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10. Algorithm Design Techniques

Optimization Problem

� In an optimization problem we are given a set of constraints

and an optimization function.

� Solutions that satisfy the constraints are called feasible

solutions.

� A feasible solution for which the optimization function has the

best possible value is called an optimal solution.
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10. Algorithm Design Techniques

Loading Problem

A large ship is to be loaded with cargo. The cargo is containerized, and all containers

are the same size. Different containers may have different weights. Let �� be the

weight of the ith container, � � � � �. The cargo capacity of the ship is �. We wish

to load the ship with the maximum number of containers.

� Formulation of the problem :

– Variables : �� (� � � � �) is set to � if the container � is not to be loaded

and � in the other case.

– Constraints :

��
���
���� � �.

– Optimization function :

��
���
��

� Every set of ��s that satisfies the constraints is a feasible solution.

� Every feasible solution that maximizes

��
���
�� is an optimal solution.
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4.1 Greedy Algorithms

4.1 Greedy Algorithms

� Greedy algorithms seek to optimize a function by making

choices (greedy criterion) which are the best locally but do not

look at the global problem.

� The result is a good solution but not necessarily the best one.

� The greedy algorithm does not always guarantee the optimal

solution however it generally produces solutions that are very

close in value to the optimal.
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4.1 Greedy Algorithms

Huffman Codes

� Suppose we have a file that contains only the characters a, e, i,

s, t plus blank spaces and newlines.

– 10 a, 15 e, 12 i, 3 s, 4 t, 13 blanks, and one newline.

– Only 3 bits are needed to distinguish between the above

characters.

– The file requires 174 bits to represent.

� Is it possible to provide a better code and reduce the total

number of bits required ?
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4.1 Greedy Algorithms

Huffman Codes

� Yes. We can allow the code length to vary from character to

character and to ensure that the frequently occurring characters

have short codes.

� If all the characters occur with the same frequency, then there

are not likely to be any savings.

� The binary code that represents the alphabet can be

represented by a binary tree.
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4.1 Greedy Algorithms

Huffman Codes

a e i s t sp nl

Representation of the original code in a tree

� The representation of each character can be found by starting at the

root and recording the path, using a 0 to indicate the left branch and a

1 to indicate the right branch.

� If character �� is at depth �� and occurs �� times, then the cost of the

code is equal to

�
����.
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4.1 Greedy Algorithms

Huffman Codes

� newline symbol is an only child and can be placed one level

higher at its parent.

a e i s t sp

nl

A slightly better tree 

� Cost using the new full tree = 173.
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4.1 Greedy Algorithms

Huffman Codes

� Goal : Find the full binary tree of minimum total cost where all

characters are contained in the leaves.

s nl

i

a

t

sp
e

Optimal prefix code

� Cost = 146

� How is the coding tree constructed ?

– Huffman’s Algorithm
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4.1 Greedy Algorithms

Huffman Codes

Character Code Frequency Total Bits

a 011 10 30

e 01 15 30

i 10 12 24

s 00000 3 15

t 0001 4 16

space 11 13 26

newline 00001 1 5

Total 146
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4.1 Greedy Algorithms

Huffman’s Algorithm

� Assuming that the number of characters is C, Huffman’s

algorithm can be described as follows :

1. At the beginning of the algorithm, there are C single-node

trees, one for each character.

2. The weight of a tree is equal to the sum of the frequencies of

its leaves.

3. C-1 times, select the two trees, �� and ��, of smallest

weight, breaking ties arbitrary, and form a new tree with

subtrees �� and ��.

4. At the end of the algorithm there is one tree, and this is the

optimal Huffman coding tree.
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4.1 Greedy Algorithms

a e i s t sp nl
10 15 12 3 4 13 1

a e i stsp nl
10 15 12 13 4
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s

T4

a

e i

t

sp
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4.1 Greedy Algorithms

Machine Scheduling

� We are given � tasks and an infinite supply of machines on which

these tasks can be performed.

� Each task has a start time �� and a finish time ��, �� � ��, ���� ��� is

the processing interval for task �.

� A feasible task-to-machine assignment is an assignment in which no

machine is assigned two overlapping tasks.

� An optimal assignment is a feasible assignment that utilizes the

fewest number of machines.
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4.1 Greedy Algorithms

Machine Scheduling

� We have 7 tasks :

task a b c d e f g

start 0 3 4 9 7 1 6

finish 2 7 7 11 10 5 8

� Feasible assignment that utilizes 7 machines :

��	�, 
�	�, � � �, � �	�.

� Is it the optimal assignment ?
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4.1 Greedy Algorithms

Machine Scheduling

� A greedy way to obtain an optimal task assignment is to assign the

tasks in stages, one task per stage and in nondecreasing order of task

start times.

� A machine is called old if at least one task has been assigned to it.

� If a machine is not old, it is new.

� For machine selection, we use the following criterion :

– If an old machine becomes available by the start time of the task to

be assigned, assign the task to this machine; if not, assign it to the

new machine.
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4.1 Greedy Algorithms

Scheduling Problem

� We are given 
 non preemptive jobs ��� � � � � �� , all with known

running times ��� ��� � � � � �� , respectively. We have a single

processor.

� Problem: what is the best way to schedule these jobs in order to

minimize the average completion time ?

� Example :

Job �� �� �� ��
Time 15 8 3 10

� Solution 1 : ��� ��� ��� ��. Average completion time : 25.

� Optimal Solution : ��� ��� ��� ��. Average completion time : 17.75.
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4.1 Greedy Algorithms

Scheduling Problem

� Formulation of the problem :

– � jobs ��� � � � � � ��� with running times ��� � � � � � ���

respectively.

– Total cost : � �
��

����� � � � �����

� �� � ��
��

��� ��� �
��

��� ����

� The first sum is independent of the job ordering. Only the

second sum affects the total cost.

� Greedy criterion : Arrange jobs by smallest running time first.
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4.1 Greedy Algorithms

Scheduling Problem

Multiprocessor case

� 
 non preemptive jobs ��� � � � � �� , with running times

��� ��� � � � � �� respectively, and a number � of processors.

� We assume that the jobs are ordered, shortest running time first.

� Example :

Job �� �� �� �� �� �� �� �	 �


Time 3 5 6 10 11 14 15 18 20

� Greedy criterion : start jobs in order cycling through processors.

� The solution obtained is optimal however we can have many optimal

orderings.
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4.1 Greedy Algorithms

Loading Problem

� Using the greedy algorithm the ship may be loaded in stages;

one container per stage.

� At each stage, the greedy criterion used to decide which

container to load is the following :

– From the remaining containers, select the one with least

weight.

� This order of selection will keep the total weight of the selected

containers minimum and hence leave maximum capacity for

loading more containers.
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4.1 Greedy Algorithms

Loading Problem

� Suppose that :

– � � �,

– ���� � � � � �	� � ����� ���� ��� 	�� ���� ��� ��� ���,

– and � � 
��.

� When the greedy algorithm is used, the containers are considered for

loading in the order 7,3,6,8,4,1,5,2.

� Containers 7,3,6,8,4 and 1 together weight 390 units and are loaded.

� The available capacity is now 10 units, which is inadequate for any of

the remaining containers.

� In the greedy solution we have :

���� � � � � �	� � ��� �� �� �� �� �� �� �� and

�
�� � �.
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4.1 Greedy Algorithms

0/1 Knapsack Problem

� In the 0/1 knapsack problem, we wish to pack a knapsack (bag or sack) with a capacity of �.

� From a list of � items, we must select the items that are to be packed into the knapsack.

� Each object � has a weight �� and a profit �� .

� In a feasible knapsack packing, the sum of the weights of the packed objects does not

exceed the knapsack capacity :

��
���

���� � � and �� � ��	 ��	 � � � � �

� An optimal packing is a feasible one with maximum profit :

maximize

��
���

����

� The 0/1 knapsack problem is a generalization of the loading problem to the case where the

profit earned from each container is different.
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4.1 Greedy Algorithms

0/1 Knapsack Problem

� Several greedy strategies for the 0/1 knapsack problem are possible.

� In each of these strategies, the knapsack is packed in several stages. In each

stage one object is selected for inclusion into the knapsack using a greedy

criterion.

� First possible criterion : from the remaining objects, select the object with the

maximum profit that fits into the knapsack.

� This strategy does not guarantee an optimal solution.

� Example : � � �� � � ����� ��� ���� � � ���� ��� ���� � � ���.

� Solution using the above criterion : � � ��� �� ��, profit = 20.

� Optimal solution : � � ��� �� ��, profit = 30.
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4.1 Greedy Algorithms

0/1 Knapsack Problem

� Second criterion : greedy on weight

– From the remaining objects, select the one that has minimum

weight and also fits into the knapsack.

� This criterion does not yield in general to an optimal solution.

� Example : 	 � �� 
 � ���� ��	� � � �
� ���	� � � �
.

� Solution : 
 � ��� �	 inferior to the solution : 
 � ��� �	.
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4.1 Greedy Algorithms

0/1 Knapsack Problem

� Third criterion : greedy on the profit density ���
�. From the

remaining objects, select the one with maximum ���
� that fits

into the knapsack.

� This strategy does not guarantee optimal solutions either.

� Example : 	 � �� 
 � ���� �
� �
	� � � ���� �
� �
	 and

� � ��.

Note : The 0/1 knapsack problem is an NP-hard problem. This is the

reason why we cannot find a polynomial-time algorithm to solve it.
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10.2 Divide and Conquer

10.2 Divide and Conquer

To solve a large instance :

1. Divide it into two or more smaller instances.

2. Solve each of these smaller problems, and

3. combine the solutions of these smaller problems to obtain the

solution to the original instance.

The smaller instances are often instances of the original problem

and may be solved using the divide-and-conquer strategy

recursively.
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10.2 Divide and Conquer

Closest-Points Problem

� Find the closest pair of N points in the plane.

� A brute force algorithm requires �		�
 in the worst case since there are at

most 			 � �

� pairs.

� A divide and conquer algorithm for this problem works as follows :

– Sort the points by � coordinates and draw a vertical line that partitions the

point set into two halves, �� and ��.

– Either the closest points are both in ��, or they are both in �� or one is in

�� and the other is in �� (this is similar to solving the maximum

subsequence sum using a divide and conquer method).

– Our goal is to have a complexity better than �		�
.

– According to the master theorem, computing the 3rd case should be

performed in �		
 in order to have �		 ��
	
 in total.
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10.2 Divide and Conquer

Closest-Points Problem

� The brute force algorithm to perform the 3rd case requires �		�
. Why ?

� To do better, one way consists in the following :

1. Compute Æ � ���	
�� 
�
.

2. We need then to compute 
� only if 
� improves on Æ. The two points that

define 
� must be within Æ of the dividing line. This area is general

refereed as a strip.

3. The above observation limits in general the number of points that need to be

considered. For large points sets that are uniformly distributed, the number

of points that are expected to be in the strip is of order �	
�

		

 in

average. The brute force calculation on these points can be performed in

�		
.

4. However, in the worst case all the points could be in the strip which requires

�		�
 to expect all the points.

5. Can we do better ?
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10.2 Divide and Conquer

Closest-Points Problem

� Yes, using the following observation :

– The � coordinates of the two points that define 
� can differ by at most Æ.

Otherwise, 
� � Æ.

– If �� and �� ’s coordinates differ by more than Æ, then we can proceed to

����.

– In the worst case, for any points ��, at most 7 points �� are considered.

The time to compute 
� that is better than Æ is �		
.

– It appears that we have now an �		 ��
	
 solution to the closest-points

problem. However it is not the case :

� An extra work is needed to sort, for each recursive call, the list of points

by � coordinates which gives an �		 ��
�	
 algorithm. Well, it is

better than �		�
.

� Can we reduce the work in each recursive call to �		
, thus ensuring

an �		 ��
	
 algorithm ?
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10.2 Divide and Conquer

Closest-Points Problem

� Yes. We can maintain two lists. One is the point list sorted by �

coordinate, and the other is the point list sorted by � coordinate. Let’s

call these lists � and �, respectively.

� First we split � in the middle. Once the dividing line is known, we step

through � sequentially, placing each element in �� or �� as

appropriate.

� When the recursive calls return, we scan through the � list and discard

all the points whose � coordinates are not within the strip. The

remaining points are guaranteed to be sorted by their � coordinates.

� This strategy ensures that the entire algorithm is ��
 
��
�,

because only ��
� extra work is performed.
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10.3 Dynamic Programming

10.3 Dynamic Programming

� Using a table instead of a recursion.

� Remember the problem given to Mr Dupont :

� ��� � �

� ��� � ��

� �	� � �� �	� ��� � �	� ��

What is � �����?
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10.3 Dynamic Programming

1st Method

Translate the mathematical formula to a recursive algorithm.

if (n==1) � return 3; �

else

if (n==2) �return 10;�

else � return 2 � f(n-1) - f(n-2); �
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10.3 Dynamic Programming

Analysis of the 1st method

� � ��� � � �� � �� � � �� � ��

� This is a Fibonacci function : � ��� � ��
��

� Complexity of the algorithm : ����
�� � (exponential).
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10.3 Dynamic Programming

2nd Method

� Use an array to store the intermediate results.

int f[n+1];

f[1]=3;

f[2]=10;

for(i=3;i¡=n;i++)

f[i] = 2 �f[i-1] - f[i-2];

return t[n];

� What is the complexity in this case ?

� What is the disadvantage of this method ?
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10.3 Dynamic Programming

3rd Method

� There is no reason to keep all the values, only the last 2.

if (n==1) return 3;

last = 3;

current = 10;

for (i=3;i��n;i++) �

temp = current;

current = 2�current - last;

last = temp; �

return current;

� What is the advantage of this method comparing to the 2nd

one ?
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10.3 Dynamic Programming

Fibonacci Numbers

� We can do use the same method to compute Fibonacci

numbers.

� To compute �� , all that is needed is ���� and ����, we

only need to record the two most recently computed Fibonacci

numbers. This requires an algorithm in ����.
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10.3 Dynamic Programming

Dynamic Programming for Optimization Problems

� In dynamic programming, as in greedy method, we view the

solution to a problem as the result of a sequence of decisions.

� In the greedy method, we make irrevocable decisions one at a

time using a greedy criterion. However in dynamic

programming, we examine the decision sequence to see

whether an optimal decision sequence contains optimal

decision subsequences.
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10.3 Dynamic Programming

0/1 Knapsack Problem

� In the case of the 0/1 Knapsack problem, we need to make decisions on the

values of ��� � � � � ��.

� When optimal decision sequences contain optimal decision subsequences, we

can establish recurrence equations, called dynamic-programming recurrence

equations that enable us to solve the problem in an efficient way.

� Let �	�� �
 denote the value of an optimal solution to the knapsack instance

with remaining capacity � and remaining objects �� �� �� � � � � � :

�	�� �
 �
�

�� if � � ��

� � � � � ��

�	�� �
 �
�

�����	�� �� �
� �	�� �� � � ��
 � ��� if � � ��

�	�� �� �
 � � � � ��
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10.3 Dynamic Programming

Ordering Matrix Multiplications

Goal : Determine the best order in which to carry out matrix

multiplications

� To multiply a �� � matrix and a � � � matrix we do ���

element-wise multiplications.

� Matrix multiplication is associative : ����� � �����

however the order to perform the intermediate multiplications

can make a big difference in the amount of work done.
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10.3 Dynamic Programming

Ordering Matrix Multiplications

Example

We want to multiply the following arrays :

�� ������ � �������� � ��������� � �������
�

How many multiplications are done for each ordering ?

1. ������������ ������������������������
 � ��� ���

2. ������������ �������
 � ������
 � ������
 � ��� �
�

3. ������������ ���������������
��������
 � ��� ���

4. ������������ ������� � ������
 � ������
 � �� ���
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10.3 Dynamic Programming

Ordering Matrix Multiplications

General Problem :

Suppose we are given matrices ��� ��� � � � � �� where the

dimensions of �� are ����� � ��� (for � � � � 	). What is the

optimal way (ordering) to compute :

����� � ��������� � ���� 	 	 	 �������� � ���
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10.3 Dynamic Programming

Ordering Matrix Multiplications

� The number of possible orderings is :
� ��� �

����
���

� ���� �� � ��

– Suppose that the last multiplication is :

����� � � � ������	���	� � � � �� �

� there are � ��� ways to compute ����� � � � ���

� and � �� � �� ways to compute ���	���	� � � � �� �.

� The solution of this recurrence is called Catalan numbers and it

grows exponentially.
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10.3 Dynamic Programming

Ordering Matrix Multiplications

� �
��
	����
 is the number of multiplications required to

multiply �
��
�
��
	� 	 	 	�����


� ��
��
 	 	 	������	� 	 	 	�����
� is the last multiplication.

� The number of multiplications required is :

�
��
	� ���	�	����
 � �
��
���������


� The number of multiplications in an optimal ordering is :

	�	
����
�� �

����	
������
���	�	
����	������
�����	
��������
���
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10.4 Randomized Algorithms

10.4 Randomized Algorithms

� A randomized algorithm is an algorithm where a random

number is used to make a decision at least once during the

execution of the algorithm.

� The running time of the algorithm depends not only on the

particular input, but also on the random numbers that occur.
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10.4 Randomized Algorithms

Primality Testing

� Problem : Test whether or not a large number is prime ?

� The obvious method requires an algorithm of complexity

��



��. However nobody knows how to test whether a �-digit

number � is prime in time polynomial in �.

� Fermat’s Lesser Theorem :

If � is prime, and � � � � � , then ���� � ��mod � �
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10.4 Randomized Algorithms

Primality Testing

� Using Fermat’s Lesser Theorem, we can write an algorithm for primality testing

as follows :

1. Pick � � � � 	 � � at random.

2. If ���� � �	mod � 
 declare that 	 is “probably” prime, Otherwise

declare that 	 is definitely not prime.

� Example : if 	 � ���, and � � �, we find that ���� � ��	mod ���
�

� If the algorithm happens to choose � � �, it will get the correct answer for

	 � ���.

� There are some numbers that fool even this algorithm for most choices of �.

� One such set of numbers is known as the Carmichael numbers. They are not

prime but satisfy ���� � �	mod 	
 for all � � � � 	 that are relatively

prime to 	 . the smallest such number is 561.
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10.4 Randomized Algorithms

Primality Testing

� We need an additional test to improve the chances of not

making an error.

� Theorem : If � is prime and � � � � � , the only solutions to

�� � ��mod � � are � � �� � � �.

� Therefore, if at any point in the computation of �����mod ��

we discover violation of this theorem, we can conclude that � is

definitely not prime.
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10.5 Backtracking

10.5 Backtracking

� Backtracking is a systematic way to search for the solution to a problem.

� This method attempts to extend a partial solution toward a complete solution.

� In backtracking, we begin by defining a solution space or search space for the problem.

� For the case of the 0/1 knapsack problem with� objects, a reasonable choice for the solution space is the set of �� 0/1

vectors of size�. This set represents all possible ways to assign the values 0 and 1 to�.

� The next step is to organize the solution space so that it can be reached easily. The typical organization is either a graph or a

tree.

� Once we have defined an organization for the solution space, this space is searched in a depth-first manner beginning at a start

node.

� The start node is both a live node and the E-node (expansion node).

� From this E-node, we try to move to a new node.

� If such a move is possible, the new node becomes a live node and also becomes the new E-node. The old E-node remains a live

node.

� If we cannot move to a new node, the current E-node dies and we move back to the most recently seen live node that remains.

This live node becomes the new E-node.

� The search terminates when we have found the answer or when we run out of live nodes to back up to.
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