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Abstract. The combination of fuzzy set and rough set theories lead to
various models. Functional and set approaches are two categories based
on different fuzzy representations. In this paper, we study rough approxi-
mations based on the notion of level fuzzy sets. Two rough approximation
models, namely α-level rough set and β-level rough set, are proposed. It
shows that β-level fuzzy rough set model can approximate a fuzzy set at
different precisions.

1 Introduction

The distinct and complementary fuzzy set theory [15] and rough set theory [7]
are generalizations of classical set theory. Attempts to combine these two the-
ories lead to new notions [2, 10, 13]. The combination involves three types of
approximations, i.e., approximation of fuzzy sets in crisp approximation spaces,
approximation of crisp sets in fuzzy approximation spaces, and approximation
of fuzzy sets in fuzzy approximation spaces [13].

The construction of fuzzy rough sets can be classified into two approaches,
namely, functional approach and set approach. The first one formulates the lower
and upper bounds with fuzzy membership functions. These formulas express
the logical relations that lower and upper bounds must abide in approximation
spaces [10].

The second approach [13] combines rough and fuzzy sets based on the cutting
of fuzzy sets or fuzzy relations. When a fuzzy set is represented by a family of
crisp subsets (α-level sets), these α-level sets can be approximated by equivalence
relations in rough sets. A fuzzy relation can also be approximated by a family of
equivalence relations (β-level sets). This family defines a family of approximation
spaces. The new rough sets are based on these approximation spaces.

A third approach of the combination of fuzzy sets and rough sets can be
considered by introducing the concept of level fuzzy sets. It has been argued
that benefits do exist in the use of level fuzzy sets over level sets [1, 9, 11].

The present study examines some of the fundamental issues of the combi-
nation from the perspective of level fuzzy sets. The properties of α-level fuzzy
sets and β-level fuzzy sets will be introduced in the next section. The models of
α-level rough set and β-level rough set are studied. We discuss the properties of
these models in Section 3.



2 Fuzzy Rough Sets and Level Fuzzy Sets

We review the concept of fuzzy rough sets and level fuzzy sets. The properties
of level fuzzy sets are also discussed.

2.1 Fuzzy Rough Sets

Many views of fuzzy rough sets exist. We adopt the notion of Radzikowska and
Kerre [10], which absorbs some earlier studies [3, 4, 6] in the same direction. Let
(U,R) be a fuzzy approximation space and P̃ (U) be the set of all fuzzy sets. For
every A ∈ P̃ (U), apr(A) = (apr

R
(A), aprR(A)) where

apr
R
(A)(x) = inf

y∈U
I(R(x, y), A(y)) (1)

aprR(A)(x) = sup
y∈U

T (R(x, y), A(y)). (2)

apr
R
(A) and aprR(A)) define the lower and upper approximations of a fuzzy set

A respectively. They are constructed by means of an implicator I and a t-norm
T. Equation 1 indicates that, for any x ∈ U , its membership degree is determined
by looking at the elements resembling x, and by computing to what extent y is
contained in a fuzzy set A. Equation 2 indicates that the membership degree of
x is determined by the overlap between y and A.

2.2 Level Sets and Level Fuzzy Sets

Let A be a fuzzy set defined in universe U, and α ∈ (0, 1]. The α-level set or
α-cut of A is a crisp subset of U defined by

Aα(x) =

{

1 if A(x) ≥ α

0 otherwise
;

the α-level fuzzy set or fuzzy α-cut of A is characterized by

Ãα(x) =

{

A(x) if A(x) ≥ α

0 otherwise
.

Based on above definitions, we can conclude that α-level fuzzy sets are obtained
by reducing parts of fuzziness or information holding in the original fuzzy sets.

Let R be a fuzzy similarity relation on U, and β ∈ (0, 1]. The β-level set or
β-cut of R is an equivalence relation on U defined by

Rβ(x, y) =

{

1 if R(x, y) ≥ β

0 otherwise
;

the β-level fuzzy set or fuzzy β-cut of R is characterized by

R̃β(x, y) =

{

R(x, y) if R(x, y) ≥ β

0 otherwise
.



Both α-level set and β-level set are called level sets; correspondingly, both
α-level fuzzy set and β-level fuzzy set are called level fuzzy sets. The symmetry
between level sets and level fuzzy sets indicates that the properties of level fuzzy
sets are a fuzzy counterpart of the ones of level sets.

Property 1. ∀α ∈ [0, 1], ∀x ∈ U , Ãα ⊆ A and suppÃα ⊆ suppA;
∀α1, α2 ∈ [0, 1], α2 ≥ α1 ⇒ Ãα2

⊆ Ãα1
and suppÃα2

⊆ suppÃα1
.

Property 1 indicates that α-level fuzzy sets are monotonic with respect to fuzzy
set inclusion. The supports of α-level fuzzy sets are monotonic with respect to
set inclusion.

Property 2. For every β ∈ [0, 1], each R̃β of similarity relation R is a similar-

ity relation on U, i.e. R̃β satisfies reflexive, symmetric and sup-min transitive
conditions.

Proof.

It is only necessary to verify that R̃β satisfies the sup-min transitive condition.
when R(x, y) ≥ β,
R̃β(x, y) ≥ supz∈U{min{R(x, z), R(z, y)}} ≥ supz∈U{min{R̃β(x, z), R̃β(z, y)}}

when R(x, y) < β, R̃β(x, y) = 0
β > R(x, y) ≥ supz∈U{min{R(x, z), R(z, y)}}
which means that ∀z ∈ U, R(x, z) < β or R(z, y) < β i.e.
∀z ∈ U, R̃β(x, z) < β or R̃β(z, y) < β i.e.

∀z ∈ U, min{R̃β(x, z), R̃β(z, y)} = 0

We still have the result: R̃β(x, y) ≥ supz∈U{min{R̃β(x, z), R̃β(z, y)}}2

In fuzzy approximation space, basic granules of knowledge can be represented
by similarity classes for each element in U [12]. The size of the support of every
similarity class is used to measure the granularity of the class. More precisely,
the similarity class for x ∈ U , denoted Rx, is a fuzzy set in U characterized
by the membership function: Rx(y) = R(x, y). The similarity class for x ∈ U

determined by R̃β, denoted Rβ
x , is characterized by the membership function:

Rβ
x(y) = R̃β(x, y).

Property 3. ∀β, β1, β2 ∈ [0, 1], ∀x ∈ U , suppRβ
x ⊆ suppRx and β2 ≥ β1 ⇒ Rβ2

x ⊆
Rβ1

x .

Property 3 indicates that the β-level fuzzy sets of a similarity relation form a
nested sequence of similarity relations. The bigger level β, the finer the similarity
classes determined by R̃β . Property 2 and 3 justify that β-level fuzzy sets are a
fuzzy counterpart of β-level sets. The sequence of fuzzy relations coincides with
the partition tree [5] constructed by β-level sets.

3 Level Fuzzy Sets based Fuzzy Rough Sets

Any fuzzy set can be decomposed into a family of α-level sets and a family of
α-level fuzzy sets. Any fuzzy relation can also be decomposed into a family of



β-level sets and a family of β-level fuzzy sets. In Section 3.1, the reference set
A in (apr

R
(A), aprR(A)) is replaced with its α-level fuzzy set. In Section 3.2,

fuzzy relation R in (apr
R
(A), aprR(A)) is substituted with its β-level fuzzy set.

Two new fuzzy rough sets are obtained. We examine their properties and briefly
demonstrate how level fuzzy sets simplify the computation of fuzzy rough sets.

3.1 α-level Fuzzy Rough Set Model

Consider the approximation of an α-level fuzzy set of the reference set A, α ∈ (0, 1],
in the fuzzy approximation space (U,R). The fuzzy rough set (apr

R
(Ãα), aprR(Ãα)):

apr
R
(Ãα)(x) = inf

y∈U
I(R(x, y), Ãα(y)) (3)

aprR(Ãα)(x) = sup
y∈U

T (R(x, y), Ãα(y)) (4)

is called the α-level fuzzy rough sets of A. For the family of α-level fuzzy sets,
we obtain a family of α-level fuzzy rough sets.

Property 4. If fuzzy implicator I is right monotonic, and implicator I and t-norm
T are continuous, then ∀α, α1, α2 ∈ [0, 1],
apr

R
(A) ⊇ apr

R
(Ãα) and aprR(A) ⊇ aprR(Ãα);

α1 ≤ α2 ⇒ apr
R
(Ãα1

) ⊇ apr
R
(Ãα2

) and aprR(Ãα1
) ⊇ aprR(Ãα2

).

Property 4 indicates that α-level fuzzy rough sets are monotonic with respect to
fuzzy set inclusion. The property is similar to that of α-level rough sets. However,
we have to concede that, unlike α-level rough sets [13], there is no guarantee that
apr

R
(Ãα) will be α-level fuzzy set of some fuzzy set. The conclusion is the same

with aprR(Ãα). We can not say that the family of (apr
R
(Ãα), aprR(Ãα)) define

(apr
R
(A), aprR(A)).

Conversely, we notice that the computation of (apr(A), apr(A)) can be di-
vided into the evaluation of implication I(R(x,y),A(y)), the evaluation of co-
junction T(R(x,y),A(y)), and the evaluation of infimum and supremum. By the
property of implicator I, if A(y)=0, the value of R(x,y) alone determines the
value of I(R(x,y),A(y)) and T (R(x, y), A(y)) ≡ 0. There are less elements par-
ticipating in the computation of (apr

R
(A), aprR(A) by replacing the fuzzy set A

with its α-level fuzzy set. From a practical view, α-level fuzzy sets simplify the
computation of fuzzy rough sets. The total saved running time is in proposition
to level α.

3.2 β-level Fuzzy Rough Set Model

The family of β-level fuzzy sets of fuzzy relation R defines a family of ap-
proximation spaces: (U, R̃β), β ∈ (0, 1]. For a β ∈ (0, 1], the fuzzy rough set



(apr
R̃β

(A), aprR̃β
(A)):

apr
R̃β

(A)(x) = inf
y∈U

I(R̃β(x, y), A(y)) (5)

aprR̃β
(A)(x) = sup

y∈U

T (R̃β(x, y), A(y)) (6)

are called the β-level fuzzy rough sets of A. With respect to a fuzzy approx-
imation space, we obtain a family of β-level fuzzy rough sets. The following
properties can be verified easily:

Property 5. If the fuzzy implicator I is a continuous R-implicator based on a
continuous t-norm T, then ∀A ∈ P̃ (U), apr

R̃β
(A) ⊆ A ⊆ aprR̃β

(A).

Property 6. If fuzzy implicator I is left monotonic, and I and t-norm T are
continuous, then
apr

R
(A) ⊆ apr

R̃β
(A) and aprR(A) ⊇ aprR̃β

(A);

β1 ≤ β2 ⇒ apr
R̃β1

(A) ⊆ apr
R̃β2

(A) and aprR̃β1

(A) ⊇ aprR̃β2

(A).

Property 6 indicates that β-level fuzzy rough sets are monotonic with respect
to the refinement of fuzzy relations. Coarse similarity classes usually lead to a
‘coarse’ approximation with a great misclassification error, whereas smaller sim-
ilarity classes usually lead to a ‘fine’ approximation with a less misclassification
error. Property 5 and 6 also indicate that a nested sequence of β-level fuzzy sets
can lead to hierarchical rough approximations. The approximating precision can
be controlled by adjusting level β. However, unlike β-level rough sets, there is
no guarantee that (apr

R̃β
(A), aprR̃β

(A)) is a level fuzzy set of (apr(A), apr(A)).

Similar with α-level fuzzy rough sets, β-level fuzzy sets can eliminate part of
the computation of lower approximation and upper approximation. The reason
is that if R(x,y)=0, then I(R(x, y), A(y)) ≡ 1 and T (R(x, y), A(y)) ≡ 0. The
total saved running time is in proposition to level β.

The β-level sets of similarity relations form a nested sequence of equivalence
relations. Let A ⊆ U , for each β-level sets of R, Rβ , a crisp β-level rough set
(apr

Rβ
(A), aprRβ

(A)) satisfies all the properties of rough set.

Property 7. ∀β1, β2 ∈ [0, 1], β1 ≤ β2 ⇒ apr
Rβ1

(A) ⊆ apr
Rβ2

(A) and aprRβ1

(A) ⊇

aprRβ2

(A).

4 Conclusions

We introduce a new approach to the combination of fuzzy sets and rough sets.
The combination is based on level fuzzy sets. We propose both the α-level fuzzy
rough set model and the β-level fuzzy rough set model. It provides a new per-
spective to the theories of fuzzy sets and rough sets. Similar to the α-level rough
sets and the β-level rough sets, some useful properties are examined. The β-level



fuzzy rough sets may approximate a fuzzy set at different precisions by choosing
different β-level fuzzy sets of a similarity relation.

Level fuzzy sets may reduce the information that implication and cojunc-
tion have to work with. This may lead to a simple computation. The trade-offs
between approximating precision and computational efficiency are under exam-
ination. Decision-theoretic Rough Set theory [14] may play an important role in
selecting proper α and β level values.
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