Dynamic Path Consistency for Interval-based Temporal Reasoning

Malek Mouhoub
Department of Computer Science
University of Regina
3737 Waskana Parkway,
Regina SK, Canada, S4S 0A2
email : mouhoubm @cs.uregina.ca

ABSTRACT

Path consistency is an important component of the
resolution method needed to check for the consistency of
an Allen’s Interval-based temporal network. While this lo-
cal consistency algorithm reduces, in general, the size of
the search space before applying the backtrack search, it
implies the consistency of the problem for some specific
temporal networks. Our goal in this paper is to maintain
the path consistency of a temporal network in a dynamic
environment i.e anytime a temporal relation is added or re-
moved. For this purpose we propose a dynamic path con-
sistency algorithm based on van Beek’s path consistency
technique. Experimental tests on randomly generated dy-
namic interval-based temporal networks demonstrate the
efficiency of our algorithm to deal with large size tempo-
ral problems in a dynamic environement.

KEY WORDS
Temporal Reasoning, Constraint Satisfaction, Path Consis-
tency, Planning and Scheduling.

1 Introduction

Many real world applications including scheduling, plan-
ning, molecular biology and natural language processing
rely mainly on temporal reasoning. When using a temporal
reasoning system based on Allen’s interval-based frame-
work, a problem involving temporal information is first
transformed into a temporal network which is in fact a
particular case of a constraint satisfaction problem (CSP)
involving interval constraints. Propagation algorithms are
then used to check for the consistency of the network and,
if so, find one or more scenarios that are consistent with
the temporal information. More precisely the resolution
method used for checking the consistency of the network
is divided in two phases: a local consistency algorithm is
first used to reduce the size of the search space by removing
from the temporal relations some Allen primitives that do
not belong to any solution. The backtrack search algorithm
is then performed to look for a possible solution. Since
we are dealing here with relations on infinite domains, path
consistency is the pruning technique of choice performed in
the form of symbolic computations with the constraint re-

lations themselves rather than on tuples of values[1, 2, 3].
Ladkin[2] proposed a solving algorithm where path consis-
tency is used as a preprocessing phase and also during the
backtrack search. A path consistency algorithm can also
be used as a heuristic to test whether a temporal network is
consistent.

One main concern when solving CSPs in general and
temporal networks in particular, is the ability to deal with
constraints in a dynamic environment. Our goal in this pa-
per is to maintain the path consistency in a dynamic envi-
ronment i.e anytime a constraint is added or removed. This
is of interest in many real world applications such as reac-
tive scheduling and planning where the system has to react
to new external information corresponding to constraint re-
striction or relaxation. In scheduling problems, for exam-
ple, a solution corresponding to an ordering of tasks to be
processed can no longer be consistent if a given machine
becomes unavailable. We have then to look for another so-
lution (ordering of tasks) satisfying the old constraints and
taking into account the new information. For this purpose
we have modified the path consistency algorithm proposed
by van Beek[4] in order to deal with the addition and the
relaxation of constraints in an efficient way. Experimental
tests performed on randomly generated dynamic temporal
constrain networks show the efficiency of our algorithm to
deal with large size problems.

In the following section we will present some back-
ground for symbolic temporal constraints. We will then
present our dynamic path consistency algorithm in chapter
3. Chapter 4 is dedicated to the experiments we have per-
formed to evaluate our algorithm. Finally, concluding re-
marks and possible perspectives of our work are presented
in section 5.

2 Representing Temporal Information

As we stated earlier Allen’s approach for reasoning about
time is based on the notion of time intervals and binary re-
lations on them. A time interval / is an ordered pair (I, 1)
such that I~ < I, where X~ and X are points on the real
line. There are thirteen basic relations that can hold be-
tween intervals (see table 1 for the definition of the thirteen
Allen primitives). A symbolic relation between two inter-
vals is represented by the disjunction of some Allen prim-

Relation Symbol | Inverse

Meaning Endpoints

X precedes Y P P~ XXXYYY | Xt <Y~

Xequals Y E XXX X =Y
YYY Xt=Yy"

X meets Y M M~ XXXYYY | Xt =Y~

X overlaps Y o 0~ | XXXX X <Y <Xt

YYYY

X during y D D XXX X~ <y-
YYYYYY

X starts Y S N XXX X =Y
YYYYY

X finishes Y F F~ XXX X~ <Y~

YYYYY

Table 1. Allen primitives

itives. For example if I and J represent the process time
corresponding to two tasks that should be processed in mu-
tual exclusion (no overlapping between process times) then
the corresponding relation willbe I PV P~ J.

Example 1: Consider the following typical temporal
reasoning problem! :

1. John, Mary and Wendy separately rode to
the soccer game.

2. John either started or arrived just as Mary
started.

3. John’s trip overlapped the soccer game.

4. Mary’s trip took place during the game or
else the game took place during her trip.

The above story includes qualitative informa-
tion (words in boldface). There are four main events : John,
Mary and Wendy are going to the soccer game respectively
and the soccer game itself. The graph of figure 1 repre-
sents the temporal network corresponding to the above ex-
ample. We use a graphical notation where nodes represent
the different events and arcs are labeled with the temporal
relations. For example the relation DV D™~ represents the
temporal information listed in the forth item above.

IThis problem is basically taken from an example presented by
Ligozat, Guesgen and Anger at the tutorial : Tractability in Qualitative
Spatial and Temporal Reasoning, [JICAI’01. We have modified the exam-
ple for the purpose of our work.

John

ESS M

Mar Wendy
O

D D- v
Soccer

Figure 1. A Temporal Network.

3 Dynamic Maintenance of Path Consis-
tency

Before we present the maintenance of path consistency of
a temporal network in a dynamic environment let us intro-
duce the notions of dynamic constraint satisfaction in gen-
eral and in the case of temporal networks.

3.1 Dynamic Constraint Satisfaction Prob-
lem

A dynamic constraint satisfaction problem (DCSP) P is a
sequence of static CSPs Py, ..., P, Piy1, ..., P, each re-
sulting from a change in the preceding one imposed by
the “outside world”. This change can either be a restric-

| [E[p[P [D[D-[O]O" [M[M_|S[S [F[F |

E E PP | D |D”"| O |0 | M m S S F F~
P P P 1 u P P u P u P P u P
P~ p I |\ P~ |v | P |v | P |v | P v | P | P | P~
D D |P|P | D 1 u |v_- | P | P | D |v~ D u
D~ ||D- |v|u" | n |D | z7 |y |z |y |zZ|D” |y | D™
(0] O |P|lu | vy v X n P |y o | z7 y X
(0 O~ |v|P | z u- n | x| z7 | PT z A O I
M M | Plu | vy P P y P a M| M y P
M~ |\M~|v|P | z |P | z |P | b | P~ z | P | MT | M~
S S P| P~ | D v X z P |M—| S b D X
N S v| P | z |D7|z7 |0 |z m b S O~ | D™
F F P|\P~ | D | u" y | x| M| P~ | D | x~ F a
F~ F~ | P|u~ y | D7 | O |y | M|y~ O | D~ a F~

x=PVOVM

y=DVOVS

z=DVO~VF

a=EVFVF~

b=EVSVS~

u=PVOVMVDVS
v=PVOVMNVD~VF~
n=EVFVDVOVSVF~ VD VO~VS~

Table 2. Allen’s composition table

tion (adding a new constraint) or a relaxation (removing a
constraint because it is no longer interesting or because the
current CSP has no solution). More precisely, P, is ob-
tained by performing a restriction (addition of a constraint)
or a relaxation (suppression of a constraint) on P;. We con-
sider that Py (initial CSP) has an empty set of constraints.

3.2 Dynamic Temporal Constraint Satisfac-
tion Problem

Since a temporal network is a CSP where constraints are
disjunctions of Allen primitives, the definition of a dy-
namic temporal constraint satisfaction problem (DTCSP)
is slightly different from the definition of a DCSP. Indeed
in the case of a DTCSP, a restriction can be obtained by
removing one or more Allen primitive from a given con-
straint. A particular case is when the initial constraint is
equal to the disjunction of the 13 primitives (we call it the
universal relation /) which means that the constraint does
not exist (there is no information about the relation between
the two involved events). In this particular case, removing
one or more Allen primitives from the universal relation is
equivalent to adding a new constraint. Using the same way,
a relaxation can be obtained by adding one or more Allen
primitives to a given constraint. A particular case is when
the new constraint has 13 Allen primitives which is equiv-
alent to the suppression of the constraint.

3.3 Dynamic Path Consistency

3.3.1 Path Consistency Algorithm

The path consistency algorithm (called also transitive clo-
sure algorithm) works as follows :

Choose any three nodes I, J and K of the tem-
poral network and checks whether Rjx = Rjx N
(Riy ® Rjk). If Rik is updated then this up-
date should be propagated to the rest of the net-
work. The algorithm iterates until no more such
changes are possible.

Rk (respectively Ry; and Rjk) is the binary relation
between node I and node K (respectively between nodes 1
and J; and between nodes J and K). N is the intersection
operator between two relations (the result of the intersec-
tion between two relations is the common Allen primitves
between the two relations). ® is the composition opera-
tor between two relations. Indeed, Allen[1] has defined a
13x13 composition table between Allen primitives (see ta-
ble 2). The path consistency algorithm assumes that the
constraint graph is complete. If the initial graph is not com-
plete then it is transformed to a complete one by adding arcs
labeled with the universal relation I which corresponds to
the disjunction of the thirteen Allen primitives.

Check for path

Consisteng ar

Initial Problem Adding the constraint
John ESS-M Wendy
John John

M S Adding the constraint M S

Mary FF- Wendy

Figure 2. Restriction of a temporal network

3.3.2 Dynamic Path Consistency Algorithm

The goal of the resolution method we present here consists
of maintaining the path consistency anytime a constraint is
added (constraint restriction) or removed (constraint relax-
ation). In both cases (constraint restriction or relaxation)
the new information corresponding to the suppression of
some Allen primitives (in the case of constraint restriction)
or to the addition of some Allen primitives (in the case of
constraint relaxation) is propagated to the entire network
using transitive closure based on the composition between
operators. In the case of constraint restriction if a given re-
lation becomes empty then the path consistency cannot be
maintained when considering the restriction. The details of
the constraint restriction and relaxation methods are pre-
sented as follows.

Constraint Restriction

The pseudo code of the resolution method for constraint
restriction is presented below. Anytime a new constraint is
added (disjunction of some Allen primitives), the method
works as follows :

1. Compute the intersection of the new constraint with
the corresponding constraint in the arc and path con-
sistent graph.

If the result of the intersection is an empty relation
then the new constraint cannot be added other-
wise it will violate the path consistency of the
graph.

Else (a) Replace the current constraint of the graph
by the result of the intersection.

(b) Perform the dynamic path consis-
tency (DPC) in order to propagate the
update of the constraint to the rest of the
graph. If the resulting graph is not path
consistent then the new constraint cannot
be added.

Constraint Relaxation

Let us assume we want to relax a given constraint by adding
to it some Allen primitives. The resolution method works
then as follows :

1. Run the dynamic path consistency algorithm starting
from the triangle containing the relaxed constraint. If
at least one of the other two relations belonging to the
triangle is updated, propagate this change to the other
constraints.

Function Restrict(i,j)
1. G;j < new_constraint (\C;;
2. if (Cij = @) then
3 return “Constraint cannot be added”
4. else
5. updated_list < {C;;}
6 if ~DPC(updated _list) then
7 return “Constraint cannot be added”
8 endif
9. endif

Function DPC(updated _list)
1. L < updated list
2. while (L # 0) do
3. select and delete an (x,y) from L

4, fork<« 1ton,k#xand k#ydo
5. t <+ Cy ﬂ CXy.Cyk

6. if (t # Cyy) then

7. if (t = 0) then return false
8. Cy 1t

9. Cir < INVERSE (1)

10. L+ LU{(x,k)}

11. endif

12. 1< CkyﬂCkx.ny
13. if (1 # Cy,) then

14. if (= 0) then return false
15. Cky —t

16. Cyx < INVERSE (1)

17. L+« LU{(k,y)}

18. endif

19. endfor

20. endwhile
21. return true

3.3.3 Example

The top right graph of figure 2 is the temporal network ob-
tained after applying the path consistency. Note that some
constraints such as the relation (M~ V O~V P~) between
the soccer game and Wendy is an implicit constraint de-
duced after the performing the path consistency.

Let us assume now that we have the following con-
straint restrictions :

1. John either started or arrived just as Wendy started.

2. Mary and Wendy arrived together but started at dif-
ferent times.

3. Wendy arrived just as the soccer game started.

The first operation corresponds to the addition of the
relation SV S~ VMV E between John and Wendy. The
intersection of this relation with the current constraint be-
tween the two events will lead to the relation S. The sec-
ond operation corresponds to the addition of the relation
FV F~ between Mary and Wendy. The intersection of this
relation with the current constraint between the two events
will lead to the relation F. The relation F' does not conflict
with the global solution obtained so far. Thus the consis-
tency of the graph is maintained.

The third operation corresponds to the addition of the
relation P between Wendy and soccer game. The intersec-
tion of this relation with the current constraint between the
two events will lead to an empty relation. Thus this third
constraint cannot be added.

Nb events | incremental method | static method
20 0.05 0.47
40 0.27 12.12
60 0.91 85.78
80 2.39 350.13
100 5.06 1259.01

Table 3. Comparative tests on randomly generated dynamic
TCSPs.

4 Experimentation

In this section, we present experimental tests evaluating the
performance in time of the method we propose for main-
taining the path consistency of temporal constraints in a
dynamic environment. The tests are performed on ran-
domly generated dynamic TCSPs. Each problem instance
is defined by a set of actions corresponding to N(N-1)/2
additions and N(N-1)/4 retractions of constraints (N is the
number of events). Constraints are added and removed in
a random order, the final TCSP will have N(N —1)/4 con-
straints. The experiments are performed on a SUN SPARC
Ultra 5 station. All the procedures are coded in C|C++.

Table 3 describes the results of the tests. The first
column corresponds to the number of events of the gen-
erated problem. The second and third columns indicate
respectively the running time in seconds needed by the
new resolution method we propose (that we call incremen-
tal method) and the method for static TCSPs (described in
subsection 2.2), to maintain the local consistency of the
generated problem. As we can easily see the new method
we propose in much faster because anytime a constraint
is added or removed, it does not perform the arc and path
consistency on the entire graph (as it is the case of the
static method) but only on those constraints affected by the
change.

5 Conclusion and Future Work

In this paper we have presented a method for maintaining,
in a dynamic environment, the local consistency of a tem-
poral constraint satisfaction problem (TCSP). Since we are
dealing with numeric and symbolic constraints, local con-
sistency concerns the path consistency. The method is of
interest for any application where qualitative temporal in-
formation should be managed in an evolutive environment.
This can be the case of real world applications such as re-
active scheduling and planning where any new informa-
tion corresponding to a constraint restriction or relaxation
should be handled in an efficient way. The method can also
be used for over constrained problems where constraints
have to be removed until the consistency is reestablished.
One perspective of our work is to handle the addition
and relaxation of constraints during the backtrack search
phase (needed to look for a possible solution to the prob-

lem). For example, suppose when processing the backtrack
search a constraint is added during the instantiation of the
current variable. In this case, the assignment of the vari-
ables already instantiated should be reconsidered and the
domains of the current and future variables (no assigned
variables) should be updated. The other perspective of our
work is to maintain in a dynamic environment the global
consistency of a TCSP. Let us assume that after a solution
is found for a given problem, a new constraint is added.
We have then to check if there still exist a solution to the
problem after the addition of the constraint.

References

[1] J.F. Allen. Maintaining knowledge about temporal in-
tervals. CACM, 26(11):832-843, 1983.

[2] PB. Ladkin and A. Reinefeld. Effective solution of
qualitative interval constraint problems. Artificial In-
telligence, 57:105-124, 1992.

[3] P. van Beek. Reasoning about qualitative temporal in-
formation. Artificial Intelligence, 58:297-326, 1992.

[4] P. van Beek and D. W. Manchak. The design and ex-
perimental analysis of algorithms for temporal reason-
ing. Journal of Artificial Intelligence Research, 4:1-18,
1996.

