
Inheritance and Polymorphism'

&

$

%

Inheritance and Polymorphism

• Inheritance versus generecity (templates)

• Base Classes and Derived Classes.

• Subclassing for Specialisation/Specification.

• Relationships Among Objects in an Inheritance Hierarchy.

• Polymorphism, Virtual Functions and Dynamic Binding.

Malek Mouhoub, CS170 Winter 2005 1



Inheritance and Polymorphism'

&

$

%

¤
£

¡
¢Inheritance

Form:

class derived-class : access base-class

where:

• derived-class is derived from base-class.

• access can be:

– public : public (or protected) members of the base class

are public (or protected) in the derived class.

– private : public and protected members of the base class

become private members of the derived class.

– or protected : public and protected members of the base

class become protected members of the derived class.

Malek Mouhoub, CS170 Winter 2005 2



Inheritance and Polymorphism'

&

$

%

Note: constructors are not inherited. Each declaration of an object

of the derived class causes execution of the base class constructor

before the derived class constructor.

Malek Mouhoub, CS170 Winter 2005 3



Inheritance and Polymorphism'

&

$

%

• Interface (.h) of derived class:

– Contains declarations for new member functions

– Also contains declarations for inherited member functions to

be changed

• Inherited member functions NOT declared: Automatically

inherited unchanged

• Implementation of derived class will:

– Define new member functions

– Redefine inherited functions as declared

Malek Mouhoub, CS170 Winter 2005 4



Inheritance and Polymorphism'

&

$

%

¨
§

¥
¦Redefining vs. Overloading

• Redefining in derived class:

– SAME parameter list

– Essentially re-writes same function

• Overloading:

– Different parameter list

– Defined new function that takes different parameters

– Overloaded functions must have different signatures

Malek Mouhoub, CS170 Winter 2005 5



Inheritance and Polymorphism'

&

$

%

¨
§

¥
¦Multiple Inheritance

• Derived class can have more than one base class!

• Syntax just includes all base classes separated by commas:

class derivedMulti : public base1,

base2 . . .

• Possibilities for ambiguity are endless! Dangerous undertaking!

• Some believe should never be used

• Certainly should only be used be experienced programmers!

Malek Mouhoub, CS170 Winter 2005 6


