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Abstract—Dealing with spatial knowledge requires the con-
sistency of spatial information. This consistency is usually
enforced by constraint satisfaction techniques including con-
straint propagation through arc and path consistency. While
theses techniques often assume that spatial information are
static, this is in general not the case in the real world. Our goal
is to propose an approach to maintain the consistency of spatial
knowledge in a dynamic environment. To our best knowledge
no work in spatial reasoning has addressed this issue. In this
paper we use a spatial ontology called SpaceOntology to de-
scribe both objects and spatial relations namely topological and
distance relations between these objects. Based on a dynamic
path consistency algorithm, our proposed method maintains the
consistency of spatial information after adding new instances
of topological relations described by SpaceOntology of a given
environment. In order to evaluate the performance of our
dynamic path consistency method, we conducted several tests
on instantiations of SpaceOntology in addition to randomly
generated spatial constraint problems. The results of these tests
demonstrate the efficiency of our method to deal with large size
problems in a dynamic environment.

Keywords-Dynamic qualitative spatial reasoning, dynamic
temporal reasoning, constraint satisfaction problem.

I. INTRODUCTION

Several studies in Qualitative Spatial Reasoning (QSR) [6]
have been dedicated to topological relations. Most of them
are based on the algebra of intervals [4]. Qualitative spatial
reasoning covers several applications, including Geographic
Information Systems (GIS) [3], language processing [2], etc.

While a considerable literature has been dedicated to
spatial reasoning, to our knowledge, there is no work that
addressed the dynamic aspect of space in spatial reasoning
and especially in qualitative spatial reasoning. However,
in the real world, spatial knowledge is not static since
the environment evolves over time. This evolution can be
caused by external events or by the effects of executing
some actions. In this paper, we focus on reasoning about
qualitative spatial knowledge in a dynamic way which is
relevant in many real world applications including reactive
planning and path finding.

Let us consider the example of an accident at a nuclear
plant. Generally if something goes wrong there are always

planned paths from any position in the nuclear plant to the
exit according to certain security criteria. These paths are
called emergency exits. In the case of a disaster that causes
unexpected incidents such as earthquakes, some emergency
exits may be blocked which can cause considerable damage.
Moreover, in these situations the temporal dimension is very
important. Indeed, the deadlines are very short. Thus, the
time to compute a new path must be done very quickly. This
time depends on the consistency check of spatial knowledge
needed to compute a feasible path to the exit.

In this regard, several techniques based on the Con-
straint Satisfaction Problem (CSP) formalism have been
proposed [15] [7]. To ensure the consistency of the spatial
information, these latter are first represented as a CSP. The
consistency of this latter is then checked. In real world prob-
lems, the major limitation of these approaches is their ability
to deal with the dynamic change of information. A CSP that
is consistent at a given time can become inconsistent in the
future with the change of a given information. The challenge
here is to maintain the consistency of the CSP anytime there
is an addition or a retraction of a constraint.

In order to address this issue, we proceed as follows. (1)
we use SpaceOntology [5] to represent the spatial knowl-
edge (2) we adapt the dynamic path consistency algorithm
(initially proposed for temporal constraints) [8] for the case
of spatial relations. In order to evaluate the performance of
our dynamic path consistency method, we conducted sev-
eral tests on instantiations of SpaceOntology in addition to
randomly generated spatial constraint problems.The results
of these tests demonstrate the efficiency of our method to
deal with large size problems in a dynamic environment.

The rest of the paper is structured as follows. In the next
section we present an overview of SpaceOntology with a
focus on topological relations. In section III we describe in
details our dynamic path consistency algorithm for topo-
logical relations. A case study illustrating our proposed
technique is then covered in Section IV. Section V reports
the experimental tests evaluating the performance of our
dynamic method. Finally, concluding remarks and future
works are listed in Section VI.
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Figure 1. ABLR relations [15]. X denotes the rectangle defining a region and the projections on each axis ((ox) and (oy)).

II. SPATIAL REPRESENTATION

To represent spatial knowledge, we use SpaceOntology [5]
described in Figure 2.
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Figure 2. Graphical representation of SpaceOntology’s concepts.

The concept Space represents a global environment (a
country, a city, a building, . . . ). The concept Regions is
a sub-space included in a given space. A region is itself
considered as a space that can be decomposed into different
sub-regions. From a geometric point of view, a region
is defined by the smallest rectangle corresponding to its
axis-aligned bounding rectangles. A spatial relation is de-
fined by the concept SpatialRelations which includes
TopologicalRelations and DistanceRelations
which could be numeric (for example, distance of 3 miles) or
fuzzy (for example, close to a coffee machine). The details
of the SpaceOntology definition are presented in [5].

In this paper, we focus on topological relations. In
SpaceOntology, a topological relation is defined using
the formalism ABLR depicted in Figure 1. Formally, a
topological relation is a couple 〈rX , rY 〉, where: rX ∈
{L,OL, Cx, Ix, OR, R} and rY ∈ {A,OA, Cy, Iy, OB , B}.

SpaceOntology deduces new spatial knowledge from an
initial description of space in order to complete unknown
knowledge. SpaceOntology defines a set of rules translating
the composition table of ABLR formalism in order to
infer new topological relations. In general, the result of
the inference mechanism gives a disjunction of topological
relations, and even in some cases leads to the universal

relation. To use this new knowledge, it must be consistent
with the initial knowledge.

However, to maintain spatial information consistency is
made in a static way. In other words, anytime new topolog-
ical relations are added/removed checking the consistency
reconsiders the whole spatial description as if it were a
new environment. Thus, SpaceOntology is not exploited
effectively in real applications. In the next section, we
propose a technique to maintain dynamically topological
relations.

III. DYNAMIC QUALITATIVE SPATIAL REASONING

Our objective is the ability to deal with topological rela-
tions in a dynamic environment (add or remove topological
relation) by adapting the technique presented in [8] for
the topological relations managed in SpaceOntology. This
technique concerns the dynamic constraint satisfaction in
the case of temporal networks based on Allen’s primitives.
According to [8] a Dynamic Temporal Constraint Satis-
faction Problem (DTCSP) is a sequence of static TCSPs
(Temporal Constraint Satisfaction Problem [9]): TCSP0,
TCSP1, TCSP2, . . . , TCSPn each resulting from a change
in the preceding one imposed by the outside world. More
precisely TCSPi+1 is obtained by performing a change on
TCSPi. The initial TCSP has an empty set of constraints.
A particular case is when the initial constraint is equal to
the disjunction of the 13 primitives. In this particular case,
removing one or more Allen primitives from the universal
relation is equivalent to adding a new constraint. The details
of the constraint restriction and relaxation methods are
presented in [8].

Similarly to [8], let us introduce the notions of Spatial
Constraint Satisfaction Problem (SCSP) and Dynamic Spa-
tial Constraint Satisfaction Problem (DSCSP).

A. SCSP and DSCSP

A Spatial Constraint Satisfaction Problem (SCSP) can be
formalized as a directed graph called spatial network. It
describes a set of variables (nodes in the spatial network)
and a set of constraints (arcs in the spatial network). Each
variable corresponds to a spatial entity defined in SpaceOn-
tology (instances of the concepts Regions and Space).



Each constraint is a disjunction of the topological relations
defined in SpaceOntology.

A Dynamic Spatial Constraint Satisfaction Problem
(DSCSP) is a sequence of static SCSPs P0, P1, Pi+1, . . . , Pn

each resulting from a change of the preceding one through
the addition or a retraction of a topological relation.

B. Dynamic Path Consistency Algorithm for Topological
Relations

We present here an adaptation of the dynamic path con-
sistency algorithm defined in [8]. The idea is to maintain the
path consistency in the network at any time after adding or
removing a disjunction of topological relations. The addition
and the retraction of the topological relations defined in
SpaceOntology is propagated to the entire spatial network
using transitive closure based on the composition rules
defined in SpaceOntology. In the case where the topological
relations suppression results in an empty constraint, the
spatial network is not consistent in this case (since it is not
path consistent).

In the following, we focus on how to maintain dynami-
cally the spatial consistency after adding inferred topological
relations in the knowledge base of SpaceOntology.

The idea is to transform the initial topological knowledge
described in SpaceOntology into a spatial network. The ad-
dition of inferred relations can be considered as a constraint
restriction or a constraint relaxation [8].

1) Constraint Restriction: The constraint restriction is
to add a new constraint (i.e a disjunction of topological
relations) in a spatial network. The method for maintaining
the consistency in this case is similar to the one proposed
in [8].

Here, the topological relations we consider are presented
on two axes. We denote by Cij =< rHij1 , r

V
ij1

> ∪ <
rHij2 , r

V
ij2

>, . . . < rHijn , r
V
ijn

> the constraint linking two
vertices i and j (H for Horizontal and V for Vertical).

To adapt and optimize the algorithm described in [8], we
decompose the constraint into two sub-sets of constraints
according to the horizontal and vertical axes decomp(Cij) =
{CH

ij , C
V
ij } such as CH

ij = rHij1 ∪ rHij2 . . . ∪ rHijn and CV
ij =

rVij1 ∪ rVij2 . . . ∪ rVijn .
The method described by our Algorithm 1 above works

as follows. Compute three intersections tH tV and t. tH is
the intersection of the new sub constraint corresponding to
the horizontal axis with the corresponding sub constraint, tV

is the intersection of the new sub constraint corresponding
to the vertical axis with the corresponding sub constraint
and t is the intersection of the new constraint with the
corresponding constraint in the arc and path consistent
graph. If the result of one of these intersections is an
empty relation then the new constraint cannot be added
otherwise it will violate the path consistency of the graph.
Otherwise, we replace the current constraint of the graph by
the result of the intersection. We then perform the dynamic

Algorithm 1 Restrict(i,j)
Require:

1: {new cH , new cV } ←− decomp(new constraint)
2: {CH

ij , C
V
ij } ←− decomp(Cij)

3: tH ←− new cH ∩ CH
ij

4: tV ←− new cV ∩ CV
ij

5: t←− new constraint ∩ Cij

6: if tH = � or tV = � or t 6= � then
7: return ”Constraint cannot be added”
8: else
9: Cij ←− new constraint

10: update list←− {new constraint}
11: if ¬AdaptedPC(update list) or

¬PC(update list) then
12: return ”Constraint cannot be added”
13: end if
14: end if

path consistency (AdaptedPC 2 shown below and PC [8]) in
order to propagate the update of the constraint to the rest of
the graph. If the resulting graph is not path consistent then
the new constraint cannot be added.

Algorithm 2 AdaptedPC
Require: update list

1: PC ←− false
2: L←− update list
3: while (L 6= �) do
4: select and delete an (x, y) from L
5: for k ←− 1 to n, k 6= x and k 6= y do
6: tH ←− CH

xk ∩ CH
xy.C

H
yk

7: tV ←− CV
xk ∩ CV

xy.C
V
yk

8: if tH 6= CH
xk or tv 6= CV

xk then
9: CH

xk ←− tH , CV
xk ←− tV

10: CH
kx ←− INV ERSE(tH)

11: CV
kx ←− INV ERSE(tV )

12: L←− L ∪ {(x, k)}
13: updated list←− updated list ∪ {(x, k)}
14: tH ←− CH

ky ∪CH
kx.C

H
xy , tV ←− CV

ky ∪CV
kx.C

V
xy

15: end if
16: if tH 6= CH

ky or tV 6= CH
ky then

17: CH
yk ←− INV ERSE(tH)

18: CV
yk ←− INV ERSE(tV )

19: L←− L ∪ {(k, y)}
20: updated list←− updated list ∪ {(y, k)}
21: end if
22: end for
23: end while

2) Constraint Relaxation: Similarly to the case of tempo-
ral relations in [8], the constraint relaxation corresponds to
adding some topological relations to an existing constraint.



Run the dynamic path consistency algorithm starting form
the triangle containing the relaxed constraint. If at least
one of the other two relations belonging to the triangle is
updated, we propagate in a recursive way this change to the
other constraints.

IV. CASE STUDY

Let us consider the environment depicted in Figure 3.
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Figure 3. A Scene

There is a set of regions; offices and gates
{O1, O2, . . . , O6, G1, G2} and the following set of
topological relations between them:

• O1 < L, Iy > O2, O1 < L,Cy > O4, O1 < Ix, A >
O5;

• O3 < R, Iy > O2, O3 < L,Cy > O4;
• O4 < OR, A > O6;
• O5 < L,Cy > O6.

O1

O2

O3

O4O5

O6

< L, Iy > < R, Iy >

< L,Cy >

< L,Cy >

< Ix,A >

< OR,A >< L,Cy >

Figure 4. Spatial Network

Figure 4 shows the spatial network formalizing all the
known spatial relations. We consider this network as the
initial spatial state of the world.

Let us assume that, after an earthquake at a nuclear plant,
a robot is sent in it in order to do some emergency tasks.
The robot is guided by a human who has partial knowledge
of the environment. The human implements SpaceOntology
by the following informations.

The robot mission is to isolate the region in which the
office O6 is located. For this, it must block gateways such
as G1 and G2. However, with partial spatial knowledge
the robot cannot make a decision. Based on the initial
spatial description, we can define the space described by
the graph in the upper left of Figure 5. Now, by exploiting
the composition rules defined in SpaceOntology [5], we
deduce the topological relation between O1 and O6 from

add deduced relations

check for consictency

Figure 5. A scene

the composition between the couples (O1, O4) and (O4,
O6), we deduce that the relation between O1 and O6 is
DR, where DR =< L,Cy > ∨ < L,A > ∨ < L,OA >
∨ < L, Iy > ∨ < OL, Cy > ∨ < OL, A > ∨ < OL, OA >
∨ < OL, Iy > ∨ < Ix, Cy > ∨ < Ix, A > ∨ < Ix, OA >
∨ < Ix, Iy >.

Therefore, the result of the composition is a disjunction
that cannot be exploited to make a decision. In this disjunc-
tion some information are inconsistent. When relying on our
approach we can check the consistency of this knowledge
without any reformulation.

To check the consistency of topological knowledge, we
proceed as follows. We add DR between O1 and O6 and
compute the intersection between < L,A > and DR. This
intersection returns the following result: < L,A >. This
latter relation is not in conflict with the network.

V. EXPERIMENTATION

This section presents comparative experimental tests eval-
uating the performance in time of a static method and our
dynamic technique to maintain the consistency of the spatial
knowledge that evolves over time. The static method en-
forces the path consistency from scratch anytime a constraint
is added.

We have conducted two categories of experimental tests.
The first category is performed on nine instantiations of
SpaceOntolgy. The second one is conducted on randomly
generated consistent DSCSPs. All the procedures are coded
in Java.

A. Tests Performed on Instantiations of SpaceOntology

Each instance has a specific number of regions and
topological relations as shown in Table I. For each instance
new topological relations are inferred in a random order.

For each instance of SpaceOntology we formalize the
initial spatial knowledge in an initial SCSP where the nodes
are regions and arcs are disjunctions of topological relations.



Table I
STATIC METHOD VERSUS DYNAMIC METHOD

Instances ◦ 3 2 4
1 15 120 562.1 210.03
2 25 98 328.5 165.2
3 35 80 281.6 98.72
4 45 72 182.9 70.32
5 55 51 90.1 62.01
6 65 38 80.9 51.07
7 75 20 60.7 42.98
8 85 9 42.1 27.02
9 95 3 12.1 10.03

◦ number of regions and topological relations
3 number of new topological relations added
2 static method
4 dynamic method

Here we compare the static and dynamic methods perfor-
mances to maintain the path consistency in the network after
adding inferred topological relations. The inferred relations
are deduced by applying the composition rules defined in
SpaceOntology. The results of the experimental tests are
depicted in Table I. This table shows that maintaining
consistency after adding a large number of topological
relations (over 50 relationships) is faster with the dynamic
method than with the static one. For example, if we add 120
topological relations, the dynamic method runs in 210.03 ms,
instead of 562 ms for the static method.

B. Tests on Randomly Generated DSCSPs

The criteria used to evaluate the static and dynamic meth-
ods is the running time needed to maintain the consistency of
the DSCSP. To generate a consistent SCSP we first randomly
generate a numeric solution and then randomly add other
information to it. For this, we consider the node representing
a region defined by a rectangle. This latter is identified by
a couple of intervals (R = [(bHinf , b

H
sup), (b

V
inf , b

V
sup)]).

Following the generation method described in [9], consis-
tent SCSPs are randomly generated as follows.

1) Generation of numeric solution. Randomly pick N
pairs (I, J) where I = (bHIinf

, bHIsup
) and J=

(bVIinf
, bVIsup

) are pairs of integers such that bHIinf
<

bHIsup
and bVinf < bVsup and bHinf , b

H
sup, b

V
inf , b

V
sup ∈

[0, . . . ,Horizon]. This set of N pairs forms the initial
solution where each couple of pairs corresponds to
the projection of the rectangle on x-axis and y-axis.
Horizon corresponds to a max number.

2) Generation of numeric constraints. For each couple
(I, J), randomly pick an interval contained within
[0, . . . ,Horizon] and containing the couple (I, J).
This newly generated couple defines the projection of
rectangle on x-axis and y-axis. From these projections,
we generate the domain of the corresponding regions.

3) Generation of constraints. Compute the basic ABLR
primitives that hold between each projection pair of

the initial solution.
Example 1: Let us assume we want to generate a consis-

tent SCSP with N = 3 regions and Horizon = 10.
1) A numeric solution is generated: S =
{([1, 4], [2, 5]), ([2, 8], [2, 6])([5, 7], [1, 7])}

2) Domains for the different regions are randomly gener-
ated from the numeric solution as shown in Table II.

Table II
DOMAINS DEFINITION

Projections Domains

[1,4][2,5] [0,7][1,6] {[0, 3], . . . , [4, 7], [1, 4], . . . [3, 6]}
[2,8][2,6] [1,9][0,8] {[1, 7], . . . , [3, 9], [0, 4], . . . [4, 8]}
[5,7][4,7] [4,9][0,10] {[4, 6], . . . , [7, 9], [0, 3], . . . [7, 10]}

3) ABLR primitives are computed from the pairs of
projections as described in Table III.

Table III
RELATIONS DEFINITION

Pairs of Projections Topological relations

[1,4][2,5] and [2,8][2,6] −→ < OL, OB >
[1,4][2,5] and [5,7][4,7] −→ < L, Iy >
[2,8][2,6] and [5,7][4,7] −→ < Cx, Iy >

After generating the SCSP, the solving algorithm will
process the list of spatial relations in an incremental way (in
order to simulate a DSCSP). We start with a DSCSP having
N variables and 0 constraints. Constraints are then added
one by one, in arbitrary order from the randomly generated
SCSP to the DSCSP until a given number of constraints C, is
reached. After adding each constraint, the solving algorithm
will check the path consistency of the new DSCSP.

Table IV
COMPARATIVE TESTS ON RANDOMLY GENERATED DSCSPS

Problem
N C D Dynamic Static

20 95 50 0.30 0.15
40 390 50 0.57 0.43
60 885 50 0.95 1.11
80 1580 50 2.56 3.02

100 2475 50 20.20 45.09
200 9950 100 157.10 200.98
300 22425 100 320.91 600.09

Table IV presents the results of tests performed on DSCSP
instances defined by the number of variables N, their domain
size and the number of constraints C. The running time of the
two methods are comparable for small and medium problems
(N ≤ 80). For large problems, the dynamic method is more
efficient.

For those real world applications such as real time systems
where a solution needs to be returned within a given deadline
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Figure 6. Solution quality given by the static and dynamic methods.

an alternative is to try to solve most of the constraints
(instead of all of them). For this purpose, path consistency
can be used as an incomplete method that returns a solution
with a quality corresponding to the percentage of satisfied
constraints.

For this purpose, we conducted tests where we randomly
generate DSCSPs with a number of constraints ranging
from 100 to 25000. Here, we compute the percentage of
non violated constraints (quality of the solution) obtained
at different time instants after applying both the static and
dynamic methods.

Figure 6 presents the results of these experiments. In these
tests we focus on the quality of the solution. While we
compute the running time needed to return the solutions,
we also check the percentage of non-violated constraints. We
note that, for every time instant, the solutions returned by
the dynamic method are of better quality than those returned
by the static method. For example, for a computation time
of 300 seconds the dynamic method was able to satisfy 97%
of the constraints while the static method was successful for
solving only 45%.

VI. CONCLUSION

In this paper we have proposed an approach to maintain
the consistency of spatial knowledge in a dynamic environ-
ment. This approach is interest for many application where
qualitative spatial information need to be managed in a
dynamic environment. To our best knowledge no work in
spatial reasoning has addressed this issue.

Our proposed method can be extended to the other for-
malisms for representing the topological relations and based
on Allen’s algebra such as rectangles algebra [16] as well
as the method of n-intersections [11]. In this paper, we only
use the topological aspect proposed by SpaceOntology. In
the near future we plan to manage all aspects of spatial
knowledge in a dynamic manner. We will also explore the
case of retracting topological relations. The challenge here

is to restore back all the values that have been removed due
the constraint we are relaxing.
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