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ABSTRACT

The XML is a new standard for data representation and exchange on the Internet. There are studies on XML query
languages as well as XML algebras in literature. However, attention has not been paid to research on XML algebras for
data mining due to partially the fact that there is no widely accepted definition of XML mining tasks. This paper tries to
examine the XML mining tasks and provide guidelines to design XML algebras for data mining. Some summarization
and comparison have been done to existing XML algebras. We argue that by adding additional operators for mining tasks,
XML algebras may work well for data mining with XML documents.

1. INTRODUCTION

Ever since the emergence of the Internet, the amount of information on the Web has been growing exponentially. The
World Wide Web has become a public knowledge base. However, the ever-increasing size of the web is beyond the control
of any personnel or organizations. Thus, how to find desired information in such a large web space poses a big challenge.

The present dominant data publishing format on the internet is HTML (a markup language that specifies the rendering
of the web documents). Recently, XML (eXtensible Markup Language) is gaining popularity as a new standard for data
representation and exchange on the internet. Although both HTML and XML documents can be viewed as a hierarchical
structure, the former could not express the internal relationship between its elements.

Web mining based on HTML documents normally consider text mining, or traditional information retrieval techniques.
Various languages to query XML documents are proposed by researchers all around the world. Some research has been
done on algebras to discover previous unknown knowledge from relational databases. However, attention has not been
paid to research on XML algebras for data mining. An XML algebra is a kind of operational query language. A query
expressed in XML algebras describes the procedures to obtain the answer. A basic step to study XML algebras for data
mining is to understand its mining tasks. Unfortunately, there is no widely accepted definition of XML mining tasks. This
paper tries to examine the XML mining tasks and provide guidelines to design XML algebras for data mining.

The paper is organized as follows: Section 2 gives background information and motivation of this research. Section 3
compares three recently proposed XML algebras based on the attributes formally defined in this section. Section 4 discuss
the guidelines to define and represent knowledge on XML as well as the principles for extending the existing XML algebras
for mining tasks. Section 5 is the summary.

2. MOTIVATIONS AND BACKGROUND INFORMATION

HTML documents have hierarchical structure with elements being nested and enclosed by pre-defined tags. The tags define
the display format of the content embedded in them. In other words, HTML documents have no knowledge of the semantic
internal relationships between elements. As a result, the existing search engines only employ keyword matching strategy
in retrieving data. HTML documents are treated as plain text documents, tags are simply ignored in the content searching
process.

An XML document consists of nested elements enclosed by user-defined tags, which indicate the meaning of the
content contained. Figure 1 shows an example of an XML document named pub.xml, which contains some publication
information.



<?xml version="1.0" ?>
<publication>

<journal title="DBMS">
<editor>Jack</editor>
<article>

<title>index construction</title>
<author>Smith</author>

</article>
<article>

<title>query evaluation</title>
</article>

</journal>
<journal title="data mining"> </journal>

</publication>

Figure 1. An example of an XML document: pub.xml

As illustrated, an XML document has a hierarchical structure. In most cases, we can view this structure as a tree. In
Figure 1, the root elementpublicationcontains twojournal elements, each with an attributetitle. The firstjournal element
contains three elements, oneeditor and twoarticles, which also have their own sub-elements.

Since the user-defined tags of XML documents reflect the inherent relationships between elements, we may use tra-
ditional database techniques to query XML documents. If the structural information of XML documents could be fully
exploited, we may obtain much more accurate results. The explicit internal relationships between elements makes it possi-
ble to query XML.

It is natural to think about using query languages similar to SQL (Structured Query Language) in relational databases
to query XML. However, the traditional SQL language is unable to capture the internal structures of XML data. In a
relational database, data is represented in relations, where each relation consists of a relation schema and relation instances.
The data in relational database is flat with no containment relationship between elements(tuples). Based on the relational
model, SQL queries only employ value-based predicates to make selection without considering the internal structure. In
comparison, the XML data model is more complex. It can not be viewed as a table but a directed, edge-labelled tree or
directed, edge-labelled graph. Nodes in the tree/graph represent elements or attributes, while the edges connecting nodes
represent parent-child relationship between elements or element-attribute relationship. Each edge is labelled tag name of
the element or name of the attribute to which this edge points. Containment is the main relationship between elements.
Moreover, unlike the relational model, XML does not have a pre-defined strict schema, it allows missing or repetition of
sub-elements. For example, in Figure 1, the firstjournal element contains three sub-elements but the secondjournal has
none. Therefore, SQL for relational databases can not be applied on XML data directly.

There are some approaches in literature to solve the query problem over XML data. We classify them into two cate-
gories:

Transformation of data map XML documents into instances of relational databases in order to use a traditional query
language,19, 20

Development of query languagedevelop new query languages2–4, 22 to extract the information of internal structure of
XML, specifically, the containment relationships between elements.

The first approach usually produces too many relations and loses important information on relationship. For example,
the explicit hierarchical relationship between XML elements may be lost. We adopt the second approach in this paper.

Although XML query languages in literature differ in detailed grammars, they share a common feature, that is: querying
structure as well as values of elements. In other words, a query makes selection based on the elements’ positions in the



data source in addition to their values. For example, Figure 2 is a query expressed in Xquery22 over the documentpub.xml
in Figure 1 where “//” indicates ancestor-descendant relationship, and “/” indicates parent-child relationship. This query
retrieves frompub.xmltitles of all the articles written by Smith.

FOR $b IN document("http://.../pub.xml")/publication//article
$a IN $b/title

WHERE $b/author="Smith"
RETURN

<article>$a</article>

Figure 2. A query in XQuery to pub.xml

Query languages are designed to express human information needs. A user’s query only describes the desired answer
without specifying how the answer is to be computed. In order to obtain the answer, the system must translate the user’s
query into an execution plan and then carry out the plan to get the results. In the relational database, when a query is
given by users, the system translates the query into the form of relational algebra which describes a step-by-step procedure
for computing the answer, based on the order in which operators are applied in the query. Naturally, we need some
expressions similar to relational algebra to describe queries for XML in an operational manner. Since these expressions are
the counterpart of relational algebra in XML manipulation, it could be called XML algebras. As some research has been
done on manipulating query and data mining on relational database with an unified language, it might be possible to do so
on XML data. The existing XML algebras might be a good starting point to design XML mining algebras.

3. DEFINITION AND COMPARISON OF XML ALGEBRAS

XML algebras play the same role over XML documents as relational algebra in relational database, that is, as the interme-
diate representation to user’s queries. Analogous to relational algebra, an XML algebra can be defined as:

DEFINITION 3.1. An XML algebraX is a quadruple{M, B, P, R}, whereM is the XML data model;B is the basic unit
of information;P is a set of operators that operate on the instances of the data model; Each operator accepts one or two
collections ofBs as input and produces a collection ofBs as output;R is a set of equivalence rules (or called optimization
rules) of operators used for optimization.

As mentioned above, the XML data model could be either a tree or graph. A forest could be transformed to one tree
by simply adding a root node as the parent to all trees. Basic unit of information is the individual member of collections
that are feed to the operators. As we know, in relational algebra, each operator accepts relations as input and produces a
relation as its output. A relation is composed of tuples which is the basic unit of information in relational algebra. In XML
algebras, however, basic unit of information could be regarded as the correct counterpart for a relational tuple. Equivalence
rules reveal the associative or commutative properties of some operators. Thus we could reorder the operators of a query
to reduce the size of intermediate results without affecting the final results.

Since XML algebras are designed to generate efficient step-by-step procedures for users’ queries in a certain query
language, there are at least two criteria that can be used to evaluate an XML algebra: expressiveness and efficiency.
Expressiveness is the ability to express all the queries in certain query languages such as Xquery.22 Efficiency is the
ability to produce efficient evaluation plan by applying the optimization rules.

There are many XML algebras that have been proposed in literature. We will focus on three recently proposed algebras:
Niagara Algebra,6 TAX(Tree Algebra for XML)11 and XAL5 in this paper. They will be compared from five aspects,
namely, data model, basic unit of information, operators, expressiveness, and optimization rules.

TAX is an algebra for XML data developed for TIMBER XML database system at the University of Michigan.9 It
manages collections of data trees directly, that is, a collection of data trees is feeded to the operators directly. TAX
uses the notion ofpattern tree, which identifies the subset of nodes of interest in any tree in a collection of trees. Most
operators in TAX use apattern treeto select needed information. Niagara is an XML algebra designed by University
of Wisconsin for Niagara Internet query system.14 Instead of feeding the whole trees to the operators, Niagara uses a
bag of vertices which contains the vertex being operated upon and all the vertices already visited along the path to that
vertex. XAL is simpler than the above two. The operators of XAL receive collections of vertices as input. There are



Relational TAX Niagara XAL
selection selection select selection
projection projection follow projection
product product product product

join join join join

Table 1. Algebra operators

three categories of operators:extractionoperators that retrieve the information from XML document,meta-operators that
control the evaluation of expression, andconstructionoperators that build new XML documents from the extracted data.
XAL also provides a heuristic optimization algorithm.

3.1. Data model

In XAL, each XML document is represented as a rooted directed graph with a partial order relation defined on its edges.
Niagara also model the XML document as rooted directed graph with elements and attributes corresponding to vertices in
the graph. TAX treats the XML documents as forest of labelled rooted trees. Each node of the trees has a virtual attribute
calledpedigreewhich carries the history of “where it came from” as trees are manipulated by operators.

3.2. Basic unit of information

Analogous to relational algebra operators who operate on collections of tuples, an operator of an XML algebra performs
manipulation on collections of entities. Basic unit of information refers to the individual member of these collections, or
counterpart in XML for a relational tuple.

In XAL, the basic unit is the vertex which represents either an element or attribute. An operator receives a set of
vertices as input and produces a set of vertices as output.

Niagara thinks of a bag of vertices as the basic unit. Thus the operators operate on a collection of bags of vertices,
where each bag contains the vertex being operated upon as well as all the vertices already visited along the path to that
vertex. Galanis,et al.6 pointed out the drawbacks of treating vertex as basic unit. XML document allows repetition of sub-
elements, consequently, an element may have several sub-elements with same tag names but different content. Suppose
we apply an operator that filters elements based on the content value of their sub-element, and an element qualifies if the
content value of any of its sub-elements satisfies the qualification. The output of this operator consists of elements that
may have sub-elements that do not satisfy the qualification.

TAX takes a labelled rooted tree as the basic unit by introducing the notion of pattern tree and witness tree. A pattern
tree is a pair ofP = (T,E), whereT is a node-labelled and edge-labelled tree,E is a formula with value-based predicates
applicable to tree nodes. Each node inT has a distinct integer as its label and each edge is either labelledpc (parent-child)
or ad (ancestor-descendant). A witness tree is an instance in the data trees that matches the pattern tree. In other words, a
witness tree is an embedding of a pattern tree.

3.3. Operators

Each algebra defines a set of operators. Some of them have the same name with their counterparts in relational algebra.
Table 1 summarizes the major operators of these three XML algebras, comparable operators are in the same row.

These XML algebras have similar operators. Like theselectionoperator in relational algebra,selectionor selectoper-
ator in XML algebras chooses qualified entities from the input set of entities. Entity refers to the basic unit of information.
The projectionor follow operators have operations differing greatly from their counterpart in relational algebra. In rela-
tional algebra, theprojectionoperator output all the tuples from the input with certain fields being removed. However, in
NiagaraandXAL, theprojectionor follow operators produce a set of entities reachable by following the paths specified by
the parameter from the input set of entities. InTAX, theprojectionfinds entities that match the input pattern and output
these entities with some attributes being removed. In summary, theprojectionoperators work more like the combination
of selectionandprojectionin relational algebra.Joinoperators receive two sets of entities and produces a set of compound
entities based on the join condition. AProductoperator is a join operation with join condition always true.



3.4. Expressiveness

As XML algebras serve as intermediate representation of user’s queries, it must be powerful enough to express all possible
queries in certain query language.TAXsupports most queries in many popular XML query languages, such as XQuery,22

XML-QL 4 etc. Niagarasupports queries expressed in Quilt.3 XALsupports queries in XQuery.22 In terms of expressive-
ness, TAX is the most powerful one.

3.5. Optimization rules

Queries expressed in XML algebras describe the step-by-step operations to compute the answer. Performance of the oper-
ations largely rely on the order of operators in the algebra expression. Optimization rules mainly refer to the equivalence
rules to reorder the operators in the algebra expression. The goal of optimization is to reduce the size of intermediate
results.

Niagaraexplicitly provides the equivalence rules. For example,follow operators are interchangeable, twoselections
on the same expression could be collapsed into a single selection using the conjunction of the respective predicates, etc.
TAX does not give rules explicitly, but it points out that its set operators such asunion, intersectionare associative and
commutative butproductoperator is neither associative nor commutative.XAL also provides a set of equivalence rules.
More importantly, it gives a heuristic algorithm that uses the equivalence rules to transform a query tree into an optimized
tree.

3.6. Summary

XAL is easy to understand and implement because it uses the vertex as the basic unit of information. TAX and Niagara
are more efficient. In terms of expressiveness, TAX is the most powerful. However, it is unwise to say that one is better
than the other as each has its advantages. The importance here is that these algebras provide a very good starting point to
develop XML algebras for mining tasks.

4. ALGEBRAS FOR XML MINING

Data mining is to find previously unknown and potentially useful knowledge from a large amount of data.17 Finding
association rules, data classification, and clustering are some tasks of data mining. Researchers have been conducting
intensive studies in supporting individual mining tasks. However, they fail to support multi-step mining tasks.10 We could
not perform complex mining task which is the combination of several simple tasks of different types. In this case, the output
of one task need to be served as the input to another task. Decades of successful experiences in database systems enlighten
many researchers to employ methods similar to query manipulation, i.e. designing standard data mining query languages.
The ideal scenario is that complex data mining tasks could be expressed in a standard data mining query language. The data
mining system can therefore translate the given tasks into an internal representation form which is actually a step-by-step
procedure to get the mining result. Furthermore, this step-by-step procedure, or execution plan, could be optimized by
reordering the sub-tasks. To achieve this goal, the mined knowledge or pattern and the raw data must be represented in the
same form.8 Imielinske and Mannila8introduced the concept of inductive databases where data and generalized patterns
are kept.

Knowledge discovery is an interactive process as traditional querying, i.e. users can query data and patterns with
an unified language. Many data mining query languages have been proposed to provide an integration of data mining
environment with database management systems. Hanet al.7 was probably one of pioneers in designing the data mining
query languages for relational database and suggested design guidelines. To evaluate data mining queries, several algebras
for data mining were proposed.10, 18 However, they were designed specifically for mining relational databases. Little
research has been done in the field of mining XML with an unified language.

One of the simplest methods to mine XML documents is probably to transform the data from XML to relations.
However, the drawbacks of this method are: 1) the transformation itself is usually complex and time-consuming; 2)
the transformation may lose some important information for generating rules of interests, for example, some explicit
hierarchical relationship between XML elements may become inexplicit when transformed into relations.

The other way is to mine knowledge on XML directly. However, due to the vague definition of data mining, there
is no widely accepted interpretation of “knowledge” on XML. For example, what is an association rule on XML data?



What is the individual object in data clustering? Recently, Nayak,et al.16 gave taxonomy of XML mining and classified
XML mining into structure mining and content mining, upon which different tasks of mining were informally defined.
For example, in XML structure mining, clustering is to identify DTD (Document Type Definition) similarities among
XML documents. DTD defines the legal building blocks of an XML document. Association rule discovery is to describe
relationship between co-occurred tags. In content mining, clustering and association rule discovery are applied to the
content.

Generally, the individual object in mining tasks is an XML document. In other words, an XML document is the
counterpart of tuple in relational database mining. However, this taxonomy has some limitations:

1. In XML documents, the path formed by concatenating tags from the root to the current element describes the meaning
of the enclosed content. The separation of structure mining and content mining often results in incorrect rules.

2. The structure mining mainly deals with DTD, which itself is not an XML document. Thus it is difficult to represent
knowledge obtained from structure mining in the same form as that from content mining.

The prerequisite of designing XML mining algebras is that all generalized knowledge must be expressed in XML,
i.e. input and output of operators must have the same form. Extension of existing XML algebras by adding some mining
operators might work well as a mining algebra. We first need to examine possible mining operators. We may take an
easy way to design an operator for each mining task. Each operator is associated with an algorithm for the mining task.
However, this method leaves little room for optimization. A further development is to decompose mining tasks into several
sub-tasks. These sub-tasks are shared among different mining tasks. We could design an operator for each sub-task. With
such consideration, we should find the minimal set of sub-tasks such that all the mining tasks could be fulfilled by the
execution of a sequence of sub-tasks. We can then define an operator for each sub-task. All operators should have the
following properties:

1. The operation of each operator should be clearly defined and easily implemented.

2. The input and output of each operator should be in the same form.

However, due to the heterogeneity of knowledge, it is very difficult to find such a set of sub-tasks or define the operators
for the sub-tasks. Knowledge are at different abstraction levels. Some knowledge is extracted from the primitive data,
others are abstracted from generated knowledge. Since all types of knowledge ultimately comes from the raw data, they
have certain relationships between them. The relationship is either horizontal or vertical. Horizontal relationship means the
compared knowledge are at the same abstraction level. Vertical relationship means the compared knowledge are at different
abstraction levels. The lowest level knowledge is extracted directly from primitive data. The higher level knowledge is
generated from the lower level knowledge. All types of knowledge forms a hierarchy. For example, the frequent pattern
within an XML document is extracted from the primitive data. When these patterns are produced, the inter-document
clustering is performed based on the frequent patterns they contain. Each type of knowledge corresponds to one mining
task. If the mining tasks on XML could be defined in this way, any type of mining task could be decomposed to a sequence
of operations starting from the primitive data. As a result, most operators of the existing XML algebras could be used in
mining. We only need to add some operators for mining. These operators may include: an operator that counts the number
of given patterns, an operator that extracts all patterns of the given size, an operator that extracts the patterns containing
given sub-patterns, an operator that computes the similarity/distance between patterns,etc. Patterns could either be linear
or non-linear. Since all the patterns are represented in XML, linear pattern is regarded as a special case of non-linear
pattern.

5. TOWARDS XML MINING SUBTASKS AND OPERATORS

We will discuss some XML mining tasks in detail based on previous works in this section. With a clear understanding
of these tasks. A set of subtasks and operators can be identified. Therefore XML mining algebras could be proposed
based on the knowledge. One of the important XML mining tasks is to mine frequent tree patterns in a collection of XML
documents. The patterns are modelled as either ordered labelled trees or unordered labelled trees. An ordered tree refers
to a tree where the left-to-right order exists among the sibling nodes. An unordered tree is a tree where the order of sibling
nodes are ignored. Formally, the problem is defined as,



DEFINITION 5.1. Given a collection of data treesD and a user-defined minimum supports, find frequently occurred tree
patterns inD with frequency greater than or equal tos.

This problem is closely related to thetree inclusion problem: given a pattern treeP and a target treeT , find the
instances ofP in T . Kilpelainen12 studied the tree inclusion problem under five variations ofinclusionin either an ordered
or unordered target tree. The five variations are as follows:

Tree inclusion A pattern treeP is an included tree of target treeT , if there is a label-preserving mappingf from the nodes
of P to nodes ofT such that for all nodesqi, qj ∈ P, qi is the parent ofqj ⇐⇒ f(qi) is an ancestor off(qj);

Path inclusion A pattern treeP is a path-included tree of target treeT , if there is a label-preserving mappingf from the
nodes ofP to nodes ofT such that for all nodesqi, qj ∈ P, qi is the parent ofqj ⇐⇒ f(qi) is the parent off(qj);

Region inclusion A pattern treeP is a region-included tree of target treeT , if (1) P is a path-included tree ofT ,(2) for
every pair of matching nodesf(qi), f(qj) ∈ T , f(qi) is a left sibling off(qj), all nodes ofT that are right siblings
of f(qi) and left siblings off(qj) are matching nodes;

Child inclusion A treeP is a child-included tree of target treeT ,if (1) P is a path-included tree ofT , (2)whenever a node
q ∈ P hask children,k > 0, f(q) has alsok children;

Subtree inclusion : A treeP is a subtree of target treeT , if P is isomorphic to a subtree ofT ;

Kilpelainen12 also gave the complexity of these inclusion problems as shown in Table 2 wherem is the size of the
pattern tree andn is the size of the target tree.

tree-inclusion path-inclusion region-inclusion child-inclusion subtree-inclusion
unordered NP-complete O(m1.5n) O(m2n) O(m1.5n) O(n)
ordered O(mn) O(mn) O(mn) O(n

√
mpolylog(m)) O(n)

Table 2. Complexity of tree inclusion problems

The above mentioned variations of tree inclusion are all based on label-preserving mapping, that is, the label of nodes
in patternP are the same to the label of their matching nodes in target treeT . Amer-Yahia1 proposed the concept ofnode
generalizationof tree patterns.Node generalizationpermits the label of a node to be generalized to a super-type. Suppose
there exist a knowledge hierarchy in which ”publication” is a super-type of ”paper”. The label ”paper” could be generalized
to ”publication” so as to produce more matching instances. It is useful in classifications when no frequent pattern can be
extracted from training set of the same class using label-preserving mapping.

The solution oftree inclusionproblem provides a foundation for frequent tree pattern mining. Termieret al.21 intro-
duced an algorithm calledtreefinderto find frequent trees from a collection of trees under three variations of tree inclusion:
subtree inclusion, inclusion by tree embedding(equivalent to thetree-inclusionin12), andinclusion by tree subsumption. A
data treed is said to include a tree patternp by subsumptionif there is a mappingf from the nodes ofp into the nodes ofd
such that for all nodesqi, qj ∈ p, qi is the parent ofqj =⇒ f(qi) is an ancestor off(qj). Treefinderis not guaranteed to find
all frequent trees. The useful feature of this algorithm is that it is a two-step algorithm, which raises the possibility that this
task could be decomposed into two sub-tasks. Zaki’s23 treemineralgorithm tried to discover all frequent treeembedded
(equivalent to thetree-inclusionin12) in a collection of ordered trees. This algorithm could be applied to unordered trees
with slight modification.Treemineris based on the property of frequent patterns: a super-pattern is less frequent or as
frequent as a sub-pattern. There are two steps of this algorithm: 1) enumerate candidate sub-trees of sizek and 2) count the
frequency of these sub-trees. The sub-tree of sizek + 1 is generated from the sub-trees of sizek that have frequency larger
than the threshold. Obviously, we can design an operator for sub-tree enumeration and an operator for frequency counting.

Frequent pattern is a kind of knowledge derived directly from raw data. It is used to classify XML documents. Zaki
and Aggarwal24 proposed the concept ofstructural rulewhich is denoted asT =⇒ ci, whereT is a frequent tree pattern
andci is one of the classes. A structural ruleT =⇒ ci implies that the presence of patternT in an XML document is
related to its likelihood of belonging to classci. Usually a classification task can be divided into two phases: training phase



and testing phase. In the training phase, structural rules are mined from the classified training data. In the testing phase,
the input XML document is classified according to its matching structural rules.

Classification task consists of the following sub-tasks: 1) the frequent tree patterns are mined from training documents,
it could be fulfilled by the operators just discussed above; 2) predictive structural rules are generated based on the frequent
pattern and class labels of the training documents; 3) all the matching patterns (antecedents of structural rules) are retrieved
from the test document, which is thetree inclusionproblem we discussed in previous section; 4) the test document is
classified by combining the statistics from each matching rules. Since an XML document may match more than one
structural rule, we need a formula to put these rules together to predict its class. It could be performed by the operator that
receives a user-defined function as parameter. This function defines the strategy on how to use the structural rules.

The problem of clustering has been extensively studied by many researchers. Most research focus on clustering text
documents where no internal structure is considered. Two important factors of clustering aredistance metricandclustering
algorithm. In XML clustering, the clustering algorithms for text document could still be used, but the distance metric must
be defined on the XML data modelled as trees. Generally, there are two kind of methods to define the distance metric for
XML documents13:

1. Set Based Metrics: each XML tree is decomposed into a set of objects (edge, path or prefix of path) and two such
sets are compared to compute the distance between two XML trees.

2. Tree Edit Distance Based Metrics: edit distance is the minimum cost of transforming treeA to treeB using a
pre-defined set of edit operations, where each operation being associated with a cost.

Usually the edit distance metric performs better than set based metrics in capturing the structure of XML trees. Unfortu-
nately, the general tree edit distance problem for unordered trees are NP-hard.25 Zhang and Shasha25 gave anO(n3 log n)
algorithm for computing tree edit distance between ordered trees, using operations of single-node insertion and deletion.
Nierman and Jagadish15 expanded the set of operations by adding sub-tree insertion and deletion and associated different
cost to operations. No matter what operations are used, the clustering task is composed of two sub-tasks: 1) compute
the distance between XML documents; 2) apply the clustering algorithm. The resulting clusters could be a partition or
a covering of the input data, depending on the algorithm. Therefore, we need at least three operators, one for distance
computation, the other two for partition-clustering and covering -clustering.

6. SUMMARY

The ultimate goal of XML algebras is to provide operational procedure to obtain answers of user’s queries. XAL is simple
and could be implemented easily. Niagara extends the definition of basic unit from one vertex to bag of vertices. TAX is
an algebra managing collections of tree directly. These XML algebras are good starting point to design algebras for XML
mining. Extension of the existing algebras by adding some operators for mining tasks might work well. The intuitive way
to design one operator for each type of mining task is inefficient in execution and leaves little room for optimization. A
better solution is to design one operator for each sub-task whose operation is much simpler. How to decompose the mining
tasks into sub-tasks is still an open problem, and it is largely dependent on the nature of the mining tasks. We propose the
guidelines to define the mining tasks: mining tasks are defined at different abstract levels. Any type of knowledge could
be generated from knowledge at lower levels. Mining operators may include those performing the basic operations for
mining tasks, such as counting the number of given pattern, computing the similarity/distance between patterns, generating
patterns within the given size, etc.
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