in
many of cases, the impreciseness of a problem is due to its own
nature and often leaves them unsolvable. There are at least two
reasons for the impreciseness and unclearness of a problem.
The first reason is that there may not be a suitable language
to present the problem in an understandable and clear way. The
second reason is that the problem itself is not well-definable.
This is quite similar to a research question that a researcher
is trying to specify. A problem may only be fully understood
and specified after all solutions are available. In this paper,
we introduce a problem solving approach by searching possible
solutions to an imprecise problem. This is an approach to specify
and solve an imprecise problem by matching the problem with
its solutions. We present a Solution-To-Problem (STP) model as
a new approach for imprecise problem solving. Basic notions,
measures and algorithms for such a problem solving process are
studied.

I. INTRODUCTION

Problems and questions are often raised in imprecise ways.
The impreciseness of a problem or question is somehow due
to its own nature of unclearness, fuzzyness or ill-structure [1].
The first reason for this is that we may not be able to properly
present the problem or question in an understandable manner.
The second reason may be due to the reality that we may not
know every aspect of the problem or question. To obtain a
solution to a problem or an answer to a question remains a
challenge. In fact, the solution to an imprecise problem and
the process of solving the problem are not unique. Jonassen
studied the nature of imprecise and ill-structured problems and
summarized that

Ill-structured problems possess multiple solutions, solution
paths, fewer parameters which are less manipulable, and con-
tain uncertainty about which concepts, rules, and principles
are necessary for the solution or how they are organized and
which solution is best [6].

A traditional way of solving an imprecise problem is to seek
for a full understanding of the problem [4], [6], [10], [14].
The starting point of solving a problem is when the problem
is clearly understood and identified [5]. However, when proper
ways to clarifying or refining a problem are not available, the
process of solving the problem and the effort to them may be
extremely lengthy and costly. The consequence is that many
problems are practically unsolvable. We argue that solving
problems can be initiated before understanding them in full.
In some cases, a problem may be more precisely presented
if a possible solution set is available. The problem could be
approximated by its solutions.
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The aim of this article is to introduce a novel problem
solving approach, the solution-to-problem (STP) model. In
fact, people use similar approaches to a certain extent. For
example, keyword search is a popular method used by Web
searching. The Web search engine’s response to a query may
stimulate the refinement of the query. Query formulation in
information retrieval is one of theoretical background for
such search mechanisms [15]. Another challenging scenario
is the process of doing research. When a researcher could not
formulate a research question precisely, some trial-and-error
strategies would be explored in order to define the problem.
The supervision of graduate students normally follows this
pattern [2]. An imprecisely defined idea from a supervisor
will eventually turn to a complete PhD dissertation. The STP
approach is an effort in solving imprecise problems. It explores
inaccurate, partially true solutions to achieve tractability of
imprecise problems.

This paper is organized as follows. The STP approach is
formalized in Section II. Section IV defines some basic mea-
sures used in problem solving especially for the STP approach.
In Section III, we explain the STP model in the framework
of granular computing. Section V studies the algorithms of
problem solving with the STP process.

II. THE STP PROBLEM SOLVING MODEL

The STP model is formalized in this section. A general
definition for problem solving is first given.

Definition 1: A problem solving space can be represented
by the following triplet,

(Ω, A, F ),

where Ω represents the problem domain, A the solution
domain, and F the solution function for the problems in Ω.
In fact, F (ω) is a set of solutions to problem ω, i.e.

F : Ω → 2A.

It is assumed that for any solution a ∈ A, there is a problem
ωa ∈ Ω such that the solution a is in F (ωa) and satisfies the
problem ω. For any problem ω ∈ Ω, the task of problem-
solving is to find out a solution in A that satisfies the problem
ω to some extent.

A traditional way to solving any problem ω0 ∈ Ω consists
of one or more steps. At each step, a refinement of the problem
ω0 is searched. For example, if the problem ω0 itself can be
fully understood, we search the solution domain A to solve
the problem ω0. Otherwise, problem ω1 ∈ Ω is searched such
that the problem ω1 is a refinement of the problem ω0. If the
problem ω1 is fully understood and solved, the problem ω0

is thought to be solved. Otherwise, we enter next step to find
another refinement ω2 ∈ Ω of the problem ω0, and so on.



This paper assumes that any problem can be solved within n
(n ≥ 1) steps. The process of solving the problem ω0 can be
represented by trying to solve a sequence of problems:

< ω0, . . . , ωn >,

where ωi ∈ Ω (0 < i ≤ n) represents a refinement of the
problem ω0.

The STP approach presents another way to solving the
imprecise problem ω0. The STP approach also consists of
some steps. But at each step, a tentative solution is searched
before pursuing more exact meaning of the problem ω0.
The tentative solution is viewed as an approximation to the
nature of the problem ω0. Since the solution is based on our
incomplete understanding to the problem ω0, it may not or
only partially satisfy the problem ω0.

The level that the solution a matches the problem ω0 is
defined as a real number t in the range of [0, 1]:

t : A× Ω → [0, 1]. (1)

The measure t is called the solution relevance measure. If
a solution a0 ∈ A results in a solution relevance measure
t(a0, ω0) > 0, more information about the problem ω0 may
have been revealed. We can search the next solution a1 ∈ A
based on the solution a0 such that the solution a1 is at least
as preferable as the solution a0, i.e. t(a1, ω0) ≥ t(a0, ω0).
The above steps will be iterated until we can give a certain
conclusion for the problem ω0.

Definition 2: A model of the STP approach is defined as
a pair:

(α, Sω0), (2)

where α is a solution approximation function:

α : Ω×A → A, (3)

Sω0 a sequence of solutions:

Sω0 =< a0, . . . , an > (ai ∈ A, 0 ≤ i ≤ n). (4)

The sequence Sω0 or an STP process satisfies the following
condition:

0 < t(a0, ω0) ≤ t(a1, ω0) ≤ . . . ≤ t(an, ω0). (5)

It is aimed to find latter solutions that have a high level match
to the problem ω0. A solution ai (1 ≤ i ≤ n) is derived
from the problem ω0 and the previous solution ai−1, i.e. ai =
α(ω0, ai−1).

Since we may find a set of solutions to the problem ω0 at a
step of the STP process, Formulas (3) and (4) in Definition 2
can be generalized as follows:

α : Ω× 2A → 2A, (6)

Sω0 =< A0, . . . , An > . (7)

Formula (7) indicates that Sω0 is a sequence of solution sets.
Formula (6) implies that Ai = α(ω0, Ai−1) (1 ≤ i ≤ n) or
the solution set Ai is derived from the problem ω0 and the
solution set Ai−1.

In many cases, a solution set Ai is derived from the
problem ω0 and a special solution in Ai−1. Therefore, a choice
function,

f : 2A → A, (8)

should be defined. Formula (8) implies that a solution is
chosen from the solution set Ai−1 and is used as a reference to
form the solution set Ai for the sake of simplicity. At each step
i of the STP process, the solution chosen from the solution set
Ai is denoted as ai and ai = f(Ai). Equivalently, a variation
of Formula (6) is defined as,

α : Ω×A → 2A. (9)

Without losing the generality of this paper, we assume that
the STP model consists of Formulas (2), (7), (8), and (9). In
addition, we often use α(ai−1) to represent the solution set
Ai at the step i. The STP model has the following properties:

∀a ∈ Ai, t(a, ω0) > 0 (0 ≤ i ≤ n),

0 < t(ai−1, ω0) ≤ t(ai, ω0) (1 ≤ i ≤ n),

where ai−1 = f(Ai−1) and ai = f(Ai).
In this section, the STP model is characterized by a solution

approximation function α and an approximation process Sω0 .
We define a solution relevance measure to evaluate the level
that a solution that satisfies the problem ω0. In each step of the
STP process, the solution approximation function α provides
a set of solutions. The solution set or one of its members plays
a role of orientation in searching more preferable solutions in
the next step.

III. GRANULAR COMPUTING VIEWS OF IMPRECISE
PROBLEMS SOLVING

Granular computing is a structured way of thinking, ana-
lyzing, understanding, representing, and solving problems [8],
[16], [18]. There are three basic ingredients of granular com-
puting, namely, granules, levels, and hierarchies. A granule
represents the abstraction of the real world. Granules may
have different formats and meanings in different contexts.
There may be multiple levels of granularity. A hierarchy
connects levels together through a partial order. A top-down
hierarchy can be implemented by adding more details in a step-
wise manner. A bottom-up hierarchy can be implemented by
ignoring irrelevant details in a step-wise manner [16].

The STP approach could also be viewed as a structured
way of analyzing, understanding, representing, and solving
problems. Usually, real world problems can be described at
different levels: from exact and detailed to inexact and general.
If a description of a problem can not satisfy the requirement
of solving the problem, we may try to solve the problem
at a coarse or inaccurate level. The approximate results may
disclose some facts so that we can enter a more inexact level
to understand the problem. Therefore, the STP process can be
viewed as a top-down refinement process. The solution set at
each step of the STP process can be viewed as a granule. In
this granule, solutions are drawn together by their solution
relevance to the problem. The more exactly a problem is



described, the smaller the granule of approximate solutions
to the problem.

The STP model is a framework for solving imprecise
problems. It implies that solving an imprecise problem is
actually a process of approximating the nature of the problem.
Each step of the approximation process is to search possible
solutions in a subset of the solution domain A. At each step,
one may have to make decisions in selecting one of the
solutions from the solution set. The solution may serve as the
start point in searching for more preferable solutions. Various
searching strategies and decision-making strategies, such as
game theory and tabu search, may be adopted to form different
STP models.

IV. IMPRECISE PROBLEM SOLVING MEASURES

We need to evaluate how a solution satisfies the problem
once the STP model has been established. It is important to
identify procedures and methods to locate the solution space
at each step of the STP process. We may also need to evaluate
the relationships between steps of STP process.

In Section II, we argue that any solution of the solution
space A can be considered as a solution to any problem in the
problem space Ω. The solution relevance measure evaluates
the viability of a solution given the problem ω0 shown in
Formula (1). The value t(a, ω0) represents the level to which
a solution a satisfies the problem ω0. There are two extreme
cases. The first extreme, t(a, ω0) = 1, indicates that solution
a satisfies the problem ω0. Another extreme, t(a, ω0) = 0,
indicates that the solution a does not satisfy the problem ω0

at all.
In the STP process, the solution domain A is only partially

known before the problem ω0 is absolutely understood and all
solutions for the problem ω0 have been found. Therefore, it
may not be appropriate to search the whole solution domain
A in all STP processes. Instead, we may only search possible
solutions from a subset of the solution domain A. The subset
is called the potential solution neighborhood of the problem
ω0 at step i (of the STP process) and is denoted as PNSi(ω0).

Each solution in PNSi(ω0) is considered to be a potential
solution to the problem ω0 according to a measure at the step
i. The measure determining PNSi(ω0) is called the potential
solution measure:

p : A× Ω → [0, 1]. (10)

The value p(a, ω0) represents the possibility that the solution
a falls into the potential solution neighborhood of the problem
ω0 at a step of the STP process. In particular, the condition
p(a, ω0) = 1 indicates that the solution a is in the potential so-
lution neighborhood; the condition p(a, ω0) = 0 indicates that
the solution a is not in the potential solution neighborhood.

Since the potential solution neighborhood of the problem
ω0 may vary with the progression of solving the problem
ω0, the potential solution measure varies at different steps of
the STP process, whereas the evaluation on the viability of a
solution given the problem ω0 is assumed to be consistent in
the STP process. For any solution a ∈ A, pi+1(a, ω0) may not
equal to pi(a, ω0), where pi+1(a, ω0) is the potential solution

measure at step i + 1 and pi(a, ω0) the potential solution
measure at the step i. The solution relevance measure and the
potential solution measure are assumed to satisfy the following
condition:

t(a′, ω0) ≥ t(a′′, ω0) ⇒ pi(a′, ω0) ≥ pi(a′′, ω0). (11)

With the potential solution measure, the potential solution
neighborhood of the problem ω0 at step i is estimated by the
following formula:

PNSi(ω0) = {a ∈ A | pi(a, ω0) > 0}. (12)

According to the notion of the potential solution neighborhood
of the problem, we can get the following formulas:

a ∈ α(ai−1, ω0) ⇒ pi(a, ω0) > 0,

a(ai−1, ω0) ⊆ PNSi(ω0).

If a solution a is in the solution set of step i, the probability
of it belonging to the potential neighborhood of the problem
ω0 is 1. Any solution in the solution set of step i is a solution
of the ith potential neighborhood.

The following formula defines the similarity measures over
a solution domain A:

s : A×A → [0, 1], (13)

where s(a1, a2) represents the similarity between solution a1

and solution a2. The condition s(a1, a2) = 1 indicates that
the solution a1 is equivalent to the solution a2. The condition
s(a1, a2) = 0 indicates that the solution a1 is totally different
from the solution a2.

In order to simplify the problem, we assume that if the
solution a1 is similar with the solution a2 and the solution a1

possibly satisfies the problem ω0, the solution a2 also possibly
satisfies the problem ω0:

s(a1, a2) > 0 and t(a1, ω0) > 0 ⇒ t(a2, ω0) > 0.

We also assume that similar solutions fall into the same
potential solution neighborhood of the problem:

s(a1, a2) > 0 and a1 ∈ PNSi(ω0) ⇒ a2 ∈ PNSi(ω0).

By introducing the similarity measure of solutions, we
may be able to describe the relationships between steps of
the STP process. In same cases higher potential levels of
many solutions do not guarantee higher similarity levels. For
example, an ai = f(Ai) and an ai = f(Ai) are chosen
because t(ai+1, ω0) ≥ t(ai, ω0) or tp(ai+1, ω0) ≥ p(ai, ω0).
However, the similarity level of ai and ai+1 may be very low.
In the extreme situation, say, s(a, ai) = 0. It may imply that
we want to explore the problem ω0 at step i + 1 in a way
totally different from the one at step i.

In this section, the measures of the STP process were
studied. The solution relevance measure describes how well
a solution satisfies a problem. Each step of STP process
corresponds to a local solution space or the potential solution
neighborhood of the problem. The potential solution measure
is introduced to construct the potential solution neighborhood.
The similarity measure between problems represents the rela-
tionships between steps of the STP process. In practice, the



size of the potential solution neighborhoods and the size of the
solution sets of the problem can be restricted by thresholds,
which may improve the performance of the STP process. A
threshold can be defined as any real number that is greater
than one, for instance 0.5.

V. AN ALGORITHM FOR THE STP PROBLEM SOLVING
APPROACHES

Input: the problem ω0, the span of h steps.
1 Begin
2 θ0 = EstimateScopeThreshold(ω0);
3 σ0 = EstimateSolutionThreshold(ω0);
4 ah−1 = ResultOfSpan(ω0, θ0, σ0, h);
5 Compute Eθh−1;
6 Compute Eσh−1;
7 Let m = 1;
8 While the STP process is not over do
9 If t(am×h−1, ω0) is sufficient high Then
10 θm×h = Eθm×h−1 −∆;
11 σm×h = Eσm×h−1 −∆;
12 Else If t(am×h−1, ω0) is high Then
13 θm×h = Eθm×h−1;
14 σm×h = Eσm×h−1;
15 Else If t(am×h−1, ω0) is low and
15 |SNSm×h(ω0)| is much smaller than
16 |PNSm×h(ω0)| Then
17 σm×h = Eσm×h−1 + ∆;
18 θm×h = Eθm×h−1;
19 Else
20 σm×h = Eσm×h−1 + ∆;
21 θm×h = Eθm×h−1 + ∆;
22 a(m+1)×h−1 =
23 ResultOfSpan(ω0, θm×h, σm×h, h);
23 Compute Eθ(m+1)×h−1;
24 Compute Eσ(m+1)×h−1;
25 Let m = m + 1;
22 End While
26 End

Fig. 1. An STP algorithm with dynamically optimizing thresholds

We first analyze the efficiency of the STP process. Sec-
tion IV introduces the potential solution measure and the so-
lution relevance measure. A practical issue is to determine the
size of a potential solution neighborhood. Another issue is to
determine the size of a solution set. Searching and evaluating
solutions at each step of the STP process are time consuming.
Therefore, the sizes of the potential solution neighborhood and
the solution set affect the efficiency of the STP process. When
the size of a potential solution neighborhood grows, we spend
more time on searching solutions for building the solution set.
In consequence, the chances to find a solution that satisfies
the problem ω0 increases. In contrast, when the size of the
potential solution neighborhood is reduced, we may spend less
time on searching solutions. However, the chance of finding
satisfied solutions also decreases. The same conclusion applies

Input: the problem ω0, the scope threshold θ,
the solution threshold σ, the span of h steps.
1 Begin
2 While h > 0 do
3 Estimate PNSi(ω0) based on threshold θ;
4 Compute α(ω0, Ai−1);
5 Estimate Ai = SNSi(ω0) based on threshold σ;
6 ai = f(Ai);
7 θ = θ±random offset;
8 σ = σ±random offset;
9 h = h− 1;
10 End While
11 End

Fig. 2. The algorithm of searching solutions within h steps

to the size of a solution set. A solution set of smaller size may
lead to less searching time but a lower probability of finding a
solution. However, a larger solution set may provide a higher
probability for a solution with a longer time search.

A feasible approach to resolve the above dilemma is to
establish thresholds to restrict the size of the potential solution
neighborhood and the size of the solution set. We redefine
Formula (12) into the following way:

PNSi(ω0) = {a ∈ A | pi(a, ω0) > θi}, (14)

where θi ∈ [0, 1] (0 ≤ i ≤ n) is the scope threshold at step
i (of the STP process). The solution sets Ai can be redefined
as,

SNSi(ω0) = {a ∈ Ai) | t(a, ω0) > σi}, (15)

where σi ∈ [0, 1] (0 ≤ i ≤ n) is the solution threshold at step
i (of the STP process).

We propose a strategy to determine the scope threshold
and the solution threshold. The basic idea is that the optimal
thresholds could be learnt based on the previous experiences
obtained in the STP process. Each step of the STP process is
viewed as a state denoted as Si. A problem solver chooses the
scope threshold θi and the solution threshold σi at the state
Si (0 ≤ i ≤ n). The action leads to the transition from the
state Si to the state Si+1. The above state transition produces
a reward ri to the problem solver. The reward is a function
of ai and the time used in searching and evaluating solutions
at the step i, i.e. ri = r(t(ai, ω0), time). The problem solver
should choose actions that tend to increase rewards.

The algorithms described in Fig. 1 and Fig. 2 constitute
an algorithmic description of the STP process. The algorithm
described in Fig. 1 aims to optimize the scope thresholds and
the solution thresholds for the next h (h ≥ 1) steps of the STP
process through examining the effectiveness of approximating
the problem ω0 in the previous h steps of the STP process. The
function ResultOfSpan described in Fig. 2 searches solutions
within a span of h steps. The function ResultOfSpan also
describes the actions carried out at a step of the STP process.

At the first step of the STP process, we need to estimate
the size of the potential solution neighborhood derived from
θ0 and the size of the solution set derived from σ0. The next



h−1 steps of the STP process are based on the estimated scope
threshold θ0 and solution threshold σ0. When the current state
is sm×h (m ≥ 1), we can get the following summaries from
the previous h steps:

Eθm×h−1 = Avg(
h∑

i=1

θm×h−i),

Eσm×h−1 = Avg(
h∑

i=1

σm×h−i).

Eθ(m−1)×h is the average size of the scope thresholds used
in the previous h steps. Eσ(m−1)×h is the average size of the
solution thresholds used in the previous h steps.

By evaluating the result at the step m × h − 1, we can
estimate the scope threshold θm×h and the solution threshold
σm×h for the step m×h. There are four conditions. Firstly, if
the result am×h−1 satisfies the problem ω0 very well, it may
mean that the nature of the problem ω0 has been approached
and the solution set at the step m×h can be located accurately.
In this case, we can reduce the scope of searching solutions
and the size of the solution set. Here, we use the symbol ∆
to generally represent the increase or decrease amount. ∆ is
assumed to be a function of t(am×h−1, ω0). Secondly, if the
result am×h−1 satisfies the problem ω0 well, it means that we
may be on a correct way towards solving the problem ω0 and
we should keep the exploration factors intact. The last two
conditions are the situations that the result am×h−1 cannot
satisfy the problem ω0. Thirdly, if the solution sets are too
small during the previous h steps, the solution set should be
enlarged at the next h steps. Lastly, if both the solution sets
and the potential solution neighborhoods are not sufficiently
large, they should be enlarged at the next h steps. Within the
span of h steps, the size of the solution set and the size of the
potential solution neighborhood at each step may be adjusted
randomly based on σm×h and θm×h.

VI. CONCLUSIONS

In this paper, we introduce the STP model for imprecise
problem solving. The impreciseness and unclearness of a
problem derive from two different situations: First, there may
not be a clear way to present a problem in a understandable
way; Second, the problem itself may not be well-definable.
A traditional way to solve an imprecise problem normally
needs to articulate the problem first. However, the problem
may only be fully understood and specified before all solutions
are available. The STP problem solving approach generates
solutions for an imprecise problem rather than defining the
problem itself. A body of knowledge about the problem may
be built through evaluating those solutions.

The STP model is a structural way of analyzing, under-
standing, representing, and solving problems. When a problem
cannot be solved at explicit level, the STP approach tries
to solve the problem at a coarse or inaccurate level. The
approximate solutions or results may provide a chance for
us to obtain a more exact level to understand the problem.
Therefore, an STP process can be viewed as a top-down

refinement process, which is under the umbrella of granular
computing.

The STP model is characterized by a solution approximation
function and the STP process. In each step of the STP process,
the solution approximation function provides a set of solutions.
A solution or a set of solutions of the solution set directs the
way of searching more preferable solutions in the next step.

Three measures of the STP process are identified. The
solution relevance measure evaluates the level that a solution
satisfies the problem. The potential solution measure is used
to estimate the scope of searching solutions at each step of the
STP process. The similarity measure of solutions is used to
describe the relationships between steps of the STP process.

We also present an algorithm of the STP process. The scope
of searching solutions and the size of the solution set are
optimized through trial-and-error interactions with the STP
process.
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