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Abstract

With the popularization of the Internet and local networks, malicious attacks and

intrusion events to computer systems are growing. The design and implementation of

intrusion detection systems are becoming extremely important in helping to maintain

proper network security. Support Vector Machines (SVM) as a classic pattern recog-

nition tool, have been widely used in intrusion detection. However, conventional SVM

methods do not involve the different characteristics of the features of data sets. This

thesis proposes a new SVM model enhanced with a weighted kernel function based

on features of the training data for intrusion detection. Rough set theory is used to

perform the feature ranking and selection tasks of the enhanced SVM model in order

to take advantage of both SVM and rough set theory. Based on the feature ranks

resulting from Rough Set theory, a new algorithm is developed to calculate the feature

weights in a kernel function for the enhanced SVM model. The new model is tested

with two data sets namely, the KDD CUP 1999 dataset and the system call trace

dataset from the University of New Mexico. When compared with the result from

conventional SVM, the test provides evidence that the proposed model outperforms

conventional SVM in precision, computation time, and false negative rate.
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Chapter 1

Introduction

1.1 Background

The Internet is used extensively nowadays. According to Internet World Stats [45],

over a billion people use the Internet as of 2007. From 2000 to 2007, the number of

Internet users has grown 214%. Along with the growing number of Internet users,

the number of intrusions to computer systems through the network is increasing, and

the type of attacks is getting more sophisticated [35]. Additionally, the risk of being

attacked by intruders is getting higher for home and corporate computers. Network

security has become a serious issue for both personal and corporate users.

Network security, in general, includes anti-spam and anti-virus, authorization, au-

thentication and audit, firewalls, and intrusion detection. Anti-spam focuses on help-

ing end-users reject or block email spam. Anti-virus techniques usually use software

to identify, block and eliminate computer viruses or malicious software. Authoriza-

tion, authentication and audit are used to protect computer resources, such as files,

data, computer programs and devices from illegal accessing. The basic functionality
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of firewalls is to separate computer networks into different zones. Each zone can have

different security policies applied to prevent possible malicious actions to the com-

puter systems and resources. Intrusion detection uses an Intrusion Detection System

to detect possible malicious actions that bypass the firewalls and authentication. In-

trusion detection is therefore considered as a second defense line to the computer

systems and resources.

Most Intrusion Detection Systems(IDS) are software defense systems, which de-

tect and repel hostile activities in networks [3]. An IDS is used to monitor the events

occurring in a computer system or network, analyze the system events, detect sus-

pected activities, and raise an alarm if an intrusion is detected. An IDS should be

able to detect different kinds of malicious network actions and computer usages that

cannot be prevented passively by a conventional firewall with its security policies.

An IDS is more difficult to be implemented because the intrusion techniques keep

changing, and getting more and more intelligent, which requires an IDS to be flexible

and self-adjustable.

The key of an IDS is to discriminate hostile actions from normal user actions.

Because the new work intrusion is complex and changing rapidly, artificial intelligence

is used in the IDS, as a powerful tool dealing with intelligent behavior, learning and

adaptation in systems. Various artificial intelligence and soft computing techniques

have been used for analyzing the network attacking behaviors and detecting possible

intrusions, such as association rules [31], fuzzy logic [31], genetic algorithms [34, 52],

hidden Markov model [42], decision trees [25], Bayesian networks [25] and neural

networks [36]. Among all these methods, Support Vector Machine (SVM) has been

proved as an effective technique due to its nature of good generalization, and the
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ability of overcoming the problem of high-dimensionality data [7, 51].

First introduced by Vapnik in 1995 [51], SVM is a modern computational learning

method based on statistical learning theory. In SVM, data points in the original

feature space are transformed to a high dimension feature space which has typically

higher dimensions than the original feature space. In this high dimension space, an

optimal hyperplane is determined by maximizing the distance from the hyperplane

to the closest data points from two different classes. As a pattern recognition and

classification technique, SVM has been used in a lot of different application areas.

Osuna et al. [40] used SVM for human face recognition. Guyon et al. [15] used

SVM to classify cancer genes. Leslie et al. [32] developed a special SVM kernel to

classify different proteins. Rueda et al. [43] used SVM to analyze the currency crisis

in economics.

1.2 Motivation

Although having better performance compared to some other traditional AI tech-

niques, the conventional SVM could still be improved on intrusion detection in some

aspects.

One possible improvement could be done would be increasing the speed and ac-

curacy of SVM by feature reduction and feature selection. Let Ns be the number

of Support Vectors (SVs), l be the number of training data samples, and dL be the

dimension of the input data. The computational complexity of SVM’s training pro-

cess is O(N3
s + Nsl + NsdLl), and the complexity of intrusion detection process is

O(NsdL) [7]. From these two computational complexities we find that reducing data
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features can increase both the training and test speed of SVM. In addition to the

speed increasing, the feature selection can also increase the accuracy of intrusion

detection systems. In the dataset of real-life intrusion detection, some features are

redundant or less important than other features [24]. The redundant features make

it harder to detect possible intrusion patterns [30].

Generally, feature selection methods search through the subsets of features and try

to find the best subset which still contains enough information for intrusion detection.

Kira et al. presented a features selection algorithm based on the Euclidean distance

between data points [23]. Ben-Hur et al. used principal component analysis to find the

subsets of features on gene expression data [6]. Other machine learning and artificial

intelligence techniques, such as Bayesian networks, decision trees, and neural networks

have also been used for feature selection [13]. In this study we use rough sets as our

tool to do the feature selection. One unique characteristic of rough sets is that rough

sets can generate multiple feature subsets or multiple reducts at one time.

Introduced by Zdzislaw Pawlak in the early 1980s, the theory of rough sets is

a mathematical tool to deal with vagueness and uncertainty [41]. Rough sets use

two sets, the lower and upper approximation sets to approximate the given set. The

lower approximation set comprises all objects classified with certainty as belonging

to the given set. The upper approximation set comprises objects which are possibly

classified as belonging to the given set. A rough set is any set expressed in terms of

its upper and lower approximations. Rough sets theory has proved its advantages on

feature analysis and feature selection [16, 17, 55].

In this thesis, a SVM model enhanced with a feature-weights kernel will be pre-

sented. First, the rough sets technique is used to calculate feature reducts and feature
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ranks for a feature-weight kernel. Second, an algorithm is developed to calculate the

value of each feature weight from the feature reducts. Third, the feature weights are

applied to the conventional SVM kernel function to form the feature-weights kernel

and SVM model. Lastly the SVM model enhanced with the feature-weight kernel is

used to test two intrusion detection datasets, namely the KDD dataset from KDD

CUP 1999 and the UNM system call trace dataset from the University of New Mexico.

1.3 Outline

This thesis is organized as follows. In Chapter 2 we introduce the theories and

concepts relating to this study, including the Intrusion Detection System, SVM and

the theory of rough sets. In Chapter 3 we present the details of the enhanced SVM

model including the new kernel function, related algorithms, theorems and theorem

proving, and the implementation of the enhanced SVM model. In Chapter 4 we

report the experiments including processes, results, analysis and discussions about the

results. In Chapter 5 we conclude the whole study and give some possible perspectives.
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Chapter 2

Background Information

In this chapter we provide some detailed reviews of three related works to this

research. They are Intrusion Detection System (IDS), Support Vector Machine (SVM)

and the theory of rough sets. In the first section we provide a brief introduction to

IDS, including its definition, formation, architecture and some IDS using artificial

intelligence (AI) techniques. In the second section we introduce the theory of SVM.

We focus on the theoretical advantages of SVM that make it be a good tool for

Intrusion Detection and the SVM kernel function. In the third section we provide

the basic concept of feature selection and feature ranking, rough sets, as well as the

usage of rough sets on feature selection.

2.1 Overview of Intrusion Detection Systems

2.1.1 Basic Concepts of Intrusion Detection Systems

As we mentioned in Section 1.1, most Intrusion Detection Systems are software

defense systems. The major functions of an IDS are monitoring the events occurring
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in a computer system or network, analyzing the system events, detecting suspected

activities, and raising an alarm if an intrusion is detected. A typical IDS can be di-

vided into three functional components [3]: an information source, an analysis engine

and a decision maker. These three components can be applied on one single com-

puter, or more commonly be applied on three or more different computers. Therefore

the whole IDS can be a host system on one computer or be a distributed system on

a local network or even across the Internet. Figure 2.1 shows the relations between

these three components, the Internet and the protected systems.

Figure 2.1: Relations between IDS components, Internet and protected system

Of the IDS, the first component, the information source is used to monitor the

events occurring in a computer system or network. In the duration of monitoring, the

information source provides a stream of event records for analysis. This component

is working as an event generator. It senses and monitors different data sources, and

generates event data that are well formatted and suitable for an analysis engine to

do further analysis. Based on where their data come from, the data sources can be

divided into three categories: the first one is the data source related to operating
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systems, such as system calls and system logs. An example is the UNM dataset used

in this study [39]. The second category is the network traffic monitors generating

raw network packets. One example of this kind of data is the KDD dataset used in

this study [10]. The third category is data collectors of different applications running

on the network systems. The sensors of information source could be attached to

operating systems, new work devices and/or application software. The information

source captures all information using sensors, which are software processes continually

scanning the different data sources. After capturing data, the information source

executes a simple formatting, and sends the formatted data to the analysis engine.

The second component, the analysis engine is a key part of an IDS. An IDS relies

on the analysis engine to find the signs of intrusions. All the artificial intelligence

techniques can be applied to this component. The analysis engine analyzes, filters the

information coming from the information source, and discards any irrelevant data in

the information, thereby detecting suspicious activities. The analysis engine usually

uses a detection policy database for analyzing. Depending on different intrusion de-

tection approaches and techniques, there could be attack signatures, normal behavior

profiles and necessary parameters (for example, thresholds) in the detection policy

database.

The last component, the decision maker, applies some rules to the outcomes of the

analysis engine, and decides what reactions should be done based on the outcomes of

the analysis engine. The major reason for using the decision maker is to increase the

usability of an IDS.

Figure 2.2 shows the details of the three components of an IDS and the data flows

between these components.
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Figure 2.2: Component details of an IDS

Classified by the detection principle, there are two basic approaches used to detect

intrusions. The first approach is called misuse detection. An IDS using this approach

detects intrusion events which follow known patterns [3]. The patterns may describe

a suspect set of sequences of actions or describe a unique feature of an intrusion.

For example, a pattern could be a static bit string, which presents a specific virus.

In practice, an expert system can be used as a misuse IDS. The knowledge of past

intrusions can be encoded as rules by human experts or computers. These rules reflect

the ordered sequence of actions that comprise one or multiple intrusion scenarios.

Then the expert system uses the rules to detect the known intrusion activities. Kumar

and Ilgunet al. [27, 19] proposed misuse detection systems based on the rule matching.

In their models, the known intrusion signatures are encoded as rules, and are matched

against the audit data introduced by the analysis engine. The primary limitation of

misuse detection is that it cannot detect possible novel intrusions, i.e., events that
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never happened or captured in the system. Further, it is highly time consuming to

specify the intrusion patterns for a misuse IDS.

To overcome limitations of misuse detection, the second approach called anomaly

detection is proposed. An anomaly detection based system analyzes the event data

of a training system, and recognizes the patterns of activities that appear to be

normal [3]. If a test event lies outside of the patterns, it is reported as a possible

intrusion. From this point of view, the anomaly intrusion detection can be considered

as a classification technology. We first use some training data to train a model, and get

a discriminant function or a classifier. Then we use this discriminant function to test

and classify new coming data. In this article we focus on anomaly intrusion detection.

From the viewpoint of classification, the major work of building an anomaly IDS is to

build a classifier which can classify normal event data and intrusion event data from

an original dataset. This classification process consists of two main steps, which are

training the parameters of a classifier from a training dataset and using this classifier

to classify a test dataset.

2.1.2 Intrusion Detection Systems Using AI Techniques

Many AI techniques have been used in IDS. One of the first well-known IDS is

MIDAS [44]. MIDAS is built as an expert system. Human experts analyze the logs of

computer systems and networks, recognize some rules detecting intrusions and store

the rules in the database of the expert system. The authors of MIDAS realized the

large workload of rule recognition so they introduced a mechanism that automatically

analyzes the data, recognizes and populates new rules or updates the old rules in the

database of the expert system. MIDAS is still a misuse system, though the authors
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improved the rule generation mechanism.

Another popular IDS is called NIDES [2]. As a comprehensive IDS, NIDES imple-

ments both misuse and anomaly detection approaches. NIDES implements anomaly

detection using “Profiles”. These profiles are actually patterns presenting the normal

system activities. The IDS monitors and analyzes all kinds of data, such as CPU us-

age, command usage, and network activities, then generates profiles. The profiles in

NIDES are usually updated once a day to reflect new changes. Besides the automati-

cally updating, the system administrators can manually add extra information to the

profiles, for example certain date or users information. Including human interference

makes the NIDES have the ability of a misuse system.

From the introduction of the two IDS systems, we can see that both misuse and

anomaly detection approach in IDS need to analyze data and recognize some new

rules or patterns. The main challenge of an IDS is to find the patterns efficiently and

accurately, which relies on the detection techniques applied to the analysis engine.

Since the intrusion detection can be considered as a classification or pattern recogni-

tion issue, many artificial intelligence and soft computing techniques have been used

to analyze data and find the patterns of normal behaviors or intrusions. Qiao et

al. [42] presented a detection method by using a hidden Markov model to analyze

the system call traces from the UNM dataset. Lee et al. [31] established an anomaly

detection model that integrated association rules and frequency episodes with fuzzy

logic to produce patterns for intrusion detection. Mohajeran et al. [36] developed

an anomaly IDS that combines neural networks and fuzzy logic to analyze the KDD

dataset. Wang et al. [52] applied genetic algorithms to optimize the membership

function for mining fuzzy association rules from intrusion data.
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2.1.3 Intrusion Detection Systems Using SVM

Among all the AI and software computing techniques, SVM is one of the most

popular methods used for intrusion detection. SVM could be used in three different

ways in the intrusion detection process. First, SVM could be used directly to find the

pattern of normal activities of a computer system. Laskov et al. [28] implemented

the incremental SVM for network traffic monitoring. Tian et al. [48] presented an

anomaly detection method on a sequence-based dataset by using one-class SVM.

Zanni et al. [57] developed a parallel software for training large scale SVM. Deng et

al.[11] used SVM to detect intrusions on wireless networks . Yao et al. [54] presented

a rough sets enhanced SVM model for intrusion detection on both sequence based and

feature based datasets. Second, SVM could be used to find the important features

of data. Sung et al. [46] used SVM and neural network to rank the features of an

intrusion detection dataset. Third, SVM could cooperate with other AI and software

computing techniques to solve the intrusion detection problems. Chen et al. [9] used

genetic algorithms to analyze and optimize the data, then used SVM to classify the

optimized data. Tsang et al. [50] presented a computational geometry algorithm

adopting SVM kernel function to increase the speed of SVM on large scale intrusion

dataset.

Compared to other AI and software computing techniques, SVM is one of the

best methods in terms of accuracy and speed. Lazarevic et al. [29, 12] used SVM,

neural networks, density based local outlier and Mahalanobis-distance based outlier to

analyze unlabeled intrusion detection data, and discovered that SVM was the best in

terms of finding new intrusions. The detection rate of SVM is 7% higher than the rate
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of neural networks, 11% higher than the rate of density based local outlier, and 32%

higher than the rate of Mahalanobis-distance based outlier. Mukkamala et al. [37, 38]

applied SVM to identify important features and detect intrusions. They concluded

that SVM outperformed neural networks in the respect of scalability, training and

test time, and detection accuracy. SVM can train with a larger number of patterns,

while neural networks take a long time to train or fail to converge at all when the

number of patterns gets large. The detection speed of SVM is much faster than the

detection speed of neural networks. The accuracy of SVM is also higher than the

accuracy of neural networks.

SVM is effective in intrusion detection mostly due to its nature of good general-

ization and the ability of overcoming the problem of high-dimensionality data [7, 51].

In the following section, we introduce SVM and analyze why SVM has good general-

ization ability and good handling on high-dimensionality data.

2.2 Overview of Support Vector Machine

In this section, we briefly explain the basic concept of SVM and the kernel func-

tions used in SVM, then we provide some theory explanations for why SVM has good

generalization ability and ability to handle very high dimensionality which are the

major advantages of using SVM for intrusion detection.

2.2.1 Basic Concepts of SVM

From Section 2.1.2 we know that intrusion detection process can be considered

as a pattern recognition and classification process. A general two-class classification
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problem can be presented as: given l training data samples ( ~x1, y1)..(~xi, yi)...(~xl, yl),

find a discriminant function f(~x) such that y = f(~x), where yi = {+1,−1} is the

class label for sample data point ~xi.

When the data is linear separable, the discriminant function is a optimal hyper-

plane which takes the form [7]

~w · ~x − b = 0, (2.1)

where ~w is normal to the hyperplane, |b|/||~w|| is the perpendicular distance from the

hyperplane to the origin, and ||~w|| is the Euclidean norm of ~w. All the data satisfy

the constraints

~w · ~xi − b >= 1 for yi = 1; ~w · ~xi − b <= 1 for yi = −1. (2.2)

We could define two hyperplanes which are parallel to the optimal hyperplane.

These two hyperplanes take the form [7]

~w · ~x − b = −1; ~w · ~x − b = 1. (2.3)

The data points that lay on these two hyperplanes are the data points closest to

the optimal hyperplane within their own classes. These data points are called Support

Vectors (SVs). This is where the name Support Vector Machine comes from.

The optimal hyperplane is determined by maximizing its margin to different

classes of data points, which means to find the two hyperplanes that maximize the

distance to each other. This distance is 2/||~w||. So the problem of finding the optimal

hyperplane is transferred to minimize ||~w|| under the above two constraints.
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The final linear discriminant function is given as [7]

f(~x) = sgn(
l∑

i=1

αiyi(~xi · ~x − b)), (2.4)

where l is the number of support vectors, yi ∈ {−1, +1} is the label associated with

the training data, 0 ≤ αi ≤ C, C > 0 is a constant, ~xi is the support vectors found

from the training process.

In the case that data points are not linear separable, SVM transforms the data

points to another higher dimensional space in which the data points will be linear

separable. If we define the transforming as

Φ : Rd ½ H, (2.5)

the linear discriminant in space H or the nonlinear discriminant function in space Rd

is given as

f(~x) = sgn(
l∑

i=1

αiyi(Φ(~xi) · Φ(~x) − b). (2.6)

2.2.2 Kernel Functions of SVM

To directly solve Φ in Equation 2.6 is difficult. SVM uses the “kernel trick” to

solve the problem. The kernel trick uses a kernel function K such as

K(~xi, ~xj) = Φ(~xi) · Φ(~xj) (2.7)

to generate a nonlinear discriminant function. We only need to use K in SVM and

never need to explicitly know what Φ is.

The kernel function K exists if and only if the Mercer’s Condition is satisfied [7]:

there exists a mapping Φ and a kernel expansion K(~xi, ~xj) = Φ(~xi) ·Φ(~xj) if and only
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if, for any g(~x) such that ∫
g(~x)2d(~x) is finite, (2.8)

then ∫
K(~xi, ~x)g(~xi)g(~xj)d(~xi)d(~xj) ≥ 0. (2.9)

The final format of nonlinear discriminant function of SVM is given as [7]

f(~x) = sgn(
l∑

i=1

αiyiK(~xi, ~x) − b). (2.10)

2.2.3 Generalization Ability of SVM

In this section we discuss Structural Risk Minimization which makes SVM have a

good generalization ability.

Suppose y is the class label of data point ~x, f(~x) is the discriminant function.

The classification error can be measured as [7]

E(y, f(~x)) =

 0 if y=f(~x)

1 otherwise
(2.11)

If there is a discriminant function with general adjustable parameter set λ, given

a general classification problem, the accuracy of this function can be measured by the

expectation of test error, given as [7]

R(λ) =

∫
E(y, f(~x, λ))dP (~x, y). (2.12)

R(λ) is called the actual risk. P (~x, y) is an unknown probability distribution,

which is not available for most classification cases. f(~x, λ) is a possible mapping from

~x to y. λ is the set of adjustable parameters in the mapping. R(λ) is the quantity
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which we are ultimately interested in. Because P (~x, y) is hard to know, we must use

a empirical risk Remp(λ) to estimate R(λ) as

Remp(λ) =
1

l

n∑
i=1

E(y, f(~x, λ)), (2.13)

where l is the number of training data samples.

Some of the classification training algorithms implement Empirical Risk Mini-

mization (ERM), i.e minimize Remp(λ) using Maximum Likelihood estimation for the

parameter λ. But an algorithm using only ERM can result in overfitting, which can

well classify training data samples, but has poor accuracy in testing data samples.

In SVM, Vapnik used Structural Risk Minimization (SRM) [51] to find the learning

machine that has a good trade-off of low Remp(λ) and good generalization ability.

According to SRM, choose some η such that 0 ≤ η ≤ 1, the following bound

holds between R(λ) and Remp(λ) [51] given as

R(λ) ≤ Remp(λ) +

√
h(log(2l/h) + 1) − log(η/4)

l
, (2.14)

where h is a non-negative integer called the Vapnik Chervonenkis (VC) dimension.

VC dimension decided the classification capacity of a classifier. The higher h means

higher classification capacity [7]. If its capacity is too high, which means the classifier

has the overfitting problem. The second term on the right hand side is called VC

Confidence. The whole right hand side is called the bound on actual risk R(λ). From

Equation 2.14 we can see that to minimize R(λ), one has to minimize the bound,

which is equal to minimize Remp(λ) and VC Confidence simultaneously. We can

prove that given a fixed, sufficiently small η, VC Confidence is monotonic in VC

dimension h [7].
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We can see from Equation 2.13 that Remp(λ) depends on a particular function

in the function set f(~x, λ). Because VC dimension h is an integer, VC confidence

depends on a chosen subset of function set f(~x, λ). With different value of h, a

“structure” is introduced by dividing the entire function set into nested subsets. For

each subset, we must be able either to compute h or to get a bound on h itself. SRM

then consists of finding that subset of functions which minimize the bound on R(λ).

This can be done by training a series of discriminant functions f(~x, λ), one for each

subset with a certain h, where for a given subset the goal of training is to minimize

Remp(λ). One then takes that trained machine in the series whose sum of Remp(λ)

and VC confidence is minimal.

SVM’s training is based on SRM. By minimizing VC confidence, SVM guarantees

the VC dimension h is not too high, therefore avoiding the overfitting problem.

2.2.4 High Dimensionality Handling of SVM

From Equation 2.6 we can see that when it does non-linear classification, the

SVM depend on the data only through the function Φ(~xi) · Φ(~x). If we replace

Φ(~xi) · Φ(~x) by K(~xi, ~xj) everywhere in the training algorithm, the algorithm will

produce a SVM which is in a very high dimension dH . Furthermore, comparing the

linear SVM Equation 2.4 and the non-linear SVM Equation 2.10, training SVM on

the transformed data takes roughly the same amount of time as training SVM on

the un-transformed data. This means we could build a non-linear classifier with the

similar amount of time we build a linear classifier. So the training time is linear to the

dimension of data. A simple analysis shows the computational complexity of SVM

algorithms. Let Ns be the number of Support Vectors (SVs), l be the number of

18



training data samples, and dL be the dimension of the input data. The computation

complexity of SVM’s training process is O(N3
s + Nsl + NsdLl), and the complexity

of intrusion detection process is O(NsM), where M is the number of operations to

evaluate the kernel [7]. For RBF kernel, M is O(dL) and the complexity of detection

process for SVM with RBF kernel is O(NsdL) [7].

2.3 Rough Sets and Reducts

Rough sets theory has several advantages that makes it a good choice for feature

selection and reduction. First, rough sets theory uses a clear mathematical manner

to discover hidden patterns in data, and the redundancies and dependencies between

the data features [41]. Normal feature selection methods simply select some subset of

the features set and do experiments against the feature subset. The feature selection

result is more experimental instead of mathematical. Rough sets use lower and upper

approximations, and decision tables as the mathematical table to find the feature

reducts. We consider that rough sets are more elegant in feature selection. Second,

normal feature selection methods only find one feature subset or reduct. Rough sets

can find out all of the possible reducts. We want to use as many reducts as we have

to evaluate the importance of the features. We consider that the multiple reducts

have a better generalization ability to present the data than a single reduct.

Because of the above advantages of rough sets, in this study we use rough sets and

reducts as tools to analyze the importance of features of a dataset. In this section we

briefly introduce the basic concepts of rough sets and reducts.

Originally introduced by Zdzislaw Pawlak in the early 1980s [41], rough sets are
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a very general technique for approximation of a given set. As we introduced in

Section 1.2, rough sets use two sets, the lower and upper approximation sets to

approximate a given set. The lower approximation set comprises all objects classified

with certainty as belonging to the given set. The upper approximation set comprises

objects which are possibly classified as belonging to the given set. A rough set is

any set expressed in terms of its upper and lower approximations. We could explain

rough set using the following algebraic notions [56]: Let U denote the universe, the

equivalence relation < partitions U into disjoint subsets. Given an arbitrary set

X ⊆ U , it may be impossible to describe X precisely. We can approximate X using

a pair of lower and upper approximation sets, the lower approximation as

apr(X) =
∪

[x]<⊆X

[x]<, (2.15)

and the upper approximation as

apr(X) =
∪

[x]<∩X 6=∅

[x]<, (2.16)

where

[x]< = {y|x<y} (2.17)

is the equivalence class containing x.

The main problems that rough set deal with are feature reduction, discovery of

data dependency, estimation of data importance, and approximate classification of

data [26, 41].

Reducts, in rough set theory, is standard for the subsets of the full list of features

containing no loss of quality and accuracy of approximation. A reduct is the minimal

feature set having the same classification information of the whole feature set [26].

A general hill climbing algorithm to calculate reducts is showed in algorithm 1:
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Algorithm 1: Reducts Calculation

Input : Full feature list F , data class C
Output: Reduct R
R ← {};1

while γ(R,D) 6= γ(C,D) do2

T ← R;3

foreach x ∈ (C − R) do4

if γ(R ∪ {x}, D) > γ(T,D) then5

T ← R ∪ {x};6

end7

end8

R ← T ;9

end10

In practice, there are many artificial intelligence and statistics techniques, such

as genetic algorithms [53] and heuristic search [4] that are used to calculate rough

set reducts. In this study, we use Rough Set Exploration System (RSES) [5] as the

tool to calculate Reducts. RSES is a Java implementation of the rough sets toolkit,

which can calculate reducts, simplify data table, or classify data. RSES can use either

Genetic Algorithm or exhaustive search to calculate reducts. We use it to deal with

both big and small datasets.
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Chapter 3

SVM Model with a Feature-weight Kernel

In this chapter we provide the details of the SVM model enhanced with a new

feature-weight kernel. In the first section we introduce the enhancements of the new

model compared to the conventional SVM model, and describe the formation and the

structure of the model. In the second section we introduce the new feature-weight

SVM kernel. In the third section, we theoretically prove the eligibility of the feature-

weight kernel in our SVM model. Finally, we introduce our implementation of the

enhanced SVM model.

3.1 SVM Model Enhanced with a New Kernel

As we mentioned in Section 2.2.2, the kernel function is the key to map SVM

from two-dimension space to high dimension space. The function decides the shape

of the finial discriminant function in the data space. It is a natural thought to change

the shape of the discriminant function to make it more suitable for the certain type

of data. This means improving SVM by changing the SVM kernel function. Amari

et al. [1] introduced a magnification factor into the SVM kernel. Generated from
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the training data, the magnification factor can adjust the spatial resolution around

the SVM discrimination hyper planes. Tan et al. [47] adds some coefficients and

parameters to the kernel function to extend the generalization power of the SVM.

The coefficients and parameters are generated by minimizing the upper bound of

the Vapnik Chervonenkis (VC) dimension. Tian et al. [48] applied dynamic pro-

gramming and bit-parallelism techniques to efficient computation of SVM kernel and

adapted the SVM kernel for anomaly detection of short sequences of system calls.

This anomaly detection is part of the intrusion detection. Leslie et al. [32] introduced

several new families of string kernels designed for use with SVM for classification of

protein sequence data. Suykens et al. [20] enhanced least squares (LS) SVM with

weights associated in training process to overcome the two potential drawbacks of

LS-SVM. These two drawbacks are losing generalization ability and low accuracy for

data with un-Gaussian distribution.

In this study, we propose a SVM model enhanced with a new feature-weight kernel.

We improve the conventional SVM kernel by adding feature weights to it. The feature

weights are calculated by analyzing training data with the rough sets technique.

After the calculation, the feature weights are integrated into the conventional SVM

kernel in such a way that the new kernel still satisfies Mercer’s Condition. From our

experiments we discover that, when used in the intrusion detection area, the SVM

with the new kernel function is faster and more accurate than the conventional SVM

with common kernels (linear, polynomial, radial basis function, etc.).

The major targets of the enhanced SVM model are:

• Reduce the redundant features to increase the speed of intrusion detection.
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• Apply information of features onto the SVM classification process to increase

the accuracy of intrusion detection.

In real-life datasets, some of the features are redundant or less important than

other features [24]. Feature reduction is feasible in practice for two main reasons:

1) Many of the features in a real-life dataset are correlated to each other [24]. For

example, when the voltage is fixed, the power and current in an electric system are

inherently linked. 2) Some features may carry low signal-to-noise ratios. Other fea-

tures may simply be unrelated to the task, so their values are noise. Before the

feature reduction is conducted, these noisy features’ relations to the application do-

main are unknown. For example in this study, the System Call dataset contains

sequence data. After mapping system call sequences to feature-value pairs, we will

see that the dataset becomes a high dimensional and extremely sparse matrix. In the

after-mapping System Call dataset, most of the features are unrelated to our task.

Although SVM uses kernel techniques to overcome the problem of high dimension,

in Section 2.2.4 we showed that the dimension of data is still linear to the compu-

tational complexity of SVM. From Equation 2.10 we can see that the information of

features are integrated into SVM through its kernel function, so we could enhance the

conventional SVM by adding a feature reduction ability into SVM kernel function.

The second enhancement that we want to apply to SVM is to apply features infor-

mation into SVM through the SVM kernel function. Various SVM kernel functions

are proposed for users to choose for different applications [7, 21]. Some of the pop-

ular kernel functions are the linear function K(~xi, ~x) = ~xi · ~x, polynomial function

K(~xi, ~x) = (s(~xi · ~x) + c)d, sigmoid function K(~xi, ~x) = tanh(s(~xi · ~x) + c), and radial

basis function (RBF) K(~xi, ~x) = e−||~xi−~x||2·γ . The kernel functions decide the shape
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of the hyperplane in the data space, so we need to choose different kernels for different

datasets with different data distributions. However, all of these kernel functions do

not involve the differences between the features of data. Actually, from the general

SVM kernel function format K(~xi, ~x), we can see that, in the conventional SVM,

all features of the training or test datasets are treated equally. Treating all features

equally may not be efficient and it may affect the accuracy of SVM. Based on the

SVM’s mechanical torque analogy [7], considering the case in which the data point

are in a two dimensional space R2, the i’th support vector generates a force Fi = αiyi
~I

on a stiff sheet lying along the decision hyperplane. The total torques generated by

all support vectors satisfies the condition of mechanical equilibrium as

∑
Torques =

∑
i

Si

∧
(αiyi

~I) = ~I
∧

~w = 0, (3.18)

where ~I is the unit vector in the direct ~w, which is perpendicular to the decision

hyperplane. The normal to the hyperplane ~w =
∑Ns

i=1 αiyi~xi. The decision hyperplane

is decided by Equation 3.18. From Equation 3.18, it is a natural thought that we can

put some factors or coefficients on each feature of the data to increase or decrease

the torque point to the direction of this feature. Those important features would

contribute a higher value of torque, which should increase the accuracy of SVM on

intrusion detection, while still maintaining a good generalization ability. We call the

coefficients applied to the features as feature weights. To implement this thought, we

enhance the conventional SVM kernel with feature weights.
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3.2 The SVM Kernel Enhanced with Feature Weights

3.2.1 Feature Weights Calculation

In Section 2.3, we introduced rough sets technique and its advantage for feature

selection and intrusion detection. In this section, we present an algorithm based on

rough set and reducts to calculate the weights in the enhanced SVM kernel function.

We propose that the feature weights should have the following attributes:

• The weights should include information for both feature discrimination and

feature reduction.

Because we want the new SVM kernel to be faster and more accurate than the

conventional SVM kernel, the feature weights should improve the SVM kernel

in feature discrimination and feature reduction.

• The weights calculation should be independent to any particular SVM kernels.

As we mentioned in Section 3.1, different datasets and data distributions need

different SVM kernels to classify them. If the weights depend on a certain type

of kernel, the use of the weights are restricted.

• The weights calculation should be fully automatic.

We need to use the feature weights in intrusion detection without any human

interference. An IDS system needs to be run continually to monitor and protect

computer networks and systems. As we mentioned in Section 2.1.1, the intru-

sions keeps changing. The SVM kernel and the associated feature weights are
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part of the patterns for detection intrusions. Updating patterns is also a con-

tinual work. It would be a huge workload for people if an IDS system requires

human to update the patterns.

Because the feature weighs requires the above attributes, we develop a feature

weights calculation algorithm with the following basic principles:

• If a feature is not in any reducts then the weight of this feature is 0.

• The more times a feature appears in the reducts, the more important this feature

is.

• The fewer the number of features in a reduct, the more important the features

appear in this reduct. If a reduct has only one feature, the feature belonging to

this reduct is the most important.

Based on the above principles, we propose an algorithm as depicted in Algorithm

2 that adopts rough set theory to rank features and calculate feature weights.

The input of the algorithm is the training dataset. The output of the algorithm

is a vector ~w. The dimension of the vector equals to the number of the features of

the training dataset. Line 1 uses RSES Rough Set Exploration System (RSES) [5]

to calculate the reducts from the training dataset and put the reducts in set R. Line

2 gets the number of features in the training dataset D. Line 3 gets the number

of reducts in the reduct set R. Lines 5-7 initialize the output vector ~w. Lines 9-17

repeat to calculate the value of each feature wi in the output vector ~w. Because m > 0

is always true, wi > 0 is always true. Guaranteeing wi is always greater than zero is

very important. It makes the SVM kernel with feature weights ~w satisfies Mercer’s
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Algorithm 2: Feature Weights Calculation

Input : Dataset D.
Output: A weight vector ~w.
R ← Find out all the reducts of D using rough sets;1

Nfeature ← number of features in D;2

Nreduct ← number of reducts in R;3

//Initialize the weight of each feature.4

for (i ← 0 to Nfeature) do5

wi ← 0;6

end7

// Calculate the weight of each feature.8

for (i ← 0 to Nfeature) do9

for (j ← 0 to Nreduct) do10

if
(
feature i in the jth reduct Rj

)
then11

m ← number of features in Rj;12

wi ← wi + 1
m

;13

end14

end15

Scale wi into the interval [0, 100];16

end17

Return ~w18

Condition, which guarantees the eligibility of the new SVM kernel [7]. We will prove

this conclusion in Section 3.3. Line 16 scale the result into interval 0 - 100.

We conclude some advantages of the algorithm are the following:

• Instead of simply ranking the importance of different features, this algorithm

calculates the actual value of the feature importance, which makes it possible

to bring the feature importance into a SVM kernel function.

• This value of importance is calculated from multiple reducts generated from the

rough sets algorithm. With more than one reduct, the feature weights reflect

more information of the dataset and is more stable compared to generating

feature weights from only one reduct [4].
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• Feature ranking and selection are done in the same process. Algorithm 2 re-

moves the redundant features and calculates the feature weights at the same

time. This makes it possible that the enhanced SVM model has both fast

processing speed and better accuracy than the conventional SVM. After the

feature ranking process, we consider those features with a 0 weight as the least

important features, and thus delete them.

3.2.2 The SVM Feature-weight Kernel Function

The final SVM kernel we proposed is enhanced in both feature discrimination and

feature reduction. This kernel calculates the importance of different features and

reduces redundant features at the same time. A nonlinear discriminant function with

feature weights is formulated as

f(~x) = sgn(
l∑

i=1

αiyiK(~w~xi, ~w~x) + b), (3.19)

where ~w is the output vector of algorithm 2. When using the new kernel function,

we form this vector ~w as a diagonal matrix as

w0 0 ... 0

0 w1 ... 0

... ... ... ...

0 ... ... wl


. (3.20)

For convenience, we still call ~w as a vector in the rest part of this article. The value of

each element wi in ~w is the weight of feature i. ~w enhances the SVM kernel function

with the feature’s information. Besides, if wi equals to 0, that means feature i is

redundant and we could remove the feature when using the discriminant function to
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classify data. The ~w improves the conventional SVM kernel function on both feature

discrimination and feature reduction.

3.3 Eligibility of The SVM Feature-Weight Kernel

In this section, we prove the eligibility of the new SVM kernel with Feature-

Weight. From Section 2.2.1 we know that all SVM kernel functions, including the

enhanced SVM kernel function, have to satisfy Mercer’s Condition. That means we

need to prove that K(~xi, ~x) = Φ(~xi) ·Φ(~x) exists if and only if, for any g(x) such that

∫
g(~x)2d(~x) is finite (3.21)

then ∫
K(~xi, ~x)g(~xi)g(~xj)d(~xi)d(~xj) ≥ 0. (3.22)

In this section we prove that the two frequently used kernels, linear and RBF SVM

kernels, can be enhanced with weights and satisfy Mercer’s Condition. Because the

weight-enhanced kernel function K(~w~xi, ~w~x) is applied to a known SVM kernel func-

tion K(~xi, ~x), here we only need to prove that if

∫
K(~xi, ~x)g(~xi)g(~x)d(~xi)d(~x) ≥ 0 (3.23)

then ∫
K(~w~xi, ~w~x)g(~xi)g(~x)d(~xi)d(~x) ≥ 0. (3.24)

First we prove two preparing theorems.
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Theorem 3.1. If kernels satisfy Mercer’s Condition, the sum of these kernels also

satisfies Mercer’s Condition. That is if

K(~xi, ~x) (3.25)

satisfies Mercer’s Condition, then

l∑
i=1

ciK(~xi, ~x) (3.26)

also satisfies Mercer’s Condition. Where ci ≥ 0 is a nonnegative constant.

Proof. Because K(~xi, ~x) is kernel function, from Equation 3.22 we have∫
K(~xi, ~x)g(~xi)g(~xj)d(~xi)d(~xj) ≥ 0.

Since ci ≥ 0, we have ∫
ciK(~xi, ~x)g(~xi)g(~x)d(~xi)d(~x) ≥ 0,

and ∫ l∑
i=1

ciK(~xi, ~x)g(~xi)g(~x)d(~xi)d(~x) ≥ 0.

Therefore
l∑

i=1

ciK(~xi, ~x)

satisfies Mercer’s Condition.

Theorem 3.2. If kernels satisfy Mercer’s Condition, the product of these kernels also

satisfies Mercer’s Condition. That is if

K(~xi, ~x) (3.27)
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satisfies Mercer’s Condition, then

l∏
i=1

ciK(~xi, ~x) (3.28)

also satisfies Mercer’s Condition, where ci ≥ 0 is a nonnegative constant.

Proof. Because K(~xi, ~x) is kernel function, from Equation 3.22 we have

∫
K(~xi, ~x)g(~xi)g(~xj)d(~xi)d(~xj) ≥ 0.

Since ci ≥ 0, we have

∫
ciK(~xi, ~x)g(~xi)g(~x)d(~xi)d(~x) ≥ 0,

and ∫ l∏
i=1

ciK(~xi, ~x)g(~xi)g(~x)d(~xi)d(~x) ≥ 0.

Therefore
l∏

i=1

ciK(~xi, ~x)

satisfies Mercer’s Condition.

Based on the theorem 3.1 and theorem 3.2, we can prove that both feature-weight

enhanced linear kernel and RBF kernel satisfy Mercer’s Condition.

Theorem 3.3. Weight-enhanced liner kernel function

K(~w~xi, ~w~x) = ~w(~xi · ~x) (3.29)

satisfies Mercer’s Condition.
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Proof. From Equation 3.20 we have the weight-enhanced linear kernel function

~w(~xi · ~x) =



w0 0 ... 0

0 w1 ... 0

... ... ... ...

0 ... ... wl


(~xi · ~x) = w0(~xi · ~x) + w1(~xi · ~x) + ... + wl(~xi · ~x).

From Alg. 2 we know that wi ≥ 0. Because (~xi ·~x) satisfies Mercer’s Condition, based

on theorem 3.1, the sum of (~xi · ~x) also satisfies Mercer’s Condition.

Theorem 3.4. Weight-enhanced RBF kernel function

K(~w~xi, ~w~x) = e−||~w(~xi−~x)||2·γ (3.30)

satisfies Mercer’s Condition.

Proof. From Equation 3.20 we have the weight-enhanced RBF kernel function

e−||~w(~xi−~x)||2·γ = e

−||

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

w0 0 ... 0

0 w1 ... 0

... ... ... ...

0 ... ... wl

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(~xi−~x)||2·γ

. (3.31)

In Equation 3.31

−||



w0 0 ... 0

0 w1 ... 0

... ... ... ...

0 ... ... wl


(~xi − ~x)||2 · γ

can be presented as a polynomial

a1||(~xi − ~x)||2 · γ + ... + al||(~xi − ~x)||2 · γ,

33



and the weight-enhanced RBF kernel function can be presented as

e−a1||(~xi−~x)||2·γ · ... · e−al||(~xi−~x)||2·γ, (3.32)

where ai ≥ 0. Based on theorem 3.2 we know that Equation 3.32 satisfies Mercer’s

Condition. Therefore the weight-enhanced RBF kernel function satisfies Mercer’s

Condition.

Similarly we could also prove that if d mod 2 = 0, the weighted polynomial func-

tion K(~w~xi, ~w~x) = (s~w(~xi · ~x) + c)d satisfies Mercer’s Condition. In our experiments,

the discriminant function with feature weight-enhanced RBF kernel

f(~x) = sgn(
l∑

i=1

αiyie
−||~w(~xi−~x)||2·γ + b) (3.33)

is used.

3.4 Implementation of The SVM Model Enhanced with a

Feature-weight Kernel

There are two popular implementations of the conventional SVM. The first one

is SVMLight developed by Joachims [21], which is a light weight C implementation

of the SVM algorithm. The SVMLight has been used in bioinformatics [18], text

classification [49], intrusion detection [11] and many other areas. The second one is

LIBSVM developed by Chang and Lin [8], which has different interfaces for different

programming languages such as C, C++, Java and Perl etc.

To implement the SVM model with a feature weight kernel, we choose SVMLight

as our prototype. The major reason we use SVMLight is that SVMLight is simple, and
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it separates the kernel function of SVM into an independent module. It is easier for

us to replace the conventional SVM kernel function with the feature weights enhanced

SVM kernel function.

The modification on SVMLight for the implementation of the enhanced SVM

model as following,

• Write a C program implementing algorithm 2. This program calculates feature

weights from the rough set reducts and forms a diagonal matrix. This ma-

trix represents the future weight vector ~w in Equation 3.19. The program is

integrated into SVMLight as an independent module

• Modify the data preprocessing module of SVMLight to remove the redundant

features. If the weight of a feature is equal to 0, we consider this feature is

redundant, then we remove the feature from the dataset.

• Modify the SVMLight kernel module, change the kernel function into format as

Equation 3.19.

The flowchart of the modified SVMLight program is shown in Figure 3.1

As we can see from Figure 3.1, the user interface of the enhanced SVM model

implementation is not different from the SVMLight. But the internal process of

the implementation has been enhanced with feature weights calculation and feature

reduction. The users need to input parameters, training data and test data. The

training data and the parameters are used to train the conventional SVM kernel.

Besides, the training data is also input into the feature weight calculation algorithm

to generate the feature weights. The new SVM kernel is generated by applying feature

weights to the training out of the conventional SVM kernel. During the test process,
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the test data are trimmed by a data preprocessing process which is applied the feature

weights. After the process, all the redundant features are removed from the test data.

Finally, the new SVM kernel enhanced with feature weight will classify the trimmed

data to get the final results.

As we mentioned in Section 3.1, various kernel functions can be used on the

conventional SVM model. SVMLight implements all of the linear function, the poly-

nomial function, the sigmoid function, and the radial basis function. Because the

enhancement is independent to the kernel functions, after our modification, the new

SVMLight kernel module applies feature weights to all these kernel functions. The

new kernel functions applied feature weights are that the linear function

K(~w~xi, ~w~x) = ~w(~xi · ~x), (3.34)

the polynomial function

K(~w~xi, ~w~x) = (s~w(~xi · ~x) + c)d, (3.35)

the sigmoid function

K(~w~xi, ~w~x) = tanh(s~w(~xi · ~x) + c), (3.36)

and the RBF function

K(~w~xi, ~w~x) = e−||~w(~xi−~x)||2·γ. (3.37)
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Figure 3.1: Flowchart of the modified SVMLight
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Chapter 4

Experiments

In this chapter, we provide the details of the experiments carried out about using

the Support Vector Machine with the feature-weight kernel for intrusion detection.

In the first section we describe the performance measures that we used for the ex-

periment. In the second section we present a common procedure using the enhanced

SVM model in an IDS. In the third section and the fourth section, we present two

experiments on the enhanced SVM model using two different datasets. The first ex-

periment uses the UNM dataset [39], which includes System Call sequence data. The

second experiment uses the KDD dataset [10], which presents basic network commu-

nication data. Network communication data and system call data are the most used

data in intrusion detection and these data provide good samples of real life intrusions.

We believe that the experiments on these two datasets could show that the enhanced

SVM model can be used in various intrusion detection scenarios. Each experiment

will be presented in the following sequence: dataset description, experiment proce-

dures, experiment results, discussion and the comparison to the conventional SVM

model. In the last section we summarize the experiments.
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4.1 IDS Performance Measures

Speed measure

The speed of an intrusion detection system depends on the host computer on which

it is running, the algorithm and the actual software implementation of the model.

To evaluate the speed of our model as objectively as possible, we run all the tests

on a same computer with a Pentium IV 2.66 GHz CPU and 512 M RAM. Because

software implementation of our model is based on SVMLight [21], when we compare

our model with the conventional SVM, we use SVMLight as the conventional SVM

software implementation and perform all the experiments on it.

Accuracy measure

We use measures[14] adapted from general measures used in information retrieval, to

evaluate the accuracy of an SVM model. The measures are showed in table 4.1.

In table 4.1, for a certain dataset, the total number of records =A + B + C + D,

the number of intrusion records = A + C, the number of normal records = B + D,

the number of records that are classified as intrusion = A + B, and the number of

records that are classified as normal = C + D.

Based on the above notations, we have Precision= A
A+B

, Recall= A
A+C

, False Nega-

tive Rate= C
A+C

, False Positives Rate= B
B+D

. Correspondingly, for an intrusion detec-

tion system, we have four evaluation factors, which are precision, recall, false positive

rate and false negative rate. A false positive occurs when the system classifies an

action as an intrusion while it is a legitimate action. In table 4.1, false positive

= B. A false negative occurs when an intrusion action has occurred but the system
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Table 4.1: Intrusion detection performance measure

Intrusion Not Intrusion
Detected as Intrusion A B

Not Detected C D

considers it as a non-intrusive behavior. In table 4.1, false negative = C.

A good intrusion detection system has a high precision and a high recall, as well

as a lower positive rate and a lower false negative rate. The consideration of both

precision and false negative rate is very important. In practice, normal data usually

significantly outnumbers the intrusion data. In this situation, only measuring preci-

sion of an intrusion detection system is misleading. A poor intrusion detection system

may still have a high Precision with a high false negative rate. In our experiments,

we will measure the precision and false negative rate at the same time.

4.2 Procedures for Using The Enhanced SVM Model on In-

trusion Detection

4.2.1 Training Process of The Conventional SVM

Before using the enhanced SVM model, we need to know how to train the conven-

tional SVM. The basic procedure of training the conventional SVM is as following:

• Transform data to the format of SVMlight.

We use SVMlight as our SVM software. SVMlight requires data point to be

represented as a vector of real numbers. So if there is a categorical feature in

KDD data set, we have to convert them into numeric data. Here we use a simple
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single number to represent a categorical feature. For example, if a feature has

5 categories, the possible value of this feature is 1-5.

The SVMlight only accepts a text file as input. In the text file each data point

on one line. Each line starts with the class label of this data point followed by

feature-value pairs indicating the position where this data point is located in

the data space. For example the KDD data set has 41 features, so we have 41

feature-value pairs on each line.

• Conduct simple normalization on the data.

Since our enhanced model is designed to fit different data sets, this model should

be able to handle a data set from an arbitrary distribution. Because the features

in KDD data set represent totally different physical meanings, the actual values

of different features vary. Scale data values could avoid the features in greater

numeric ranges dominate features in small numeric ranges.

For example: consider two set of data points

(1, 3, 4), (1, 4, 3);

and (900, 1000, 700), (1000, 1100, 800) .

When we use SVM under the Euclidean metric, the squared distance between

the first set of data points in the first set will be (1−1)2 +(3−4)2+(4−3)2 = 1,

while it will be 30, 000 between the second set of data points. So if we do not

conduct normalization, it is possible that the second set of data points will be

misclassified.

We scale data values of all features into a interval [−1, +1].
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• Choose a kernel function and tune the parameters of this function.

Various SVM kernel functions are proposed for users to choose for different

applications [7, 21]. Some common kernel functions are linear function, polyno-

mial function, sigmoid function and radial basis function (RBF). Here we choose

RBF as our kernel function. As we mentioned in Section 2.2.1, when SVM cal-

culates the decision hyper plane, it uses the kernel function to transform data

to represent patterns in a high dimension which is typically higher than the

original feature space. Unlike other linear kernel function, RBF can handle the

case when the relation between class labels and features is nonlinear [22, 33].

Besides, linear kernel is a special case of RBF and sigmoid kernel behaves like

RBF for certain parameters [22, 33].

• Use cross-validation to find the best parameter C and γ.

There are two parameters need to be found when we use RBF kernel. It is

not known beforehand which C and γ are the best. The values of C and γ

affects the accuracy of SVM classifier as well as the number of support vectors

generated which affects the time of classification. The goal of cross-validation

is to identify good C and γ values so the SVM classifier can accurately predict

unknown data within a time duration as short as possible.

One apparent advantage of using cross-validation is to prevent the overfitting

problem. For example on the KDD dataset, 10% of the original data is formed

as a training data set. From this training data set we generate 5 smaller training

sets by randomly choosing records from the original training set. Each smaller

training set has 50,000 records. Then we conduct a 5-fold cross-validation, after
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we divide the training set into 5 subsets of equal size. Sequentially one subset

is tested using the classifier trained on the remaining 4 subsets.

• Use the best parameter C and γ to train the whole training set.

After choosing the best C and γ using cross-validation, we use these two pa-

rameters to train SVM and generated a SVM classifier. The SVM classifier is

the final conventional one to which we will apply our enhanced model.

4.2.2 Common Procedures for Using The Enhanced SVM

Model

From the introduction of intrusion detection system in Section 2.1.1, we already

know the common architecture of an intrusion detection system. In this section

we introduce a standard procedure for using the enhanced SVM model on intrusion

detection. This procedure is also applied to all of our experiments in this study. The

flowchat of the procedure is shown in Figure 4.1

The first step is the data preprocessing for SVM. SVM only process data in the

feature-value format. For the sequence data such as UNM dataset [39], we need to

convert the data to feature-value format. Besides the data conversion, due to the

good generalization of SVM, we can also reduce the number of training samples if the

training set is large, normalize data or do other data preprocessing to make the data

prepared for training and test processing.

The second step is to form a sample set for rough set feature weights calculation.

Rough set does not require a large number of samples to analyze the features of a

dataset. As long as the sample set well represents the original data, users could use a
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Figure 4.1: Enhanced SVM model for intrusion detection

small sample set in the enhanced model. One common method is to randomly select

a small amount of samples from the training dataset.

The third step is to calculate the rough set reducts and feature weights. From

Section 3.3 we know that users could use any algorithm to do this job as long as the

feature weights are larger than zero. In our experiment, we use Rough Set Exploration

System (RSES) [5] and the algorithm 2 as the rough set implementation to calculate

the reducts from a small sample set and calculate the feature weights from the reducts.

RSES includes a discretion function, so it can handle both continuous and discrete
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data.

The fourth step is to train the SVM. Every kernel function used in SVM has some

parameters. The training process will decide the actual value of these parameters.

For example for polynomial function (s~w(~xi · ~x) + c)d, we need to decide the value

of c; for RBF function e−||~w(~xi−~x)||2·γ we need to decide the value of γ. These kernel

functions and their parameters define the shape of the discrimination hyperplane

in the data space. The enhanced SVM model does not change the value of these

parameters, instead it uses the same training process as the conventional SVM to get

these values. Users could use all the standard SVM training methods in this step to

find the most suitable kernel function and parameter values of the kernel function.

An example of the standard training methods is using cross validation to compare

results of different kernel functions and using data normalization technique to process

data. The details of the training process is presented in Section 4.2.1. Because the

redundant features are removed from the training set in the enhanced SVM model,

the training process is accelerated.

On the fifth step, after receiving the suitable conventional SVM discriminant func-

tion, we apply the feature weights to the kernel function and form an enhanced SVM

discriminant function.

Finally, we use the enhanced SVM discriminant function to classify the test dataset

and detect possible intrusions. Because the enhanced SVM model remove redundant

features in the test dataset, the classification process could be faster than the process

using the conventional SVM while having better accuracy.
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4.3 Experiment on UNM Dataset

We conduct our experiment on the UNM dataset to test the performance of the

enhanced SVM model on sequence based intrusion data.

4.3.1 Dataset Descriptions

The UNM dataset [39] includes a series of sequence-based data collected for the

Computer Immune Systems project of the Computer Science department, University

of New Mexico. The whole dataset consists of several smaller subsets generated by

different UNIX system processes, which are sendmail dataset, lpr dataset, and xlock

dataset, etc. Each subset has a number of UNIX system calls executed by an active

UNIX system process. All UNIX systems have a set of system processes, such as

sendmail, lpr, xlock, named, login, ps, inetd and stide. Every time a user accesses one

of these UNIX system processes, the process will generate a series of UNIX system

calls. These system calls form a trace. Each trace is the list of system calls issued by

a single UNIX system process from the beginning of its execution to its end. Each

trace is one record in a subset of the UNM dataset.

The details of UNM dataset are shown in Table 4.2:

In the experiment, we use the lpr subset and the stide subset in the UNM dataset

as our experiment datasets because these two datasets have more traces than other

datasets.

The data in the lpr dataset were collected over a period of 3 months, from one

computer running SunOS 4.1.4 at the CS department at UNM. This dataset consists

of 4,298 normal traces and 1,001 intrusion traces. There are totally 182 different
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Table 4.2: UNM dataset details
System Process Intrusions Normal data

Number of traces Number of traces Number of system calls
lpr 1001 4,298 2,027,468

named 2 27 9,230,572
xlock 2 72 16,937,816
login 9 12 8,894
ps 26 24 6,144

inetd 31 3 541
stide 105 13,726 15,618,237

sendmail - 71,760 44,500,219

system calls appearing in this dataset. Intruders use lpr to replace the contents of an

arbitrary file with those of another. This attack exploits the fact that older versions

of lpr use only 1000 different names for printer queue files, and they do not remove

the old queue files before reusing them.

The data in the stide dataset were collected from a UNM computer running the

Linux 2.0.35 kernel. 13,726 traces of normal data and 105 traces of intrusion data

were collected. The intrusion against the stide process is a denial-of-service attack

that affects any running program requesting memory.

4.3.2 Experiment Procedures

The procedure of our experiments are based on the standard procedures for using

the enhanced SVM model shown in Figure 4.1.
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Preprocessing training and test datasets

We need to convert the original data format to the feature-value format. The SVM

only processes data in feature-value format, but there is no obvious feature-value pairs

in the UNM dataset. Before using our enhanced SVM model to classify the data, we

have to use a mapping method to convert the dataset to feature-value format. From

Section 4.3.1 we know that in the UNM dataset, each trace is a sequence of system

calls. The length of a trace is arbitrary. Let us say T is a trace, the number of system

calls in T is L. We use a sliding window of length l to move along T from its beginning

to the end, then we obtain a set of system call segments with length l, and we have

L segments for trace T . We define each unique segment as a feature, the value of a

feature is the count of the number of times the corresponding segment occurs in a

trace. In this way, we convert a trace with length of L into a record with L feature-

value pairs. During the conversion, the number of possible segments or features is

huge. For example, on the lpr dataset, we have 182 different types of system calls.

So the dimension of feature space is 182l. In our experiment we use a window of

length 4. The possible feature space is a 1824 = 1, 097, 199, 376 dimensional space.

Noting that the feature vectors corresponding to a trace are extremely sparse, using

a conversion algorithm shown in Algorithm 3, we scan the whole lpr dataset and just

keep the features that really occurs. After being processed, the final feature space of

the lpr dataset has 467 features in it. The final feature space of the stide dataset has

273 features in it.

48



Algorithm 3: UNM dataset conversion

Input : UNM Dataset Din in system call trace format.
Output: UNM dataset Dout in feature-value pair format.
l ← window length;1

// convert a trace to a feature-value record2

foreach trace T in Din do3

L ← length of T ;4

F ← empty feature set;5

V ← empty value set;6

for (j ← 0 to L) do7

f ← Tj...Tj+l;8

if (f ∈ F ) then9

if f = Fi then10

Vi = Vi + 111

end12

end13

else14

F = F
∪
{f}15

j ← number of element in F − 1;16

// j starts from 017

Vj = Vj + 118

end19

end20

for (i ← 0 to number of element in F ) do21

// R is a record in Dout22

R ← (Fi, Vi);23

end24

Dout = Dout

∪
{R}25

end26

Extracting samples from training and test datasets

From Section 2.2.3 we know that SVM has good generalization ability. We could

use less data for training and test. From table 4.2 we know that in the UNM dataset,

lpr dataset has 5,299 records and stide has 13,831 records. We randomly select 2,000

records from each of the dataset as the sample set for training. The training process
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includes feature weights calculation and the conventional SVM kernel training. We

generate three test sets from each of the lpr and stide UNM datasets. Each test set

has 2, 000 randomly selected records.

Calculating rough set reducts and feature weights

We use Algorithm 2 to calculate the weight of each feature and delete redundant

features from datasets. After being processed, the number of features of the lpr

dataset is narrowed down from 467 to 9, and the number of feature of stride dataset

is narrowed down from 273 to 2.

Training the conventional SVM

We use the process explained in Section 4.2.1 to train the conventional SVM. We

need to choose a kernel function and tune the parameters of this function before we

start the training process. In this experiment we choose RBF as our kernel function.

As we mentioned in Section 2.2.1, when SVM calculate the decision hyper plane, it

uses a kernel function to transform data to represent patterns in a high dimension

which is typically higher than the original feature space. Unlike other linear kernel

functions, RBF can handle the case when the relation between class labels and features

is nonlinear [22, 33]. Besides, linear kernel is a special case of BRF and sigmoid kernel

behaves like RBF for certain parameters [22, 33]. Based on previous research, we

choose γ = 10−6 for RBF kernel e−||~xi−~x||2·γ [55].
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Forming the SVM feature-weight kernel and SVM classifier

By applying the feature weights to the conventional SVM kernel, we build a deci-

sion function to classify the test data. During the classification process, the enhanced

SVM model trims the test dataset and deletes all of the feature-value pairs, if the

feature in the pairs has a weight equal to 0. The volumes of both the lpr and stide

datasets are extremely reduced. The lpr data has been reduced 98% from its original

size and the stide data has been reduced 99% from its original size.

4.3.3 Results and Analysis

LPR dataset

Experimental results for the UNM lpr datasets are presented in Table 4.3. The

test runs against three test datasets. For each dataset, first we use the conventional

SVM to classify it, then use the enhanced SVM to classify the same dataset.

The conventional SVM uses all features in the dataset, the total number of features

is 467. The enhanced SVM uses only 9 features in the dataset. In terms of the number

of features, the enhanced SVM has significant 98% improvement. The CPU-seconds

used by the conventional SVM is from 1.59 to 1.62. The CPU-seconds used by the

enhanced SVM is from 0.25 to 0.25. The speed of the enhanced SVM is over 80%

faster than the conventional SVM. Both the conventional and the enhanced SVM do

not find any normal data as intrusions. The precisions of both SVMs on all the three

datasets are 100%. Both the conventional and the enhanced SVM find out all the

intrusions. The false negative rate of both SVMs on all the three datasets are 0%

From Section 4.3.1 we know that the lpr dataset has only one type of intrusion.
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The mapping method we used generates the test dataset as a sparse matrix. Among

all of the 467 features in this sparse matrix, only a few features have useful infor-

mation. In this scenario the feature reduction function of the enhanced SVM works

very well. Because the enhanced SVM kernel uses fewer features than the conven-

tional SVM kernel, the enhanced SVM is much faster than the conventional SVM.

This speed increase is consistent with the computational complexity analysis in Sec-

tion 2.2.4. The average speed increase is over 80%, and the average feature reduction

improvement is over 90%. The speed increase does not achieve the same level as

the feature reduction. This is because the enhanced SVM kernel function needs an

extra calculation of dot product between feature weights and data points, as we pre-

sented in Equation 3.19 and Equation 3.31. The accuracy test result for lpr dataset

is unusual. Both the conventional SVM and the enhanced SVM detect the intrusion

perfectly with 100% precision and 0% false negative. We consider the reason is that

the lpr dataset is simple, and has only one type of intrusion.

The STIDE Dataset

Experimental results for the UNM stide datasets are presented in Table 4.4. Same

as the test on lpr datasets, this test runs against three test datasets with 2, 000 records

in each of the dataset. For each dataset, we use the conventional SVM to classify it,

and use the enhanced SVM to classify the same dataset.

The conventional SVM uses all features in the dataset. The total number of

features is 273. The enhanced SVM uses only 2 features in the dataset. In terms of

the number of features, the enhanced SVM has 99% improvement. The CPU-seconds

used by the conventional SVM is from 0.21 to 0.27. The CPU-seconds used by the
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Table 4.3: Comparisons of the experimental results on the UNM lpr dataset
Nrecord Nfeature CPU-sec Precision(%) False Neg(%)

test set 1
Conventional SVM 2 × 103 467 1.62 100 0

Enhanced SVM 2 × 103 9 0.28 100 0
Improvement 98% 83%

test set 2
Conventional SVM 2 × 103 467 1.71 100 0

Enhanced SVM 2 × 103 9 0.29 100 0
Improvement 98% 83%

test set 3
Conventional SVM 2 × 103 467 1.59 100 0

Enhanced SVM 2 × 103 9 0.25 100 0
Improvement 98% 84%

enhanced SVM is from 0.02 to 0.04. The speed of the enhanced SVM is over 80%

faster than the conventional SVM. The precisions of the conventional SVM are from

98.25% to 98.40%. The precisions of the enhanced SVM are from 99.02% to 99.63%.

The conventional SVM missed some intrusions. Its false negative rate is 5%. The

enhanced SVM find out all the intrusions. Its false negative rate is 0%.

Same as on the UNM lpr dataset, the speed increase of the enhanced SVM is

consistent to the computational complexity analysis in Section 2.2.4. Different from

the test result on the UNM lpr dataset, the accuracy result for the conventional SVM

is not consistent on the three test datasets. The false negative rate is 2.5% on the

second test set, and it is changed to 10% on the third test set. Further, the precision

and false negative rate are not changed in the same direction. While the precision is

increased from the second to the third test set, the false negative rate is decreased

from the third to the second test set. The accuracy result for the enhanced SVM
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does not have the same problem as the conventional SVM. The enhanced SVM find

out all the intrusions.

We believe the reason of this phenomenon is because there are some noisy fea-

tures that affects the performance of the conventional SVM. These noisy features do

not allow the conventional SVM discriminate some intrusion records. Because we

restrict intrusion records to only count 1.5% of whole dataset, the number of intru-

sion records is small in the stide dataset. If even just a few intrusion records are not

classified correctly, it affects the false negative rate significantly. Because the num-

ber of misclassified intrusion records is small, the precision is not affected too much.

This explains why the precision and false negative rate are not changed consistently.

The enhanced SVM removes the noisy features and classifies all the intrusion records

correctly. Therefore the enhanced SVM outperforms the conventional SVM on both

precision and false negative rate. Because the enhanced SVM also removes a lot of

redundant features from the test data, the classification speed of the enhanced SVM

is much faster than the conventional SVM.

Because the experiments on both UNM datasets use the same mapping technique,

data density on both of the test datasets is sparse. The sparing datasets allow the

enhanced SVM to remove many redundant features and significantly increase the

speed. Furthermore, the enhanced SVM is able to remove noisy features, so its

accuracy performance on the UNM stide dataset is better than the conventional

SVM.
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Table 4.4: Comparisons of the experimental results on the UNM stide dataset
Nrecord Nfeature CPU-sec Precision(%) False Neg(%)

test set 1
Conventional SVM 2 × 103 273 0.21 98.40 5

Enhanced SVM 2 × 103 2 0.04 99.02 0
Improvement 99% 83% 0.8% 100%

test set 2
Conventional SVM 2 × 103 273 0.27 98.25 2.5

Enhanced SVM 2 × 103 2 0.02 99.67 0
Improvement 99% 83% 1.42% 100%

test set 3
Conventional SVM 2 × 103 273 0.25 98.37 10

Enhanced SVM 2 × 103 2 0.02 99.63 0
Improvement 99% 84% 1.25% 100%

4.4 Experiment on KDD Dataset

In this experiment, we use the KDD (Data Mining and Knowledge Discovery)

Cup 1999 data [10]. The KDD data is relatively more complex, and it has more data

compared to the UNM dataset. We want to study the performance of the enhanced

SVM on a more sophisticated dateset by conducting experiment on the KDD dataset.

4.4.1 Dataset Descriptions

The KDD dataset contains a wide variety of intrusions simulated in a military

network environment. The data of this dataset are collected raw network packets

and are independent to an operating system or an application. Each record in this

dataset has been attached a label identifying to which class the record belongs to.

All labels are assumed to be correct. The KDD dataset is more complex than the
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UNM dataset. Instead of having only one type of intrusion, the KDD dataset has four

intrusion categories and one normal category. Twenty-four types of attacks fall into

four main categories which are denial-of-service (DOS), e.g., SYN flood, unauthorized

access from a remote machine (R2L), e.g., guessing password, unauthorized access to

local superuser (root) privileges (U2R), e.g., various “buffer overflow” attacks, and

surveillance and other probing, e.g., port scanning. It has 41 features as shown in

Table 4.5. In the training dataset, each record has a class label which identifies

whether this record is an intrusion data record or not. The KDD dataset contains

more data than the UNM dataset. The volume of the dataset is 744 MB including

4,940,000 connection records. 10% of the original data is formed as training dataset

with a label identifying whether the record is an intrusion and to which intrusion types

the record belongs. In this paper, we only discuss binary classification. Therefore,

instead of considering four intrusion categories and one normal category, we treat all

intrusion records as one category and all normal records in another category.

Compared with the UNM dataset, the KDD dataset has different characters. At

first, the volume of the KDD dataset is much higher than the UNM dataset. This

requires us to use more training sets while trying to keep each training set still small.

Second, the each feature of the KDD dataset has a real-life meaning as shown in

Table 4.5. Because most of the features are independent of each other, although the

number of features is smaller than UNM dataset, the dataset is highly non-linear. It

is harder to find redundant features and remove them from the feature space. This

could affect the accuracy of intrusion detection. We have to make more effort to find

the appropriate SVM kernel and parameters.

Third, the KDD dataset is more complicated. The types of attacks is 24, which is
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Table 4.5: Feature list of KDD dataset
Type C=continuous D=discrete

# Feature Name Description Type
1 Duration Length ( number of seconds ) of the connection. C
2 Protocol Type of the protocol, e.g. tcp, udp. D
3 Service Network service on the destination, e.g. http, telnet, ftp. D
4 Flag Normal or error status of the connection. D
5 src bytes number of data bytes from source to destination. C
6 dst bytes number of data bytes from destination to source. C
7 Land 1 if connection is from/to the same host/port; 0 otherwise D
8 wrong fragment number of “wrong” fragments. C
9 Urgent number of urgent packets. C
10 Hot number of “hot” indicators. C
11 num failed logins number of failed login attempts. C
12 logged in 1 if successfully logged in; 0 otherwise. D
13 num compromised number of compromised conditions. C
14 root shell 1 if root shell is obtained; 0 otherwise. D
15 su attempted 1 if “su root” command attempted; 0 otherwise. D
16 num root number of “root” accesses. C
17 num file creations number of file creation operations. C
18 num shells number of shell prompts. C
19 num access files number of operations on access control files. C
20 num outbound cmds number of outbound commands in an ftp session. C
21 is host login 1 if the login belongs to the “hot” list; 0 otherwise. D
22 is guest login 1 if the login is a “guest” login; 0 otherwise. D
23 Count number of connections to the same host as the current one

during past two seconds.
C

24 srv count number of connections to the same service as the current con-
nection in the past two seconds.

C

25 serror rate % of connections that have “SYN” errors. C
26 srv serror rate % of connections that have “SYN” errors. C
27 rerror rate % of connections that have “REJ” errors. C
28 srv rerror rate % of connections that have “REJ” errors. C
29 same srv rate % of connections to the same service. C
30 diff srv rate % of connections to different services. C
31 srv diff host rate % of connections to different hosts. C
32 dst host count C
33 dst host srv count C
34 dst host same srv rate C
35 dst host diff srv rate C
36 dst host same src port rate C
37 dst host srv diff host rate C
38 dst host serror rate C
39 dst host srv serror rate C
40 dst host rerror rate C
41 dst host srv rerror rate C
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much more than the UNM dataset which has only one type of attack on each subset.

Besides, the dataset has both continuous and discrete data. These complications

increases the difficulty of intrusion detection.

Lastly, the KDD dataset is in the feature-value pair format. So we do not need

to convert the data as we did for the UNM dataset.

4.4.2 Experiment Procedures

The experiment procedure on the KDD dataset is almost the same as the proce-

dure on UNM dataset. The preprocessing step on the KDD dataset does not need to

convert the data format because the dataset is already in feature-value format. The

sample extracting step selects more data than the samples from the UNM dataset.

Because the data volume in the KDD dataset is much larger, the test dataset needs

to be larger as well, so we generate three test sets with 5 × 104 records in each set

for testing. The feature weight calculating step is the same as the steps on the UNM

dataset. The conventional SVM training step is more complex than the step on the

UNM dataset because the KDD dataset is much more complex. The final test step

is the same as the step on UNM dataset.

4.4.3 Results and Analysis

In Section 4.2.1 we explained that the RBF kernel can handle the case when the

relation between class labels and features is nonlinear [22, 33]. In the experiment on

the KDD dataset, we choose RBF kernel function as the kernel for the conventional

SVM. γ is the only parameter we need to train for RBF kernel function.
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Table 4.6: Training results of conventional SVM with different values of gamma
Training Result Exp1 Exp2 Exp3
Number of training records 5 × 104 5 × 104 5 × 104

Number of features 41 41 41
kernel RBF RBF RBF
Value of γ 10−3 10−6 10−8

Number of generated SVs 6,498 1,868 1,057

Training result of the conventional SVM on KDD99 Dataset

Because the KDD99 dataset is more complex than the UNM dataset, training the

conventional SVM is harder. Here we present the training result of the conventional

SVM. Table 4.6 shows the training results from the conventional SVM using different

values of γ. All the three experiments use the same training set which consists of

5×104 randomly chosen data records from the original training set of 494, 020 records.

The table shows that the different sets of support vectors generated by using different

values of γ. When γ = 10−3, the conventional SVM generates 6, 498 support vectors.

When γ = 10−6, the conventional SVM generates over 1, 868 support vectors. When

γ = 10−8, the conventional SVM generates over 1, 057 support vectors. It is observed

that the larger value of γ results in a larger number of support vectors generated and

the smaller value of γ results in a small number of support vectors.

Table 4.7 shows three different test results. All the tests use the same test dataset

with 10, 000 records. Each test is applied to a trained conventional SVM kernel

shown in Table 4.6. Experiment 1 uses a RBF kernel with γ = 10−3. The precision
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of experiment 1 is 99.56% which is the highest among the three tests. The number

of false negatives is 7 which is the lowest among the three tests . The CPU-seconds

of experiment 1 is 49.53 which is the longest among three tests. Experiment 2 uses a

RBF kernel with γ = 10−6. The precision of experiment 2 is 99.37% which is in the

middle among the three tests. The number of false negatives is 11 which is also in

the middle among the three tests. The CPU-seconds of experiment 2 is 11.34 which

is in the middle among the three tests. Experiment 3 uses RBF kernel with γ = 10−8.

The precision of experiment 2 is 97.89% which is the lowest among the three tests.

The number of false negatives is 35 which is highest among the three tests. The

CPU-seconds of experiment 3 is 8.32 which is the shortest among three tests.

From these results we conclude that a larger number of rules results in higher de-

tection accuracy and higher computation costs. In experiment 1, the accuracy is the

highest. Experiments 2 and 3 have similar precision, false negative rate and test time.

This result is quite reasonable. From the form of SVM RBF classifier and analysis in

Section 2.2.4 we know the computational complexity of test process is O(mn) with

m is the number of rules, n is the number of features in the data space. Therefore,

the test time is increased along with the increasing of the number of support vectors.

Another phenomenon we noticed is that experiment 1 has a much larger number of

support vectors and much longer test time than experiment 2 and 3. The accuracy of

these three experiments are on the same level. From this result, we choose γ = 10−6

as the final parameters for RBF SVM decision function.
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Table 4.7: Test results of conventional SVM with different values of gamma
Test Result Exp1 Exp2 Exp3
Number of test records 10,000 10,000 10,000
Number of features 41 41 41
Value of gamma 10−3 10−6 10−8

Number of generated SVs 6,498 1,868 1,057
Number of misclassifications 44 63 211
Precision 99.56% 99.37% 97.89%
Number of False Negative 7 11 35
CPU-second 49.53 11.34 8.32

Result comparison of the conventional and enhanced SVM on KDD99

Dataset

Table 4.8 shows the results comparison between the conventional SVM and the

enhanced SVM for the KDD dataset. The conventional SVM uses all 41 features in

the dataset. The enhanced SVM uses only 13 features in the dataset. In terms of

the number of features, the enhanced SVM has 68% improvement. The CPU-seconds

used by the conventional SVM is from 222 to 230. The CPU-seconds used by the

enhanced SVM is from 75 to 78. The speed of the enhanced SVM is 65% to 66%

faster than the conventional SVM. The precisions of the conventional SVM are from

99.82% to 99.88%. The precisions of the enhanced SVM are from 99.86% to 99.91%.

The false negative rate of the conventional SVM is from 7.45% to 7.69%. The false

negative rate of the enhanced SVM is from 5.49% to 6.91%.

The performance of both the conventional SVM and the enhanced SVM are con-

sistent on the three experiments. Both SVMs have the best accuracy and the longest

running time on test set 3, and the worst accuracy and the shortest running time on
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Table 4.8: Comparisons of the experimental results on the KDD dataset
Nrecord Nfeature CPU-sec Precision(%) False Neg(%)

test set 1
Conventional SVM 5 × 104 41 222.28 99.82 7.69

Enhanced SVM 5 × 104 13 75.63 99.86 6.39
Improvement 68.0% 66.0% 0.4% 16.9%

test set 2
Conventional SVM 5 × 104 41 227.03 99.80 8.25

Enhanced SVM 5 × 104 13 78.93 99.85 6.91
Improvement 68.0% 65.0% 0.5% 16.2%

test set 3
Conventional SVM 5 × 104 41 230.27 99.88 7.45

Enhanced SVM 5 × 104 13 77.85 99.91 5.49
Improvement 68.0% 66.0% 0.3% 26.3%

test set 2. The improvements of performance are consistent on all of the three test

sets. On all of the three test sets the enhanced SVM model outperforms the con-

ventional SVM in all three measures, namely, precision, false negative rate and CPU

time for the KDD dataset. This suggests that the enhanced SVM model has a good

generalization ability. The speed improvement of the enhanced SVM model is con-

sistent to the the reducing of the number of features. The improvement for precision

is 0.4% on average, which is moderate. We consider there is not significant precision

improvement because the precision of the conventional SVM is already very high. It

is hard for the enhanced SVM to improve the result in terms of the precision.The

improvement of the enhanced SVM on false negative rate is significant, which means

the feature weights helps the SVM classifier find out more intrusions.
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4.5 Summary

We performed our experiments on two datasets with different characteristics. The

UNM dataset is an example of low data density, simple intrusion datasets. The KDD

dataset has a high data density, and includes multiple intrusion types, which makes

this dataset more complex than the UNM dataset. The performance of the enhanced

SVM is improved on both datasets, although the improvements emphasize on different

aspects. From the analysis of the experiment results and comparison of the results

on different datasets, we have the following findings:

• Compared to the conventional SVM, the enhanced SVM can significantly in-

crease the speed on UNM dataset, which is a low data density and simple

intrusion dataset.

We use a mapping method to convert the UNM dataset to feature-value format.

The UNM dataset in feature-value format has low data density. From the

experiment result we can see that, for the enhanced SVM, intrusions in the

UNM dataset can be classified from relatively less features compared to the

KDD dataset. This causes the enhanced SVM to remove a lot of redundant

features. The results show that the speed improvement of the enhanced SVM

is caused by its feature reduction ability. A significant feature reduction makes

the enhanced SVM much faster than the conventional SVM.

Each subset of UNM dataset is generated by a single type of intrusion, so

the UNM dataset is relatively simple. The conventional SVM can classify the

dataset very well, so the enhanced SVM does not have a significant improvement

in terms of accuracy.
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• Compared to the conventional SVM, the enhanced SVM can increase the ac-

curacy on the KDD dataset, which is a high data density, complex intrusion

dataset.

The KDD dataset consists of 41 features. Each feature has a real-life mean-

ing. The enhanced SVM does not have significant feature reduction on this

dataset, so the speed increase is moderate. But the enhanced SVM significantly

increased the intrusion detection accuracy on both precision and false negative

rate. We believe that it is because the enhanced SVM includes the feature

weights information.
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Chapter 5

Conclusion and Perspective

We propose an enhanced SVM model for intrusion detection. To develop this

enhanced model, at first we used rough sets technique to calculate the reducts and

ranks of the features of intrusion detection data, then we developed an algorithm to

calculate feature weights based on the reducts and form a new kernel functions en-

hanced with feature weights. The experiment results proved that the proposed new

model is effective on both the UNM dataset and the KDD dataset. On the KDD

dataset, although the precision levels of both the conventional SVM and the new

SVM model are about the same, the false negative rates of the new model are lower

than the conventional SVM model. In addition, the time used to detect an intrusion

of the new model is much less than the conventional SVM. On the UNM dataset, both

the conventional SVM and the new model performed perfectly in terms of accuracy.

However, the new SVM model still has some advantages, i.e., the running time is

much less as fewer number of features are used for classification.
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5.1 Summary of Contributions

In this thesis, we use SVM to find the normal patterns of computer system ac-

tivities and detect intrusions. We try to improve the conventional SVM on intrusion

detection in the aspects of feature discrimination and feature reduction using rough

set. The major contributions are following,

• Propose a SVM model enhanced with a new feature-weight kernel. The feature-

weight kernel enhanced SVM in both the feature discrimination and feature

reduction. By applying rough sets theory to the training process of SVM and

adding feature weights to the SVM kernel function, the enhanced SVM model

has the capability to quantitatively evaluate the importance of each feature of

intrusion detection datasets, distinguish important features from unimportant

features and remove redundant features. A new algorithm is proposed and

implemented to calculate the weights in the feature-weight kernel.

• Implement the enhanced SVM model and examine the model by doing experi-

ment on a serial of well-known intrusion detection datasets.

5.2 Future Research

The current research focuses on using the enhanced SVM model on intrusion

detection application. The SVM model itself is a general technique used on a lot of

different application areas. The feature weights enhanced kernel is not related to any

particular application, so we could explore the usage of the enhanced SVM on other

application areas.
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In addition, research is also possible regarding the different ways of applying

feature weights to different SVM kernels and the different ways to calculate the feature

weights.

Finally, the mathematical proof of the reason that enhanced SVM mode has good

performance also needs future research.
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