
8. Metaheuristics

8. Metaheuristics

• Introduction

• Combinatorial Problems

• Search Methods

• Local Search Algorithms

CS 421 Winter 2011 1



Introduction

Introduction

Stochastic search is the method of choice for solving many hard

combinatorial problems.

Recent Progress & Successes :

• Ability of solving hard combinatorial problems has increased

significantly

– Solution of large propositional satisfiability problems

– Solution of large traveling salesman problems

• Good results in new application areas

CS 421 Winter 2011 2



Introduction

Introduction

Reasons & Driving Forces :

• New algorithmic ideas

– Nature inspired algorithms

– New randomized schemes

– Hybrid and mixed search strategies

• Increased flexibility and robustness

• Improved understanding of algorithmic behaviour

• Sophisticated data structures

• Significantly improved software

CS 421 Winter 2011 3



Combinatorial Problems

Combinatorial Problems

• Involve finding a grouping, ordering, or assignment of a discrete

set of objects which satisfies certain constraints.

• Arise in many domains of computer science and various

application areas.

• Have high computational complexity (NP-hard).

• Are solved in practice by searching an exponentially large space

of candidate/partial solutions.

CS 421 Winter 2011 4



Combinatorial Problems

Combinatorial Problems

Examples :

• CSPs

• find shortest/cheapest round trips (TSP)

• finding models of propositional formulas (SAT)

• planning, scheduling, time-tabling

• resource allocation

• . . . etc.

CS 421 Winter 2011 5



Combinatorial Problems

Combinatorial Problems

Combinatorial Decision Problems

• For a given problem instance, decide whether a

solution (grouping, ordering or assignment) exists which

satisfies the given constraints

Combinatorial Optimization Problem

• For a given problem instance, find a solution (grouping, ordering

or assignment) with maximal (or minimal) value of the objective

function. The objective function is an evaluation function that

assigns a numerical value to each candidate solution.

CS 421 Winter 2011 6



Combinatorial Problems

The Propositional Satisfiability Problem (SAT)

Simple SAT instance (in CNF) :

(X1 ∨X2) ∧ (¬X1 ∨ ¬X2)

Possible solutions :

1. X1 = true,X2 = false

2. X1 = false, X2 = true

CS 421 Winter 2011 7



Combinatorial Problems

The Propositional Satisfiability Problem (SAT)

• SAT is a pervasive problem in computer science (Theory, AI,

Hardware, . . .)

• SAT is computationally hard (NP-hard)

• SAT can encode many other combinatorial problems (NP

completeness)

• SAT is one of the conceptually simplest combinatorial decision

problems

– facilitates the development and evaluation of algorithmic

ideas

CS 421 Winter 2011 8



Combinatorial Problems

The Traveling Salesperson Problem (TSP)

• TSP - optimization variant :

– For a given weighted graph G = (V, E, w), find a

Hamiltonian cycle in G with minimal weight (i.e find the

shortest round-trip visiting each vertex exactly once).

• TSP - decision variant :

– For a given weighted graph G = (V, E,w), decide whether

a Hamiltonian cycle with minimal weight≤ b exists in G.

CS 421 Winter 2011 9



Combinatorial Problems

TSP instance : shortest round trip through 532 US cities

CS 421 Winter 2011 10



Combinatorial Problems

The Traveling Salesperson Problem (TSP)

• TSP is one of the most prominent and widely studied

combinatorial optimization problems in computer science and

operations research

• TSP is computationally hard (NP-hard)

• TSP is one of the conceptually simplest combinatorial

optimization problems

– facilitates the development and evaluation of algorithmic

ideas

CS 421 Winter 2011 11



Combinatorial Problems

Generalization of combinatorial problems

• Many combinatorial decision problems naturally generalize to

optimization problems (SAT to MAX-SAT, CSP to MAX-CSP).

• Many combinatorial problems have practically relevant dynamic

variants (dynamic SAT, dynamic CSP, dynamic TSP, Internet

routing, dynamic scheduling).

• Often, algorithms for decision problems can be generalized to

optimization and/or dynamic variants.

• Typically, good solutions to generalized problems require

additional heuristics.

CS 421 Winter 2011 12



Combinatorial Problems

CSP versus MAX-CSP

• A Constraint Satisfaction Problem (CSP) consists of:

– a set of variables X = {x1, . . . , xn},

– for each variable xi , a finite set Di of possible values (its domain),

– and a set of constraints restricting the values that the variables can simultaneously take.

• A solution to a CSP is an assignment of a value from its domain to every variable, in such a way that every

constraint is satisfied. We may want to find:

– just one solution, with no preference as to which one,

– all solutions,

– an optimal, or at least a good solution, given some objective function defined in terms of some or all of the

variables.

• The Maximal Constraint Satisfaction Problem is an optimization problem consisting of looking for an

assignment that satisfies the maximal number of constraints.

CS 421 Winter 2011 13



Search Methods

Search Methods

Types of search methods :

• Systematic versus Local Search

• Deterministic versus Stochastic

• Sequential versus Parallel

Properties of search methods :

• Decision problems : complete versus incomplete

• Optimization problems : exact versus approximate

CS 421 Winter 2011 14



Search Methods

Systematic Backtrack Search

• Iteratively construct candidate solution

• Use backtracking to explore the full search space

• Use appropriate techniques (constraint propagation, branch and

bound, . . .) for pruning search space.

CS 421 Winter 2011 15



Search Methods

Local Search

• Start from initial position.

• Iteratively move from current position to neighboring position.

• Uses objective function for guidance.

Two main classes :

• Local search on partial solutions

• Local search on complete solutions

CS 421 Winter 2011 16



Search Methods

Solving CSPs and MAX-CSPs

• CSP

– Exact methods : constraint propagation (local consistency) + backtrack search.

• MAX-CSP

– Exact methods : Partial Constraint Satisfaction Techniques based on the branch and

bound algorithm.

– Approximation methods : Local search

∗ Hill-Climbing

∗ Min-Conflicts

∗ Min-Conflicts-Random-Walk

∗ Steepest-Descent-Random-Walk

∗ Tabu-Search

∗ GSAT

CS 421 Winter 2011 17



Search Methods

Partial Constraint Satisfaction Techniques

• Perform Direct Arc Consistency Algorithms in the

pre-processing phase.

– Count the number of inconsistencies counts associated with

each variable value.

• Backtrack-Search based on Branch and Bound algorithm.

– The cost function corresponds to the number of violated

constraints.

CS 421 Winter 2011 18



Local Search Algorithms

Local Search Algorithms

• Hill-Climbing

• Min-Conflicts and Min-Conflicts-Random-Walk (MCRW)

• Steepest-Descent-Random-Walk (SDRW)

• Tabu-Search (TS)

• GSAT

• Genetic Algorithms

CS 421 Winter 2011 19



Local Search

Local Search

• Local search algorithms are based on common idea known

under the notion local search.

• In local search, an initial configuration (valuation of variables) is

generated and the algorithm moves from the current

configuration to a neighborhood configurations until a solution

(decision problems) or a good solution (optimization problems)

has been found or the resources available are exhausted.

CS 421 Winter 2011 20



Local Search

procedure local-search(Max_Moves,Max_Iter)

s <- random valuation of variables;

for i:=1 to Max_Tries while Gcondition do

for j:=1 to Max_Iter while Lcondition do

if eval(s)=0 then

return s

endif;

select n in neighborhood(s);

if acceptable(n) then

s <- n

end if

endfor

s <- restartState(s);

endfor

return s

end local-search

CS 421 Winter 2011 21



Local Search

Hill-Climbing

procedure hill-climbing(Max_Flips)

restart: s <- random valuation of variables;

for j:=1 to Max_Flips do

if eval(s)=0 then return s endif;

if s is a strict local minimum then

goto restart

else

s <- neighborhood with smallest evaluation value

endif

endfor

goto restart

end hill-climbing

CS 421 Winter 2011 22



Local Search

Hill-Climbing

Disadvantage of the method

• The hill-climbing algorithm has to explore all neighbors of the

current state before choosing the move. This can take a lot of

time.

CS 421 Winter 2011 23



Local Search

Min-Conflicts

• To avoid exploring all neighbors of the current state some

heuristics were proposed to find a next move.

• Min-conflicts heuristics chooses randomly any conflicting

variable, i.e., the variable that is involved in any unsatisfied

constraint, and then picks a value which minimizes the number

of violated constraints (break ties randomly). If no such value

exists, it picks randomly one value that does not increase the

number of violated constraints (the current value of the variable

is picked only if all the other values increase the number of

violated constraints).

CS 421 Winter 2011 24



Local Search

Min-Conflicts

procedure MC(Max_Moves)

s <- random valuation of variables;

nb_moves <- 0;

while eval(s)>0 & nb_moves<Max_Moves do

choose randomly a variable V in conflict;

choose a value v’ that minimizes the

number of conflicts for V;

if v’ # current value of V then

assign v’ to V;

nb_moves <- nb_moves+1;

endif

endwhile

return s

end MC

CS 421 Winter 2011 25



Local Search

Min-Conflicts

Disadvantage of the method

• The pure min-conflicts algorithm presented previously is not

able to leave local-minimum. In addition, if the algorithm

achieves a strict local-minimum it does not perform any move at

all and, consequently, it does not terminate.

CS 421 Winter 2011 26



Local Search

Min-Conflicts-Random-Walk

• Because the pure min-conflicts algorithm cannot go beyond a

local-minimum, some noise strategies were introduced in MC.

Among them, the random-walk strategy becomes one of the

most popular.

• For a given conflicting variable, the random-walk strategy picks

randomly a value with probability p, and apply the MC heuristic

with probability 1-p.

CS 421 Winter 2011 27



Local Search

procedure MCRW(Max_Moves,p)

s <- random valuation of variables;

nb_moves <- 0;

while eval(s)>0 & nb_moves<Max_Moves do

if probability p verified then

choose randomly a variable V in conflict;

choose randomly a value v’ for V;

else

choose randomly a variable V in conflict;

choose a value v’ that minimizes the number of conflicts for V;

endif

if v’ # current value of V then

assign v’ to V;

nb_moves <- nb_moves+1;

endif

endwhile

return s

end MCRW

CS 421 Winter 2011 28



Local Search

Min-Conflicts-Random-Walk

This algorithm is controlled by the random probability p, it should be

clear that the value for this parameter has a big influence on the

performance of the algorithm. The preliminary studies determined

the following feasible ranges of parameter values 0.02 ≤ p ≤ 0.1.

CS 421 Winter 2011 29



Local Search

Steepest-Descent-Random-Walk

• Steepest-Descent algorithm is a hill-climbing version of the

min-conflicts algorithm. Instead of selecting the variable in

conflict randomly, this algorithm explores the whole

neighborhood of the current configuration and selects the best

neighbor according to the evaluation value.

• Again, the algorithm can be randomized by using random-walk

strategy to avoid getting stuck at ”local optima”.

CS 421 Winter 2011 30



Local Search

Steepest-Descent-Random-Walk

procedure SDRW(Max_Moves,p)

s <- random valuation of variables;

nb_moves <- 0;

while eval(s)>0 & nb_moves<Max_Moves do

if probability p verified then

choose randomly a variable V in conflict;

choose randomly a value v’ for V;

else

choose a move <V,v’> with the best performance

endif

if v’ # current value of V then

assign v’ to V;

nb_moves <- nb_moves+1;

endif

endwhile

return s

end SDRW

CS 421 Winter 2011 31



Local Search

Tabu-Search

• Tabu search (TS) is another method to avoid cycling and getting trapped in local minimum. It is based on the

notion of Tabu list, that is a special short term memory that maintains a selective history, composed of

previously encountered configurations or more generally pertinent attributes of such configurations.

• A simple TS strategy consist in preventing configurations of Tabu list from being recognized for the next k

iterations (k, called Tabu tenue, is the size of Tabu list).

• Such a strategy prevents Tabu from being trapped in short term cycling and allows the search process to go

beyond local optima.

• Tabu restrictions may be overridden under certain conditions, called aspiration criteria.

• Aspiration criteria define rules that govern whether next configuration is considered as a possible move even it

is Tabu. One widely used aspiration criterion consists of removing a Tabu classification from a move when the

move leads to a solution better than that obtained so far.

CS 421 Winter 2011 32



Local Search

Tabu-Search

procedure tabu-search(Max_Iter)

s <- random valuation of variables;

nb_iter <- 0;

initialize randomly the tabu list;

while eval(s)>0 & nb_iter<Max_Iter do

choose a move <V,v’> with the best performance among the non-

tabu moves and the moves satisfying the aspiration criteria;

introduce <V,v> in the tabu list,

where v is the current values of V;

remove the oldest move from the tabu list;

assign v’ to V;

nb_iter <- nb_iter+1;

endwhile

return s

end tabu-search

CS 421 Winter 2011 33



Local Search

Tabu-Search

• The performance of Tabu Search is greatly influenced by the

size of Tabu list tl. A preliminary studies determined the

following feasible range of parameter values 10 ≤ tl ≤ 35.

CS 421 Winter 2011 34



Local Search

GSAT

• GSAT is a greedy local search procedure for satisfying logic

formulas in a conjunctive normal form (CNF). Such problems

are called SAT or k-SAT (k is a number of literals in each clause

of the formula) and are known to be NP-c (each NP-hard

problem can be transformed to NP-complex problem).

• The procedure starts with an arbitrary instantiation of the

problem variables and offers to reach the highest satisfaction

degree by succession of small transformations called repairs or

flips (flipping a variable is changing its value).

CS 421 Winter 2011 35



Local Search

GSAT

procedure GSAT(A,Max_Tries,Max_Flips)

A: is a CNF formula

for i:=1 to Max_Tries do

S <- instantiation of variables

for j:=1 to Max_Iter do

if A satisfiable by S then

return S

endif

V <- the variable whose flip yield the most important

raise in the number of satisfied clauses;

S <- S with V flipped;

endfor

endfor

return the best instantiation found

end GSAT

CS 421 Winter 2011 36



Local Search

GSAT

• Several heuristics have been implemented within GSAT in order to efficiently solve structured problems.

Random-Walk The implementation of random walk within the GSAT algorithm is similar to MCRW.

Clause weight This technique results from the observation that for some problems, several resolution attempts reach the

same unsatisfied final set of clauses. So, each clause has not the same weight on the resolution, some clauses will be

much harder to solve. The resolution process must offer more importance to these ”hard” clauses. A way to deal with this

kind of problems is to associate a weight to each clause, in order to modify its influence on the global score. Thanks to this

weight heuristic, the participation of a satisfied ”hard” clause is more important. Furthermore the weight can be

automatically found using the following method:

1. initialize each clause weight to ’1’

2. at the end of each try, add ’1’ to each unsatisfied clause weight.

Averaging in previous near solutions After each attempt, GSAT restarts with a random initial problem variables. This

heuristic offers to reuse parts of the best assignments issued from the two previous states. Therefore, the starting

variables vector for i-th attempt is computed from the bitwise(∗) of the two best reached states during the attempts (i-2)-th

and (i-1)-th.

(∗) : identical bits representing identical variable are reused, the other ones are randomly chosen.

CS 421 Winter 2011 37



Local Search

Evolutionary Algorithms

Combinatorial search technique inspired by the evolution of species

• population of strings which are manipulated via evolutionary

operators and compete for survival

• population is manipulated via evolutionary operators

– mutation

– crossover

– selection

CS 421 Winter 2011 38



Local Search

Evolutionary Algorithms

• Several variants have been developed

– Genetic algorithms

– Evolution strategies

– Evolutionary programming

– Genetic programming

• for combinatorial optimization the most widely used and most

effective variant are genetic algorithms

CS 421 Winter 2011 39



Local Search

Genetic algorithms

Basic notions :

• Individual and random Individual.

• Population.

• Fitness (evaluation) function.

• Mutation.

• Crossover.

CS 421 Winter 2011 40



Local Search

Genetic algorithms

1. begin

2. t← 1

3. // P (t) denotes the population containing the current solution

4. eval← evaluate P (t)

5. while termination condition is not satisfied do

6. t← t + 1

7. select P (t) from P (t− 1)

8. alter P (t)

9. evaluate P (t)

10. endwhile

11. if solution found then

12. return P(t)

13. end

CS 421 Winter 2011 41



Local Search

GA application to SAT

GA application to SAT

• solution representation : a binary string

• evaluation function : no of violated clauses

• mutation : with a fixed probability flip a variable’s truth value

• selection : choose best p strings for the next population avoiding

duplicate solutions

• additional local search: after each crossover or mutation apply a

1-opt local search

CS 421 Winter 2011 42



Local Search

GA application to SAT

 0  1  1  0  1  0  0  1 

 0  1  0  1 

Figure 1: Crossover operator for SAT

CS 421 Winter 2011 43



Local Search

GA application to CSP

X1

X2

X4

X3

        {b  ,     }

               {r ,     , g}                       {r ,       ,  y}

   g}{r , 

        g   

   y      

      y     

Population

random 
individual

<> <>

<> <>

Figure 2: GA representation of the graph coloring problem

CS 421 Winter 2011 44



Local Search

GA application to CSP

X1

X2

X4

X3

        {b  ,     }

               {r ,     , g}                       {r ,       ,  y}

   g}{r , 

        g   

   y      

      y     

Population

random 
individual

Conflict

Conflict

(fitness = 2)

<> <>

<> <>

Figure 3: GA representation of the graph coloring problem

CS 421 Winter 2011 45



Local Search

       y     g     y       g

Fitness = 2

Fitness = 1

       y     r     y       g

Figure 4: Mutation Operator for CSP

CS 421 Winter 2011 46



Local Search

       y      g    y       g        b      r     b       r

Fitness = 2 Fitness = 2

Fitness = 0

      g    y        b       r

Figure 5: Crossover Operator for CSP

CS 421 Winter 2011 47


