
Artificial Intelligence

Instructor: Dr. Malek Mouhoub

Department of Computer Science

University of Regina

Winter 2011

CS 421, Winter 2011 1

7. Constraint Processing

7. Constraint Processing

7.1 Introduction

7.2 Systematic Search for CSPs

7.3 Constraint Propagation

7.4 Heuristics for CSPs

7.5 Iterative (non systematic) Algorithms for CSPs

7.6 Tree-structured CSPs

7.7 Constraint-Based Systems

CS 421, Winter 2011 2

7.1 Introduction

7.1 Introduction

“Constraint programming represents one of the closest approaches

computer science has yet made to the holy grail of programming :

the user states the problem, the computer solves it.”

Eugene C. Freuder, Constraints, April 1997

CS 421, Winter 2011 3

7.1 Introduction

Constraint satisfaction problems (CSPs)

Standard search problem:

state is a “black box”—any old data structure

that supports goal test, eval, successor

CSP:

state is defined by variables Vi with values from domain Di

goal test is a set of constraints specifying

allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power

than standard search algorithms

CS 421, Winter 2011 4

7.1 Introduction

Constraint Satisfaction Problem (CSP)

• A Constraint Satisfaction Problem (CSP) consist of:

– a set of variables X = {x1, . . . , xn},

– for each variable xi , a finite set Di of possible values (its domain),

– and a set of constraints restricting the values that the variables can simultaneously

take.

• A solution to a CSP is an assignment of a value from its domain to every variable, in such

a way that every constraint is satisfied. We may want to find:

– just one solution, with no preference as to which one,

– all solutions,

– an optimal, or at least a good solution, given some objective function defined in terms

of some or all of the variables.

• A CSP is often represented as a (hyper)graph.

CS 421, Winter 2011 5

7.1 Introduction

4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables Q1 , Q2 , Q3 , Q4

Domains Di = {1, 2, 3, 4}

Constraints

Qi 6= Qj (cannot be in same row)

|Qi −Qj | 6= |i− j| (or same diagonal)

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1, Q2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)

CS 421, Winter 2011 6

7.1 Introduction

Example: Crypt-arithmetic

Variables

D E M N O R S Y

Domains

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

S E N D

+ M O R E

M O N E Y

Constraints

M 6= 0, S 6= 0 (unary constraints)

Y = D + E or Y = D + E − 10, etc.

D 6= E, D 6= M , D 6= N , etc.

CS 421, Winter 2011 7

7.1 Introduction

SEND + MORE = MONEY

R1 R2 R3 R4

S E N D

+ M O R E

M O N E Y

[S,E,N,D,M,O,R,Y] :: 0 . . . 9

[R1, R2, R3, R4] :: 0 . . . 1

S 6= 0, M 6= 0

alldifferent([S,E,N,D,M,O,R,Y])

CS 421, Winter 2011 8

7.1 Introduction

4-Queens and Map Coloring

1

2

3

4

C3

C1
C2

C5 C4

C6

Assume one queen in each column.
 Which row does each one go in
such that no queen constitutes
 an attack on any other.

Q1 Q2 Q3 Q4
R G B

Is it possible to color the map with
 only three colors when no two adjacent
 regions may share the same color

CS 421, Winter 2011 9

7.1 Introduction

Formulation through the CSP framework

1

2

3

4

C3

C1
C2

C5 C4

C6

Variables: {Q1,Q2,Q3,Q4}
Domain: {1,2,3,4}
Constraints: {Qi <> Qj , |Qi-Qj| <> | i - j | }

Q1 Q2 Q3 Q4
R G B

Variables: {C1,C2,C3,C4,C5,C6}
Domain: {R,G,B}
Constraints: {C1 <> C2, C1 <> C3}

CS 421, Winter 2011 10

7.1 Introduction

Graph Representation of the CSP: Constraint Network

1

2

3

4

C3

C1 C2

C5 C4

C6

Variables: {Q1,Q2,Q3,Q4}
Domain: {1,2,3,4}
Constraints: {C12 , C13 , ... }

Q1 Q2 Q3 Q4
R G B

Variables: {C1,C2,C3,C4,C5,C6}
Domain: {R,G,B}
Constraints: {C1 <> C2, C1 <> C3}

Q1 Q2

Q3 Q4

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

C12

C24

C34

C13

C23
C14

C12 = {(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}

CS 421, Winter 2011 11

7.1 Introduction

1

2

3

4

C3

C1
C2

C5 C4

C6

Variables: {Q1,Q2,Q3,Q4}
Domain: {1,2,3,4}
Constraints: {Qi <> Qj , |Qi-Qj| <> | i - j | }

Q1 Q2 Q3 Q4
R G B

Variables: {C1,C2,C3,C4,C5,C6}
Domain: {R,G,B}
Constraints: {C1 <> C2, C1 <> C3}

 Wrong assignment !

 Wrong assignment !

CS 421, Winter 2011 12

7.1 Introduction

1

2

3

4

C3

C1
C2

C5 C4

C6

Variables: {Q1,Q2,Q3,Q4}
Domain: {1,2,3,4}
Constraints: {Qi <> Qj , |Qi-Qj| <> | i - j | }

Q1 Q2 Q3 Q4
R G B

Variables: {C1,C2,C3,C4,C5,C6}
Domain: {R,G,B}
Constraints: {C1 <> C2, C1 <> C3}

 Correct assignment !

 Correct assignment !

CS 421, Winter 2011 13

7.1 Introduction

1

2

3

4

C3

C1
C2

C5 C4

C6

Variables: {Q1,Q2,Q3,Q4}
Domain: {1,2,3,4}
Constraints: {Qi <> Qj , |Qi-Qj| <> | i - j | }

Q1 Q2 Q3 Q4
R G B

Variables: {C1,C2,C3,C4,C5,C6}
Domain: {R,G,B}
Constraints: {C1 <> C2, C1 <> C3}

 4^4 = 256
complete assignments

 3^6 = 729
complete assignments

 d^n
(n: number of vars, d: domain size)

CS 421, Winter 2011 14

7.1 Introduction

CSP is an NP-Complete Problem

Consider a CSP with n variables and d the domain size.

1. Solving the CSP requires an exponential time cost (dn),

2. but checking to see if a complete assignment is correct can be

done in polynomial time (nc where c ≤ 2 for binary CSPs).

CS 421, Winter 2011 15

7.1 Introduction

CSP research work has been done on:

• Developping general algorithms for general problems: assign

values to variables and see what happens.

– Complete method: systematic search.

– Incomplete method: local (or iterative) search (trade quality

for time efficiency).

• Identifying special properties of a problem class (tractable

subclass):

– Map coloring of the Canadian provinces.

CS 421, Winter 2011 16

7.1 Introduction

Current research results on CSPs work well for toy problems such

as:

• N-queens,

• Zebra (five house puzzle),

• a crossword puzzle,

• cryptoarithmetics (SEND+MORE=MONEY),

• mastermind.

• Graph coloring.

CS 421, Winter 2011 17

7.1 Introduction

Many challenges when solving real world problems such as:

• Scheduling and Planning.

• Resource allocation.

• Transportation scheduling such as crew rotering.

• Assignment problems e.g., who teaches what class.

• Timetabling problems e.g., which class is offered when and where?

• Engineering conceptual design such as hardware configuration and CAD.

• Spreadsheets and Interactive graphic : web layout.

• Molecular Biology e.g. DNA sequencing.

• Computational Linguistics.

• Temporal Databases.

• Spatial and Spatio-temporal Applications (GIS, robotics, computer games . . . etc.).

• Scene analysis.

• Network management and configuration.

CS 421, Winter 2011 18

7.1 Introduction

What is a constraint ?

• A Constraint is an arbitrary relation over a set of variables.

– Every variable has a set of possible values (domain).

– The constraint restricts the possible combinations of values.

• A constraint can be described :

– intentionally : as a mathematical/logical formula.

– extensionally : as a table describing compatible tuples.

CS 421, Winter 2011 19

7.1 Introduction

Example of constraints

• The circle C is inside the square S.

• The length of the word W is 10 characters.

• X + 10 ≥ Y .

• A sum of the angles in a triangle is 180 degrees.

• The temperature in a warehouse must be in the range 0 - 5C.

• John can attend the lecture on Wednesday after 14:00.

CS 421, Winter 2011 20

7.1 Introduction

n-ary versus binary constraints

• Many CSP algorithms are designed for binary constraints

however most constraints in the real world are not binary.

• A CSP involving n-ary constraints can be transformed to an

equivalent binary CSP using a transformation technique :

– Dual encoding.

– Hidden variable encoding.

CS 421, Winter 2011 21

7.1 Introduction

Dual encoding

• The idea consists of swapping variables and constraints.

• A n-ary constraint c is converted to a dual variable vc with the

domain consisting of compatible tuples.

• For each pair of constraints c and c′ sharing some variables

there is a binary constraint between vc and v′c restricting the

dual variables to tuples in which the original shared variables

take the same value.

CS 421, Winter 2011 22

7.1 Introduction

Dual encoding

Variables: x1..x6
Domain: {0,1}
Constraints:

 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1

x1 x2 x3 x4 x5 x6

C1
C4

C2

C3

C2: x1-x3+x4=1
C3: x4+x5-x6>0
C4: x2+x5-x6=0

C1: x1+x2+x6=1

CS 421, Winter 2011 23

7.1 Introduction

Dual encoding

Variables: x1..x6
Domain: {0,1}
Constraints:

 C2: x1-x3+x4=1

C3: x4+x5-x6>0
C4: x2+x5-x6=0

C1: x1+x2+x6=1

(0,0,1) , (0,1,0) , (1,0,0)

(0,0,1) , (1,0,0) , (1,1,1)

(0,0,0) , (0,1,1) , (1,0,1)

(0,1,0) , (1,0,0), (1,1,0) , (1,1,1)

v1 v4

v2 v3

R21 & R33

R11 R33 R22 & R33

R31

CS 421, Winter 2011 24

7.1 Introduction

Hidden variable encoding

• New dual variables for (non-binary) constraints.

• A n-ary constraint c is converted to a dual variable vc with the

domain consisting of compatible tuples.

• For each variable x in the constraint c there is a constraint

between x and vc restricting tuples of dual variable to be

compatible with x.

CS 421, Winter 2011 25

7.1 Introduction

Hidden variable encoding

Variables: x1..x6
Domain: {0,1}
Constraints:

0 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 , 1

x1 x2 x3 x4 x5 x6C2: x1-x3+x4=1
C3: x4+x5-x6>0
C4: x2+x5-x6=0

C1: x1+x2+x6=1

(0,0,1) , (0,1,0) , (1,0,0)

(0,0,1) , (1,0,0) , (1,1,1)

(0,0,0) , (0,1,1) , (1,0,1)

(0,1,0) , (1,0,0), (1,1,0) , (1,1,1)

v1
v4

v2

v3

r1 r2
r3

r1 r2
r3 r1

r2 r3

r1 r2 r3

CS 421, Winter 2011 26

7.1 Introduction

Graph representation of a CSP : constraint network

Scheduling Problem :

3 tasks T1, T2 and T3 are processed by a mono processor

machine M. A task T4 must be processed before T1 and T2.

T1 : 3h,10:00,15:00.

T2 : 3h,20:00,24:00.

T3 : 4h,7:00,12:00.

T4 : 1h,9:00,11:00.

CS 421, Winter 2011 27

7.1 Introduction

Graph representation of a CSP : constraint network

P v P- IP v P-

P-

P-

[20,24,1,3]={(20 23),(21 24)}

[10,15,1,3]={(10 13),(11 14),(12 15)}

[7,12,1,4]={(7 11),(8 12)}

[9,11,1,1]={(9 10),(10 11)}

I : The universal relation(disjunction of the 13 basic Allen relations).
P : Precedes, P- : precedes inverse.

1

2 3

4

T

T T

TP v P-

Figure 1: Scheduling problem.

CS 421, Winter 2011 28

7.2 Systematic Search for CSPs

7.2 Systematic Search for CSPs

Constraints are used only as a test : assign values to variables and

see what happens.

• Systematic Search : explores the search space (space of all

assignments) systematically.

• Constraint Propagation : Backtrack search algorithm preceded

by and/or combined wit local consistency algorithms.

• Local search called also iterative search or non systematic

search.

CS 421, Winter 2011 29

7.2 Systematic Search for CSPs

Systematic Search Algorithms

• Generate-and-test (GT).

• Standard Backtracking (BT).

• Backjumping (BJ).

• Dynamic Backtracking (DB).

CS 421, Winter 2011 30

7.2 Systematic Search for CSPs

Generate-and-test paradigm (GT)

• Systematically generates each possible value assignment and then tests to see

if it satisfies all the constraints.

• The first combination that satisfies all the constraints is the solution.

• Complexity : O(max(|Di|)n) where n is the number of variables.

• Disadvantages :

– Generates many wrong assignments of values to variables which are

rejected in the testing phase.

– The generator leaves out the conflicting instantiations and it generates other

assignments independently of the conflict.

CS 421, Winter 2011 31

7.2 Systematic Search for CSPs

Standard Backtracking paradigm (BT)

• Incrementally attempts to extend a partial solution toward a

complete solution, by repeatedly choosing a value for another

variable.

• Better efficiency than GT : as soon as all the variables relevant

to a constraint are instantiated, the validity of the constraint is

checked. If a partial solution violates any of the constraints,

backtracking is performed to the most recently instantiated

variable that still has alternatives available.

• Complexity : exponential for most nontrivial problems.

CS 421, Winter 2011 32

7.2 Systematic Search for CSPs

Standard Backtracking paradigm (BT)

• Disadvantages :

– Thrashing : repeated failure due to the same reason.

Standard backtracking algorithm does not identify the real

reason of the conflict, i.e., the conflicting variables.

– Perform redundant work : Even if the conflicting values of

variables is identified during the backtrack, they are not

remembered for immediate detection of the same conflict in

a subsequent computation.

– Detects the conflict too late.

CS 421, Winter 2011 33

7.2 Systematic Search for CSPs

Backjumping

• Works in a backtrack search manner and removes

thrashing (skip irrelevant assignments) as follows :

1. identify the source of conflict (impossible to assign a value)

2. jump to the past variable in conflict

• The source of conflict (jump position) is found as follows :

1. select the constraints containing only the currently assigned

variable and the past variables

2. select the closest variable participating in the selected

constraints

• Enhancement : use only the violated constraints.

CS 421, Winter 2011 34

7.2 Systematic Search for CSPs

Backjumping (BJ)

1 2 3 4 5

Figure 2: Graph-directed backjumping.

CS 421, Winter 2011 35

7.2 Systematic Search for CSPs

Conflict-directed backjumping in practice

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

1 2 3 4 5 6 7 8

Queens in rows are allocated to columns

6th queen cannot be allocated!

1. Write the conflicting queens to each
position.

2. Select the farthest conflicting queen
for each position

3. Select the closest conflicting queen among
positions.

Note: Graph-directed backjumping has no
effect here (due to complete grah).

1 3,4 2,5 4 ,5 3213,5

CS 421, Winter 2011 36

7.2 Systematic Search for CSPs

Weakness of backjumping

• When jumping back the in-between assignment is lost!

• Example : colour the graph below in such a way that the

connected vertices have different colours.

C A

D

B

E

Node Vertex

A
B
C
D
E

1 1
2 1

1 2 1 2
1 2 3 1 2
1 2 3 1 2 3

BJ

During the second attempt to label C superfluous work is done.
It is enough to leave there the original value 2, the change of B
does not influence C.

CS 421, Winter 2011 37

7.2 Systematic Search for CSPs

Dynamic Backtracking (DB)

Dynamic Backtracking is :

• Backjumping

• + remembers the source of the conflict

• + carry the source of the conflict

• + change the order of variables

CS 421, Winter 2011 38

7.2 Systematic Search for CSPs

C A

D

B

E

Node 1 2 3

A
B
C
D
E

X
 X
A X
A B X
A B D

Node 1 2 3

A
B
C
D
E

X
 X
A X
A B AB
A B

Node 1 2 3

A
C
B
D
E

X
A X
X A
A X
A D X

jump back
+ carry the conflict source

jump back
+ carry the conflict source
+ change the order of B,C

X: selected colour
AB: a source of conflict

The vertex C (and the possible sub-graph connected to C) is not re-coloured.

CS 421, Winter 2011 39

7.3 Constraint Propagation

7.3 Constraint Propagation

• The late detection of inconsistency is the disadvantage of GT and Backtracking paradigms.

• A local consistency algorithm or consistency-enforcing algorithm makes any partial

solution of a small subnetwork extensible to some surrounding network.

⇒ the inconsistency is detected as soon as possible.

• Local consistency algorithms :

– Node consistency (1-consistency).

– Arc consistency (2-consistency).

– Path consistency (3-consistency).

• The backtrack search can be combined with local consistency algorithms.

CS 421, Winter 2011 40

7.3 Constraint Propagation

Node consistency

Algorithm NC

for each V in nodes(G)

for each X in the domain D of V

if any unary constraint on V is

inconsistent with X

then

delete X from D;

endif

endfor

endfor

end NC

CS 421, Winter 2011 41

7.3 Constraint Propagation

Arc consistency

• A graph G = (N, R) (representing a constraint satisfaction problem) is arc

consistent if and only if :

∀i, j ∈ [1, n] XiRXj ⇒ ∀vi ∈ Di, ∃vj ∈ Dj |(vi, vj) ∈ R

• Arc consistency algorithms :

• Algorithms based on arc revision : AC-1, AC-2 et AC-3[Mackworth 77].

• Algorithms based on maintaining supports : AC-4[Mohr&Henderson86],

AC-5[Deville&vanHentenryck], AC-6[Bessière94] et AC-7[Bessière95].

• arc consistency 6⇒ consistency of the problem (∃ a solution).

CS 421, Winter 2011 42

7.3 Constraint Propagation

Arc consistency

X1 X2

X3 X4

{b,y}

{r,y}

{b,g}

{g}

X1 X2

X3 X4

{ b , y }

{ r , y }

{ b , g }

{ g }

Arc consistency

Figure 3: Performing an arc consistency algorithm.

CS 421, Winter 2011 43

7.3 Constraint Propagation

Arc consistency

Function REV ISE(i, j)
REV ISE ← false

For each value a ∈ Di Do

If ¬compatible(a, b) for any value b ∈ Dj Then

remove a from Di
REV ISE ← true

End-If

End-For

Algorithm AC-3

1.Given a graph G = (X, U)
2. Q← {(i, j) | (i, j) ∈ U}
3. (list containing all arcs of G)

4. While Q 6= Nil Do

5. Q ← Q − {(i, j)}
6. If REV ISE(i, j) Then

7. Q ← Q t {(k, i) | (k, i) ∈ U ∧ k 6= j}
8. End-If

9. End-While

CS 421, Winter 2011 44

7.3 Constraint Propagation

Arc consistency

X1

X3 X4

{r,b}

{r,b} {r,b}

Figure 4: The problem is arc consistent but has no solution.

CS 421, Winter 2011 45

7.3 Constraint Propagation

Path consistency

• A path (X0, X1, . . . , Xm) in the constraint graph for a CSP is

path-consistent (PC) if and only if for any 2-compound label

(< X0, V0 >< Xn, Vn >) that satisfies all the constraints on

X0 and Xm there exists a label for each of the variables X1 to

Xm−1 such that every binary constraint on the adjacent

variables in the path is satisfied.

• A CSP is said to be path consistent if and only if every path is

consistent.

• A CSP is path-consistent if and only if all paths of length 2 are

path-consistent.

CS 421, Winter 2011 46

7.3 Constraint Propagation

Path consistency

Path consistency algorithms :

• Removing the couples of values (Vi, Vj) from a relation Rij if

∀ < Xk, Vk > | (Vi, Vk) 6∈ Rik or (Vk, Vj) 6∈ Rkj

• PC-1, PC-2, PC-3 and PC-4.

CS 421, Winter 2011 47

7.3 Constraint Propagation

Path consistency

Algorithm PC-2

Begin

1. Q← {(i, k, j) | (i ≤ j), 6= (i = k = j)}
2. (list containing all paths to check)

3. While Q 6= Nil Do

4. Q← Q− {(i, k, j)}
5. If REV ISE(i, k, j) Then

6. Q← Q t RELATED PATHS(i, k, j)

7. End-If

8. End-While

End

CS 421, Winter 2011 48

7.3 Constraint Propagation

Path consistency

Procedure REVISE(i, k, j)

Begin

Z ← Yij & Yik . Ykk . Ykj
If Z = Yij Then return FALSE

Else Yij ← Z; Return TRUE

End

Procedure RELATED PATHS(i, k, j)

Begin

If i < j Then return

{(i, j, m)|(i ≤ m ≤ n), (m 6= j)}t
{(m, i, j)|(1 ≤ m ≤ j), (m 6= i)}
t{(j, i, m)|(j ≤ m ≤ n)}
t{(m, j, i)|(1 ≤ m ≤ i)}

Else Return

{(p, i, m)|(1 ≤ p ≤ m), (1 ≤ m ≤ n),

6= (p = i = m), 6= (p = m = k)}
End

CS 421, Winter 2011 49

7.3 Constraint Propagation

Path consistency

X1 X2

X3 X4

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

C12

C24

C34

C13

C23

C14

C12 = C23 = c34 = {(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}

X1 X2

X3 X4

{ 1, 2 , 3 , 4 } { 1 , 2 , 3 , 4 }
C12

C24

C34

C13

C23
C14

C12 = {(2,4),(3,1)}

Path consistency

{ 1, 2 , 3 , 4 }{ 1 , 2 , 3 , 4 }

C13 = {(2,1),(3,4)}
C14 = {(2,3),(3,2)}

C23 = {(1,4),(4,1)}
C24 = {(1,2),(4,3)}
C34 = {(1,3),(4,2)}

C13 = C24 = {(1,2),(1,4),(2,1),(2,3),(3,2),(4,1),(4,3)}
C14 = {(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),((3,2),(3,4),(4,2),(4,3)}

Figure 5: Applying a path consistency algorithm to the 4-queens problem .

CS 421, Winter 2011 50

7.3 Constraint Propagation

Solution search strategies

Combine backtracking with the arc consistency algorithm.

• Backtracking.

• Forward Checking.

• Partial Look Ahead.

• Full Look ahead.

CS 421, Winter 2011 51

7.3 Constraint Propagation

Backtracking

• Tests arc consistency among already instantiated variables.

• Detects the inconsistency as soon as it appears and, therefore,

it is far away efficient than the simple generate & test approach.

But it has still to perform too much search.

CS 421, Winter 2011 52

7.3 Constraint Propagation

Backtracking

AC3-BT

1.Given a graph G = (X, U) and a current node i

2. Q← {(i, k) | (i, k) ∈ U ∧ k already instantiated node}
3. (Checking consistency between current

and past nodes)

4. notconsistent ← false

5. While Q 6= Nil and ¬ notconsistent Do

6. Q← Q− {(i, j)}
7. notconsistent ← REV ISE(i, j)

8. End-If

9. End-While

10. return ¬ notconsistent

CS 421, Winter 2011 53

7.3 Constraint Propagation

Backtracking

X X X X X X X

X X VX X X X

X X XX X

Figure 6: Applying a backtracking strategy to the 4-queens problem.

CS 421, Winter 2011 54

7.3 Constraint Propagation

Forward Checking

• Easiest way to prevent future conflicts.

• Checks the constraints between the current variable and the

future variables connecte to it via constraints.

• Allows branches of the search tree that will lead to failure to be

pruned earlier than with simple backtracking.

• Whenever a new variable is considered, all its remaining values

are guaranteed to be consistent with the past variables, so the

checking an assignment against the past assignments is no

longer necessary.

CS 421, Winter 2011 55

7.3 Constraint Propagation

Forward Checking

AC3-FC

1.Given a graph G = (X, U) and a current node i

2. Q← {(i, k) | (i, k) ∈ U ∧ k future node}
3. (checking consistency between current and

future nodes)

4. notconsistent ← false

5. While Q 6= Nil and ¬ notconsistent Do

6. Q← Q− {(i, j)}
7. If REV ISE(i, j) Then

8. notconsistent ← empty set(Dj)

9. End-If

10. End-While

11. return ¬ notconsistent

CS 421, Winter 2011 56

7.3 Constraint Propagation

Forward Checking

V

X

X

X

XX
X

X

X
X

X
XXX

X

X
X

X
X

X

X X
XX

X X X

X X X

X
X

X

XX

XXX

XXX

X
X

X
X

X

X
X

XX

X
X

X

X

X
X X

X

Figure 7: Applying Forward checking to the 4-queens problem

CS 421, Winter 2011 57

7.3 Constraint Propagation

Partial Look Ahead

• Forward checking + extend the consistency checks to more

future variables!

• The value assigned to the current variable can be propagated to

all future variables.

CS 421, Winter 2011 58

7.3 Constraint Propagation

Full Look Ahead

• Performs full arc consistency on the current and future nodes.

• The advantage is that it detects also the conflicts between

future variables and therefore allows branches of the search

tree that will lead to failure to be pruned earlier than with forward

checking.

• Does even more work when each assignment is added to the

current partial solution than forward checking.

CS 421, Winter 2011 59

7.3 Constraint Propagation

Full Look Ahead

AC3-FLA

1.Given a graph G = (X, U) and a current node i

2. Q← {(i, k) | (i, k) ∈ U ∧ i, k current or future node}
3. (checking consistency for current

and future nodes)

4. notconsistent ← false

5. While Q 6= Nil and ¬ notconsistent Do

6. Q← Q− {(i, j)}
7. If REV ISE(i, j) Then

8. Q← Q t {(k, i) | (k, i) ∈ U ∧ k 6= j}
9. notconsistent ← empty set(Dj)

10. End-If

11. End-While

12. return ¬ notconsistent

CS 421, Winter 2011 60

7.3 Constraint Propagation

Full Look Ahead

V
X

X
X

XXX
XXX

X
X

X
X

X X
X

X
X

X

Figure 8: Applying Full Look Ahead to the 4-queens problem

CS 421, Winter 2011 61

7.3 Constraint Propagation

Comparison of the different strategies

current
variable

past variables future variables

backtracking

forward
checking full look

 ahead

Figure 9: Comparison of the different strategies.

CS 421, Winter 2011 62

7.3 Constraint Propagation

Comparison of the different strategies

• More constraint propagation at each node will result in the

search tree containing fewer nodes,

• but the overall cost may be higher, as the processing at each

node will be more expensive.

• In one extreme, obtaining strong n-consistency for the original

problem would completely eliminate the need for search, but,

this is usually more expensive than simple backtracking.

CS 421, Winter 2011 63

7.4 Heuristics for CSPs

7.4 Heuristics for CSPs

More intelligent decisions on :

• which value to choose for each variable,

• which variable to assign next.

CS 421, Winter 2011 64

7.4 Heuristics for CSPs

Given C1 = Red, C2 = Green, choose C3 = ??

.

Given C1 = Red, C2 = Green, what next??

.

C3

C1
C2

C5 C4

C6

Can solve n-queens for n ≈ 1000

CS 421, Winter 2011 65

7.4 Heuristics for CSPs

Given C1 = Red, C2 = Green, choose C3 = ??

C3 = Green: least-constraining-value

Given C1 = Red, C2 = Green, what next??

C5: most-constrained-variable

C3

C1
C2

C5 C4

C6

Can solve n-queens for n ≈ 1000

CS 421, Winter 2011 66

7.5 Iterative algorithms for CSPs

7.5 Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with

“complete” states, i.e., all variables assigned

To apply to CSPs:

allow states with unsatisfied constraints

operators reassign variable values

Variable selection: randomly select any conflicted variable

min-conflicts heuristic:

choose value that violates the fewest constraints

i.e., hillclimb with h(n) = total number of violated constraints

CS 421, Winter 2011 67

7.5 Iterative algorithms for CSPs

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

CS 421, Winter 2011 68

7.5 Iterative algorithms for CSPs

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high

probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP

except in a narrow range of the ratio

R =
number of constraints

number of variables

CPU
time

critical ratio

CS 421, Winter 2011 69

7.6 Tree-structured CSPs

7.6 Tree-structured CSPs

A

C

B D

E

F

Theorem: if the constraint graph has no loops, the CSP can be

solved in O(n|D|2) time

Compare to general CSPs, where worst-case time is O(|D|n)

This property also applies to logical and probabilistic reasoning:

an important example of the relation between syntactic restrictions

and complexity of reasoning.

CS 421, Winter 2011 70

Algorithm for tree-structured CSPs

Algorithm for tree-structured CSPs

Basic step is called filtering:

Filter(Vi, Vj)

removes values of Vi that are inconsistent with ALL values of Vj

Filtering example:

Vi Vj

allowed pairs:
 <1 , 1>
 <3 , 2>
 <3 , 3>

remove 2 from
domain of Vi

CS 421, Winter 2011 71

Algorithm contd.

Algorithm contd.

A

C

B D

E

F

1) Order nodes breadth-first starting from any leaf:

BA C D E F

2) For j = n to 1, apply Filter(Vi, Vj) where Vi is a parent of

Vj

3) For j = 1 to n, pick legal value for Vj given parent value

CS 421, Winter 2011 72

7.7 Constraint-Based Systems

7.7 Constraint-Based Systems

Prolog CHIP, ECLIPSe, SICStus Prolog, PROLOG IV, GNU Prolog,

IF/PROLOG

C|C++ CHIP++, ILOG Solver

Java JCK, JCL, Koalog

LISP Screamer

Others Python Constraints, Mozart

CS 421, Winter 2011 73

7.7 Constraint-Based Systems

Summary

CSPs are a special kind of problem:

states defined by values of a fixed set of variables

goal test defined by constraints on variable values

Backtracking = depth-first search with :

1. fixed variable order,

2. only legal successors.

Forward checking prevents assignments that guarantee later failure

Variable ordering and value selection heuristics help significantly

Iterative min-conflicts is usually effective in practice

Tree-structured CSPs can always be solved very efficiently

CS 421, Winter 2011 74

