Appl Intell
DOI 10.1007/s10489-015-0708-4

@ CrossMark

Variable ordering and constraint propagation

for constrained CP-nets

Eisa Alanazi! - Malek Mouhoub!

© Springer Science+Business Media New York 2015

Abstract A Conditional Preferences network (CP-net) is a
known graphical model for representing qualitative prefer-
ences. In many real world applications we are often required
to manage both constraints and preferences in an efficient
way. The goal here is to select one or more scenarios that
are feasible according to the constraints while maximizing
a given utility function. This problem has been modelled as
a CP-net where some variables share a set of constraints.
This latter framework is called a Constrained CP-net. Solv-
ing the constrained CP-net has been proposed in the past
using a variant of the branch and bound algorithm called
Search CP. In this paper, we experimentally study the effect
of variable ordering heuristics and constraint propagation
when solving a constrained CP-net using a backtrack search
algorithm. More precisely, we investigate several look ahead
strategies as well as the most constrained heuristic for vari-
able ordering during search. The results of the experiments
conducted on random Constrained CP-net instances gen-
erated through the RB model, clearly show a significant
improvement when adopting these techniques for specific
graph structures as well as the case where a large number of
variables are sharing constraints.

Keywords CP-net - Constraint Satisfaction Problem
(CSP) - Constraint propagation - Variable ordering

P« Malek Mouhoub
mouhoubm @uregina.ca

Eisa Alanazi
alanazie@cs.uregina.ca

Department of Computer Science, University of Regina,
Regina, Canada

Published online: 30 August 2015

1 Introduction

Managing both constraints and preferences is often required
when tackling a wide variety of real world applications. For
instance, one of the important aspects of successful deploy-
ment of autonomous agents is the ability to reason about
user preferences. This includes representing and eliciting
user preferences and finding the best scenario for the user
given her preference statements. Moreover, many agents
work in a constrained environment where they must take
into consideration the feasibility of the chosen scenario. For
example, consider a desktop computer configuration online
shopping application where the user has some preferences
over different attributes (i.e. screen size, brand and mem-
ory ... etc) while the constraints could be the manufacturer
compatibility constraints among the attributes. Moreover,
the user, whose the agent is acting on behalf, might have
other requirements like budget limit. Therefore, the agent
must look for a scenario (solution or outcome) that sat-
isfies the set of constraints while maximizing its utility.
This problem can be viewed as a preference-based con-
strained optimization where the goal is to find one or more
solutions that are feasible and not dominated by any other
feasible solution [4, 12]. We refer to such set of solu-
tions as the Pareto optimal set where a feasible solution is
Pareto optimal if it is not dominated by any other feasi-
ble solution. Finding the set of Pareto solutions for these
problems is known to be an NP-hard problem in general
[12]. Solving such problems in the case of qualitative pref-
erences has been addressed by extending the well known
CP-net graphical model to include constraints [4]. Basically,
the CP-net model managing qualitative preferences [3] has
been augmented by adding constraints between some of the
variables.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10489-015-0708-4-x&domain=pdf
mailto:mouhoubm@uregina.ca
mailto:alanazie@cs.uregina.ca

E. Alanazi, M. Mouhoub

In this paper, we demonstrate through experiments that
variable ordering heuristics in addition to constraint propa-
gation techniques [5] play an important role for efficiently
solving the constrained CP-net problem when a backtrack
search method is used. More precisely we compare the time
performance of different variants of the standard backtrack
search method on constrained CP-net instances randomly
generated based on the RB model [13]. The results clearly
show a significant improvement when adopting these tech-
niques for specific graph structures of the Constrained
CP-net.

Note that, while several attempts have been made for
solving constrained CP-nets [4, 8, 12], variable ordering as
well as constraint propagation have been neglected during
the search process.

The rest of the paper is structured as follows. The next
section introduces CP-nets and constraint satisfaction. Then,
a formulation to the problem is presented in Section 3 and
the related work reported in Section 4. Section 5 describes
our variable ordering heuristic. In Section 6 we introduce
our backtrack search algorithm for finding a set of k Pareto
solutions while we discuss the problem of choosing the
value k in Section 7. Section 8 is dedicated to the exper-
imental evaluation. Finally, concluding remarks as well as
future directions are listed in Section 9.

2 Background
2.1 Conditional preference networks (CP-nets)

A Conditional Preferences network (CP-net) [3] is a graph-
ical model to represent qualitative preference statements
including conditional preferences such as: “I prefer A to B
when X holds”. A CP-net works by exploiting the notion of
preferential independency based on the ceteris paribus (with
all other things being without change) assumption. Ceteris
Paribus (CP) assumption provides a clear way to interpret
the user preferences. For instance, I prefer A more than
B means I prefer A more than B if there was no change
in the main characteristics of the objects. A CP-net can
be represented by a directed graph where nodes represent
features (or variables) along with their possible values (vari-
ables domains) and arcs represent preference dependencies
among features. Each variable X is associated with a ceteris
paribus table (denoted as C PT (X)) expressing the ordering
over different values of X given the set of parents Pa(X).
An outcome for a CP-net is an assignment for each CP-net
variable from one of its domain values. Given a CP-net, one
of the main queries is to find the best outcome given the set
of preferences. We say outcome o; is better than (or domi-
nates) outcome o; if there is a sequence of worsening flips

@ Springer

going from o; to o; [3]. A worsening flip is a change in a
given variable value to a less preferred value according to
the variable’s CPT. The relation between different outcomes
for a CP-net can be captured through an induced graph con-
structed as follows. Each node in the graph represents an
outcome of the network. An edge going from o; to o; exists
if there is an improving flip according to the CPT of only
one of the variables in o; all else being equal. More pre-
cisely, o; and o; differ only in the value of one variable X,
and the value assigned by o; to X is preferred to the value
assigned by o0; to X according to the values assigned by o;
and o; to Pa(X).

In this work, we restrict ourselves to the case of acyclic
CP-nets where there is unique best and worst outcomes.
Consider a simple CP-net and its induced graph shown in
Fig. 1 which is similar to the example in [3]. The CP-net has
three binary variables A, B and C where A and B uncon-
ditionally prefer a and b to @ and b respectively. However,
the preference values over C depend on A and B values.
For instance when A = a and B = b, the preference
order for C values is ¢ > c¢. The induced graph repre-
sents all the information we need to answer regarding the

a-a

b>b

©

(a) The network

abc

¥ |\
abe l abc

v
\J
1

abc
(b) The induced graph

Fig.1 A CP-net and its induced graph

Variable ordering and constraint propagation for constrained CP-nets

different dominance relations between outcomes. An out-
come o; dominates another outcome o; if there is a path
from o; to o; in the induced graph otherwise o; domi-
nates o; (if a path exists from o; to 0;) or both outcomes
are incomparable (denoted as o0; >< 0;). Since the induced
graph is acyclic, there is only one optimal outcome which
resides at the bottom of the graph. For example, the optimal
outcome for the CP-net in Fig. 1 is abc.

2.2 Constraint satisfaction

A Constraint Satisfaction Problem (CSP) [5] is a well-
known framework for solving constraint problems. For-
mally, a CSP consists of a set of variables V =
{X1, X5, ..., X,} where each variable X; is defined on a
finite and discrete set of possible values (variable domain)
D(X;) and a set of constraints C C V x ... x V restrict-
ing the values that each variable can take. A binary CSP is a
CSP where all the constraints have arity less than or equal 2.
In this paper, we are assuming that CSPs are binary (unless
stated otherwise) and that constraints are defined in exten-
sion. Let D(X) = nX,-eX D(X;) be the cartesian product of
the domains for a subset of variables X C V. We refer to
the elements of D(X) as the assignments of X. An assign-
ment x € D(X) is complete if and only if X = V otherwise
it is a partial assignment.

A complete assignment x € D(V) satisfies the binary
constraint ¢(X;, X ;) € Cifand onlyif (x;, x;) € ¢(X;, X)
where x; and x; are the values of X; and X; in x. For
instance, assume two variables X; and X; both with the
same domain {1, 2} and sharing the constraint c(X;, X;) =
{(1,2), (2,2), (2, 1)}. The pair (1, 1) does not satisfy the
constraint where, for instance, (1, 2) does. A solution to a
CSP is a complete assignment such that all the constraints
are satisfied. The CSP is usually represented as a graph
where each node corresponds to a given variable and an
edge (X;, X;) exists if and only if ¢(X;, X;) € C.

Fig. 2 A Constrained CP-net a>-a

c:@>g
c:d-d

Example 1 Assume V = {A, B, C, D} and D(Y) = {y, y}
for every variable Y € V. A possible constraint problem
over V is shown in the right graph of Fig. 2. In this network,
(a, b, ¢, d) is a solution to the problem. On the other hand,
(a, b, c,d) is not a solution as it does not satisfy c(A, B)
and c(A, C).

When solving a CSP using a backtrack search algorithm,
local consistency is often used before and during the search
to reduce the size of the search space [5]. Local consis-
tency corresponds to enforcing the consistency on a subset
of the CSP variables. The most common forms of local
consistencies are Node, Arc and Path Consistency which
correspond to applying the local consistency on a subset of
1, 2 and 3 variables respectively. A node X; € V is said
to be consistent if and only if for every value x; € D(X;),
x; satisfies the unary constraint c¢(X;) € C. For instance, if
D(X;) = {1, 2,3} and c(X;) is simply X; > 2 then X; is not
node consistent as X; = 1 does not satisfy the constraint.
The network is said to be node consistent if every node is
consistent. Similarly, in the case of binary CSPs, an arc (i.e.,
a constraint) c(X;, X ;) is consistent if and only if for every
value of x; € D(X;) there exists a value x; € D(X;) such
that (x;, x;) € c¢(X;, X ;). The CSP network is said to be arc
consistent if every arc is consistent.

Example 2 Consider the same network as in our previous
example. As there are no unary constraints the CSP is triv-
ially node consistent. On the other hand, the CSP is arc
consistent after removing b from D(B).

A CSP is known to be an NP-Hard problem. In order to
overcome this difficulty in practice, several constraint prop-
agation techniques based on local consistency algorithms
have been proposed [5, 10]. Such techniques provide a way
to enforce the local consistency (often Arc Consistency)
of the network before and during the search by removing

@ Springer

E. Alanazi, M. Mouhoub

those locally inconsistent values from their respective
domains. This will help detect inconsistent assignments ear-
lier in the search as well as reducing the size of this later.
When used during the backtrack search, two techniques
are considered and the main difference between them is in
the scope of the propagation. Forward Checking (FC) [5]
maintains Arc Consistency during the search as whenever a
new assignment x; is made to variable X;, we enforce Arc
Consistency between X; and any non assigned variable X ;
connected with it through a given constraint ¢(X;, X ;). This
results in removing inconsistent values from X;’s connected
variables domains. Maintaining Arc-Consistency (MAC)
[5] is another strategy that extends the constraint propa-
gation of FC by enforcing Arc Consistency to all the non
assigned variables.

Theoretical and experimental studies over the hardness
of solving random CSPs show that the CSP exhibits a phase
transition as the problem becomes more constrained. This
transition separates the region where most problems are
under constrained, easy and soluble, and a region where
most problems are over constrained, easy but insoluble.
The intervening phase transition region contains the hard-
est instances to solve. The RB model [13] has the ability,
through particular settings, to generate instances at the
phase transition region.

The ordering of variables during a backtrack search has a
significant effect on the size of the search space [11]. A vari-
able ordering heuristic is therefore needed for choosing the
next variable to assign at each step of the search. The well-
known first-fail principle is the most adopted criterion for
ordering variables. More precisely, variables are sorted from
the most to the least constrained one. This latter is called the
Most Constrained Heuristic (MCH).

3 Problem formulation

In its most general form, a constrained CP-net is a pair
(W, C) where A/ is a CP-net and C is a set of constraints
restricting the values that the variables in A/ can take.
The preference statements represented in A/ gives us the
preferred notion over the solutions while C asserts their fea-
sibility. Given a constrained CP-net, we are interested in
finding the most preferred feasible solutions. In particular,
those are the solutions that satisfy C and not dominated by
any other feasible solutions with respect to A. This defines
the notion of Pareto set with respect to (N, C). Thus, a solu-
tion is Pareto optimal if and only if it satisfies the constraints
in C and is not dominated by any other feasible solution.

Example 3 Consider the CP-net in Fig. 1 and the con-
straint alldiffstate (A,B,C). Then, both abc and

@ Springer

ab¢ are not feasible anymore and the Pareto optimal set
is {abc, abc}. It is easy to see that both outcomes are not
dominated by any other outcome.

Solving any constrained CP-net involves two main costly
operations: solving the constraints in C and dominance test-
ing with respect to NV It is well-known that the complexity
of both operations depends largely on the underlying respec-
tive graph structure. For instance, the complexity of finding
a solution for a CSP, where the underlying graph is a tree,
is polynomial while it is NP-hard in general [5]. The same
holds with CP-nets: dominance testing is polynomial if
N is a polytree while it is PSPACE-complete in general
[3].

4 Related work

When solving constrained CP-nets, people tend to reach one
of the following two goals: finding the Pareto outcomes
[4, 8, 12] or finding an approximation to them [7]. In the
case of approximation methods, the outcome is not guar-
anteed to be Pareto anymore. However, depending on the
defined approximation notion, some methods can tell how
far we are from the actual Pareto solution [8]. In this work,
we limit ourselves to the problem of finding the exact Pareto
outcomes. Moreover, one general work that aims to simplify
the problem regardless of the goal (exact or approximate
identification of the Pareto outcomes) is the work in [2]. The
authors defined a notion of Arc Consistent CP-net which
is simply the results of removing arc inconsistent domain
values from the preference tables.

Several approaches have been proposed to inden-
tify exactly the Pareto outcomes in constrained CP-nets
[4, 8, 12]. These approaches can be classified, from the
knowledge representation point of view, into two classes [8].
The first is based on converting the CP-net into a set of con-
straints where these latter are coupled with the original ones
into one constrained problem [12]. The down side of such
coupled approaches is that it does not intuitively represent
scenarios where the constraints are imposed by an exter-
nal entity or when preferences are expected to be changed
later into the problem. The other class is based on keeping
the CP-net and the set of constraints separated (decoupled
approaches) [4, 8]. This may require developing special-
purpose algorithms but has the advantage of easily editing
the constraints/preference information.

4.1 Coupled approaches

In [12] a method is proposed where the (possibly cyclic)
CP-net \V is converted into a set of constraints C (called

Variable ordering and constraint propagation for constrained CP-nets

optimality constraints). The solutions to c correspond to the
optimal outcomes of N. For example, a preference state-
ment such as a : ¢ > ¢ is converted into a binary constraint
between A and C with (a, ¢) being the allowed tuple. This
ensures that for any optimal outcome o of NV, o is always
a solution for C. The conversion itself maintains only the
set of optimal outcomes of A/ but not the dominance rela-
tion (i.e., the induced graph). Given a constrained CP-net
(N, 0), the algorithm in [12] works by creating the opti-
mality constraints C of N and then solve the problems of
C and C. The algorithm solves the problems by finding all
the solutions of the two constraint problems C and C. Enu-
merating all solutions of a constraint problem in known to
be a hard problem. Furthermore, as we base our work on
acyclic CP-nets which is known to have a unique best out-
come (per Lemma 3 in [3]), C will always poses only one
solution which makes the conversion of A to C not a use-
ful one for large CP-nets. The approach is expected to work
very well in extreme cases: when all feasible solutions of C
are optimal solutions for A/, when all optimal solutions of
N are feasible with respect to C and when we are looking
for all the Pareto optimal solutions. We expect such cases to
rarely exist in practice.

4.2 Decoupled approaches

Two main decoupled approaches have been proposed in the
literature for solving constrained CP-nets: Search-CP [4]
and its parameterized approach [8]. The latter can be viewed
as a parameterized version of the former as we will see later
in this section.

Perhaps the first work that formally defined the con-
strained CP-net problem and gave its main algorithm is the
work of Boutilier et al. [4] where an algorithm called Search
CP has been introduced to solve constrained CP-nets. Fol-
lowing a topological order over the CP-net A/, Search-CP
recursively removes a variable X; from the network after
assigning the best value to it x; given its parent values. Then,
the algorithm strengthen the set of constraints C to the cur-
rent instantiated variable C(X; = x;). Strengthening the
constraints results in looking ahead of the search tree by dis-
carding some inconsistencies. Search-CP has the property
of being an anytime algorithm. That is, at any point of the
search, the set of solutions found so far are subset of the
Pareto set. However, Search-CP adopts solely the CP-net
ordering and does not consider any other ordering heuris-
tics. In addition Search-CP did not explicitly consider any
propagation technique.

The work in [8] seeks a generalized framework to solve
the problem based on how different but important are these
parameters. In particular, the authors viewed the constrained
CP-net problem as a CSP parameterized by three parame-

ters {s, h, all} where s is the number variables assignments
we make in each step during the search, /& is the assign-
ment strategy for assigning values to variables and all is a
boolean parameter indicating if we want the set of all Pareto
outcomes to be returned. Thus, typical CSP search prob-
lems adopting an assignment heuristic 4 for finding one
solution is parameterized by {1, i, false}. In the context
of constrained CP-net, two obvious choices of the assign-
ment strategy & are either the feasibility (according to the
constraints) or desirability (according to the CP-net).

5 Variable ordering for constrained CP-nets

When solving the constrained CP-net through backtrack
search, we sort variables according to the Most Constrained
Heuristic (MCH) [5] which works as follow: we first order
the variables from the most to the least constrained one.
Afterwards, we iterate over this order and for every vari-
able, we position its parents before it. We stop when every
variable meets the dependency condition. The resulted order
respects the CP-net structure while taking into consideration
the most constrained variable heuristic.

A description of our variable ordering procedure is
shown in Algorithm 1. We first count the number of con-
straints associated with every variable (line 2) and then order
variables in a decreasing order (line 3). Having the typical
most constrained heuristic, we check if every variable meets
the dependency condition (line 5). Recall that the depen-
dency condition for a variable X with respect to an ordering
> is that all the parents Pa(X) must be ordered before X.
If X does not meet the condition, we try to place its parents
before it (line 10—14). We stop when X meets the condition
(W =@ inline 11).

5.1 A detailed example

Figure 2 shows a constrained CP-net with a set of four
binary variables V = {A, B, C, D} and a set of four con-
straints C = {c(A, B),c(A, C),c(A, D), c(C, D)}. To
show the effect of variable ordering on the search, consider
the two topological orderings A > B > C > D and
B > A > C > D over the CP-net. Search-CP would choose
arbitrary any one. However, in practice, A > B > C > D
is more informative (and thus reduces the search space). To
see this, when we start with A and assign the best value a
to it, we strengthen the constraints to C{a—,) which yields
B = {b}, D = {d} (from c(A, B) and c(A, D) respec-
tively) while starting with B = {b} has not affect on the
network. Intuitively, unless extreme cases exist where the
CP-net variables are linearly ordered, we usually have a suf-
ficient room to improve the variable ordering with respect

@ Springer

E. Alanazi, M. Mouhoub

to the CP-net graph. For the potential of constraint propa-
gation, note that the search branch starting at A = a yields
no solutions, this is due to the fact that D = {d} is not per-
mitted in c(C, D) and thus cannot be extended to form a
solution. Applying constraint propagation over the network
(i.e. MAC) would detect this inconsistency in advance once

we initialize A to a.

Algorithm 1 The most constrained heuristic for
constrained CP-nets

1: procedure MOSTCONSTRAINED(CP-net N, Set of
constraints C)

2: Let >= X; > X3 > --- > X, be a ranking based
on the most constrained heuristic.

3 fori = 1ton do

4 > = DEPENDENCYCONDITION(>, X;,)

5 end for

6: Return >.

7

8

9

: end procedure
: function DEPENDENCYCONDITION(>, X;, \)
: W =VALIDATE(>, X;, \)

10: while W # ¢ do

11: move W right before X; in >
12: W =VALIDATE(>, X;, N)
13: end while

14: Return >

15: end function

16: function VALIDATE(>, X;, V)

17: Let W =0

18: for each variable X; € Pa(X;) do

19: if X; proceeds X; in >~ then
20: W=WuUX;
21: end if

22: end for
23: Return W
24: end function

6 Finding the Pareto outcomes

The challenge for solving constrained CP-nets comes from
the fact that the most preferred outcome may not be feasi-
ble with respect to the constraints. One solution to overcome
this difficulty in practice is to enforce constraint propa-
gation techniques during the backtrack search which will
detect sooner any possible inconsistency. This will prevent
the backtrack search algorithm to go over some decisions
if such inconsistencies have not been detected earlier. The
propagation techniques we are considering are: Arc Con-
sistency (AC) before search and Forward Checking (FC)
or Maintaining Arc Consistency (MAC) during search [5].
Note that since FC and MAC do not eliminate feasible solu-
tions from the search space, so do our solving method. Also,

@ Springer

our method preserves the anytime property following the
CP-net semantics.

A distinction should be made between two cases when
solving constrained CP-nets: 1) Finding one Pareto 2) Find-
ing a set of k Pareto solutions. The reason we make this
distinction clear is due to several reasons. First, thanks to
the semantics of CP-nets, finding one Pareto requires no
dominance testing and the problem basically corresponds
to solving a constrained optimization problem [4]. Thus, in
such cases, we do not need to consider developing special
techniques trying to avoid the possible dominance queries
during the search. If for any variable X in the search we
assign x to it such that x is the most preferred feasible value
of X, then the first complete solution s is guaranteed to be
Pareto optimal. However, when looking for more than one
solution, dominance testing is required [4]. Second, the size
of the Pareto set may become very large thus we need a
mechanism to choose a representative set of the Pareto solu-
tions without overloading the user with many similar and
uninformative solutions. In this section, we introduce our
algorithm to find a set of k Pareto solutions while we dis-
cuss the problem of choosing the value of k in the next
section.

Algorithm 2 presents the pseudocode of our backtrack
search algorithm with constraint propagation and variable
ordering heuristics. We maintain a fringe containing the
set of nodes to be expanded. Each node corresponds to an
assignment for a set of variables. The fringe acts as a stack
of nodes to be expanded. Whenever a new node is expanded,
we assign to its current variable X; the most preferred value
x; according to C PT (X;). We order variables based on the
most constrained variable heuristic as shown in line 1. The
fringe initially assigns the best value to the root node (line
3). Each time we expand the current node n to a new assign-
ment, we check if this latter is consistent with the previous
assignments (line 9). If it is consistent we check whether it
is a complete assignment (i.e., a solution). This can simply
be done by checking if the size of the assignment is equal
to the total number of variables in the CP-net (line 10). If it
is the case then we test if this complete assignment is dom-
inated by any other solution found so far, if not we add it
to the current set of Pareto solutions (line 13). If the current
node is not a complete solution, we choose the next variable
X; according to the variable order we have > and assign the
best value x; to it given its parent values (lines 19 and 20).
Then we call the appropriate propagation technique and add
the current node with the assignment X; = x; to the fringe
to be expanded later on the search. The procedure PROP-
AGATE hides the two constraint propagation techniques we
use (Forward Checking or Maintaining Arc Consistency).
The algorithm stops either when the search is exhausted
(there are no more Pareto solutions) or when the algorithm
finds k solutions (line 7).

Variable ordering and constraint propagation for constrained CP-nets

Algorithm 2 Finding k-Pareto outcomes

INPUT: A constrained CP-net (A, C) and k > 0.
OUTPUT: A set S of k Pareto outcomes.

I: X; > X, >---> X, = MOSTCONSTRAINED(, C)

2: S <« 0.

3: Let root < NEXTVARIABLE({, >)

4: Let endSearch < False

5: Let BestVal <—NEXTVALUE(root,#)

6

7

8

: fringe<— {{root=BestVal}}
: while (|S| < k A endSearch=False) do
n < pop first item in fringe
9: if ISCONSISTENT(n)

10: if |n| = |V

11: for each s € S do

12: ifs #n

13: S=8U({n}.

14: end if

15: end for

16: else

17: Let X = x be the last assignment in n
18: PROPAGATE({X = x})

19: X; < NEXTVARIABLE(n, >)

20: X; < NEXTVALUE(X;, n)

21: push n U {X; = x;} into fringe.

22: end if

23: else

24: Let {X = x} be the last assignment in n
25: n < n\{X = x}

26: X; < NEXTVALUE(X, n)

27: ifx; #NIL

28: Push n U {X = x;} into fringe

29: else

30: Do

31: Let {X = x} be the last assignment in n
32: n < n\{X = x}

33: v < NEXTVALUE(X, n)

34: While (v = NIL) and (X # root)
35: if (X =root)and (v = NIL)

36: endSearch < True

37: else

38: Push n U {X = v} into fringe
39: end if

40: end if

41: end if

42: end while

43: Return S

44: function ISCONSISTENT(Assignment n)

45: Let {X = x} be the last assignment in n

46: for cach assignment {Y = y} € n\{X = x} such
that ¢(Y, X) € C do

47: if (y,x) € c(Y, X)
48: Return False.
49: end if

50: end for

51: Return True.

52: end function

7 Estimating the size of the Pareto set

In the previous section, we discussed the case of finding
the Pareto outcomes while incorporating variable order-
ing and constraint propagation techniques. In general, the
user may not be satisfied with one Pareto solution. Look-
ing for a set of Pareto solutions needs to be considered
in this case. For instance, in Recommender Systems we
are often required to provide a set of suggestions to the
user. Another example is choosing travel packages accord-
ing to the user preferences and constraints. Providing only
one suggestion does not seem as an intuitive idea in such
scenarios. In both examples the user is looking for a repre-
sentative set of solutions. One silent issue in all the literature
on constrained CP-nets is estimating the size of the Pareto
solutions which is very important to make the constrained
CP-net applicable to a wide range of real world applica-
tions. If the problem is inconsistent (has no solutions) or
has very few solutions, then we may need to alter the prob-
lem setting if we are expecting a larger number of solutions.
This can be handled by relaxing some of the problem con-
straints. On the other hand, if the number of solutions is
very large, then we need to carefully select a set of manage-
able size rather than overwhelming the user with too many
solutions.

Therefore, a more general problem we consider here is
finding a good value for k with respect to a constrained CP-
net problem. In particular, we study theoretical and heuristic
justifications for choosing the value k. One trivial solution
to this is to continue the search until we have k solutions
or the search ends. However, it may be the case that the
problem actually has fewer than k solutions and knowing
this in advance will avoid going through the search until
the end.

Clearly, if the problem is over-constrained (i.e., all the
outcomes are infeasible) then there is no solutions. On the
other extreme, if C is empty, then all outcomes are feasi-
ble and since we are working on acyclic CP-nets, the Pareto
set is reduced to the best outcome of A. In the worst case
scenario, finding k outcomes may reveal the whole search
space. That is, we overestimated the value k where the
problem does not admit k solutions (i.e., Pareto outcomes).
However, in practice, depending on how the constraints C
and the CP-net V are correlated we can carefully select the
value k such that k poses a manageable size and (C,) will
most likely admit & solutions.

7.1 Bounds on the number of solutions
We study here the upper and lower bounds on the size of
the Pareto set. An obvious upper bound on the number of

Pareto optimal solutions is the number of outcomes that are
mutually incomparable with respect to .

@ Springer

E. Alanazi, M. Mouhoub

Example 4 Consider the CP-net in Fig. 1. The network
shows six pairs of incomparable outcomes: (al;c, 5155),
(abc, abé), (abe, abe), (abe, abé), (abe, abé)and(abé,
abc). It is easy to see that we cannot have more than two
outcomes that are mutually incomparable.

Let Z be the largest set of outcomes that are mutually
incomparable. If the first Pareto found during the search is
an element of Z then the search would reveal at most |Z| — 1
other solutions (i.e., when all other elements are feasible).
Actually, if we have Z in hand and the first solution is an
element of it, then the problem becomes trivial: we stop the
search and only check the feasibility of each element in Z.
The set of solutions is exactly the set of feasible elements of
7. On the other hand, If the first solution is not an element
of Z, then by the definition of Z, the number of solutions
will be at most |Z|. This gives us an upper bound on the
number of solutions to the problem. Therefore, k < |Z| for
any constrained CP-net.

Borrowing the terminology of order theory, |Z| is the
width of the partial order induced by a CP-net A/ and Z is
a maximum antichain of this order. Computing the width of
a partial order is known to be a hard problem in general.
Given the literature in the field of order theory, we are look-
ing for a simple way to bound k based on the partial order
induced by . We know from [6] that any CP-net A/ over
n binary variables induces a directed n-dimensional hyper-
cube. Thus, the undirected version of its induced graph can
be seen as the Hasse diagram of the power set of n elements
under the inclusion relation. A well-known result in combi-
natorics is Sperner’s theorem which states that the size of the
maximum antichain of the power set (i.e., the width of the
graph) is (Ln’}Z J) where | | is the floor function. As a result,
we immediately get |Z| < (Ln’}z J) for any n binary CP-net.
For instance, consider the CP-net in Fig. 1, as we have three
binary variables then the width of the graph is (?) = 3. We
showed in Example 4 that there cannot be more than two
mutually incomparable solutions. This bound is certainly
not a tight one as it is based on the undirected version of
the induced graph. It can be the case that the induced graph
poses a maximum antichain of size far below this one. How-
ever, its generality and the fact that we can obtain it without
computation makes it appealing for further studies in the
setting of constrained CP-net. Nevertheless, we show that
for certain CP-nets, it is actually the case that |Z| = (Ln72 J)'
Consider the class of binary separable CP-nets, an example
of such CP-nets is shown in Fig. 3. Recall that in separa-
ble CP-nets every preference relation is an unconditional
one and the CP-net graph has no edges. It is known that for
any two outcomes o and 6 of a separable CP-net A/ where
o shows an improving flip of a variable X; and 6 shows
a flip for another variable X it is the case that o and 6

@ Springer

abe
SN
a=a b>=b c-¢ abc abc abe
XX

OO@ 4

abe

Fig. 3 A separable CP-net over three binary variables and its induced
graph

are incomparable [9]. For instance, consider Fig. 3, ab¢ is
incomaprable with ab¢ because abé shows an improving
flip of A while abc shows an improving flip of B. Formally,
let W, € V be the set of worsening variables in o and
W; be the set of worsening variables in 0, then o and 6 are
incomparable if it is the case that W, £ W; nor W; € W,.
For instance, in our previous example W ;- = {B, C} and
Wape = {A, C} and clearly no one is a subset of the other.
Thus, the largest set of mutually incomparable outcomes
of AV corresponds to the largest subset with the same size
which is (|},)-

Example 5 Consider the separable CP-net in Fig. 3,
the largest set of mutually incomparable elements 7 is
(abé, abé, abe) with size 3 which coincides with (?) It is
easy to see that the largest middle layer of the graph forms
an incomparable set of outcomes (there is no path from any
outcome to another on the same layer). As #n is odd there are
two such layers with the same size.

8 Experimentation

The goal of the experiments conducted in this section is
to assess the effect of constraint propagation and variable
ordering heuristics on the backtrack search. In order to do so
we conduct a comparative study of the following 5 methods.

Plain Backtrack. Standard Backtracking algorithm for
solving Constrained CP-net (Algorithm 2 without lines 1
and 18).

FC. Backtracking with FC during the search phase.

FC+ MCH. FC using the most constrained variable
ordering heuristics.

AC + FC + MCH. FC + MCH using AC in a preprocess-
ing phase to reduce the size of the variables domains
before search.

AC + MAC + MCH. Previous method when using MAC
instead of FC.

Variable ordering and constraint propagation for constrained CP-nets

—+— Plain Backtrack
—e— FC
FC+MCH
—— AC+FC+MCH
= AC+MAC+MCH

10,000

5,000

0.1 0.2 0.3 0.4

Fig. 4 Test results on CP-nets with 25 % constrained variables

8.1 Experiment settings

The experiments were conducted on a MAC OS X version
10.8.3 with 4GB RAM and 2.4 GHz Intel Core i5. Since
there is no known library for constrained CP-net instances,
we randomly generate these instances based on the RB
model. Note that the choice for the RB model is motivated
by the fact that it has exact phase transition and is capable
of generating very hard instances that are close to the phase
transition. Each instance has a CP-net with 50 variables and
is generated by first producing the underlying CSP instance
and then adding the CP-net remaining variables, structure
and preference tables.

8.1.1 Generating CSPs

The constraint part has 25 %, 50 % or 75 % of the CP-net
variables (n = 13,25 and 38 respectively) and has been
generated using the RB Model [13]. This latter requires the
following parameters

— the number of variables n (13, 25 or 38 in our experi-

ments).
80,000
—+— Plain Backtrack
—e— FC
60.000 FC+MCH
’ —— AC+FC+MCH
—m— AC+MAC+MCH
40,000
20,000
0

0.1 0.2 0.3 0.4

Fig. 5 Test results on CP-nets with 50 % constrained variables

1.105 | | —+ Plain Backtrack
—o—FC
FC+MCH
80,000
’ —— AC+FC+MCH
—a— AC+MAC+MCH
60,000
40,000
20,000
0

0.1 0.2 0.3 0.4

Fig. 6 Test results on CP-nets with 75 % constrained variables

— constraint tightness 0 < p < 1. The constraint tightness
with respect to a constraint ¢(X;, X ;) is the ratio of non
eligible tuples over the cartesian product of D(X;) x
D(X). Thus, the closer p to 0 the more allowed tuples
we have in ¢(X;, X ;) and vice versa.

— two positive constants r and «, such that 0 < r,a < 1,
used by the RB Model. We set r and « to 0.6 and 0.5
respectively.

Given these parameters settings and according to the RB
model, the domain size of the variables and the number of
constraints are respectively equal to d = n® and nc =
rnInn. The phase transition will then be: pt = 1 —e™*/" =
0.5.

8.2 Generating CP-nets

After generating the CSP part, we generate a CP-net by
adding other variables to a total of 50 where each added
variable has the same domain size as the CSP variables. We
then generate the CP-net structure and preference tables. For
the structure, we first generate a random total order X; >
X, > --- > Xs¢ over the variables. For each variable X;,
we randomly choose j € [0, 5] variables from X; > X, >

- > X;_ as the parent set of X;. This guarantees that the
resulted directed graph is acyclic. Regarding the preference
tables, for every variable X;, we create CPT (X;) as fol-
lows. For every value of the parents we randomly generate
an order over the values of X;.

8.3 Results

We vary the tightness p between 0.05 and 0.4 with 0.05
increment in each iteration where we fix p and generate
random constrained CP-net instances. Finally, we take the
average running time (over 20 runs) needed to find one
Pareto solution.

@ Springer

E. Alanazi, M. Mouhoub

—+— Plain Backtrack
100 FC
FC+MCH
80 | | — AC+FC+MCH
—a— AC+MAC+MCH
60
40
20
0

0.1 0.2 0.3 0.4

Fig. 7 Test results on separable CP-nets with 25 % Constrained
variables

Figures 4, 5 and 6 show the average running time in
seconds required to find a single Pareto solution when the
number of constrained variables is respectively equal to 13,
25 and 38 (which respectively corresponds to 25 %, 50 %
and 75 % of the CP-net variables). The tightness p varies
from 0.05 to 0.4.

As we can notice from Figs. 4 and 5, the time spent by
AC before and during the search through FC or MAC does
not really pay off as the plain backtracking provides the
best results. Indeed, for these under constrained problems
(with only 25 % and 50 % of the CP-net variables being
constrained) constraint propagation does not do much. The
variable ordering heuristic does not help as well as it is
limited to only few variables (many variables are ordered
according to their dependencies). The only case where MAC
does better than backtracking is when there are 50 % con-
strained variables and in the case where the tightness is more
than 0.3.

In the case where 75 % of the variables are constrained
(see Fig. 6), MAC with the variable ordering heuristic
and a preprocessing phase, is comparable to Search CP
and is sometimes better (when the tightness is more than

—+— Plain Backtrack
—eo—FC
10,000 FC+MCH
—— AC+FC+MCH
—a— AC+MAC+MCH
5,000
0

0.1 0.2 0.3 0.4

Fig. 8 Test results on separable CP-nets with 50 % Constrained
variables

@ Springer

—+— Plain Backtrack
—eo—FC

FC+MCH
—— AC+FC+MCH
—m— AC+MAC+MCH

30,000

20,000

10,000

0.1 0.2 0.3 0.4

Fig. 9 Test results on separable CP-nets with 75 % Constrained
variables

0.25). Despite the fact that the variable ordering heuris-
tic applies only to some variables, constraint propagation
before and during search is of great help in the case of
MAC especially when instances are approaching the phase
transition.

In order to study the effect of constraint propagation and
especially the variable ordering when varying the CP-net
graph structure, we conducted additional experiments on
instances randomly generated as described before but with
separable CP-nets (Figs. 7, 8, 9 and 10). A separable CP-net
is a CP-net where no variable depends on any other (there
are no dependencies between variables). This basically
means that the variable ordering heuristic can be applied to
all variables which can have a significant impact on the time
performance of the backtrack search method. This is eas-
ily noticeable in Fig. 10 (corresponding to the case where
all variables are constrained) where backtracking is outper-
formed by all the other methods. We can also easily see,
from Figs. 7, 8 and 9, that the plain backtracking is gradu-
ally loosing efficiency against the other methods when the
percentage of constrained variables is increasing from 25 to
100 %. The more constrained variables we have, the more

—+— Plain Backtrack
—eo—FC

FC+MCH
—— AC+FC+MCH
—m— AC+MAC+MCH

60,000

40,000

20,000

0.1 0.2 0.3 0.4

Fig. 10 Test results on separable CP-nets with 100 % Constrained
variables

Variable ordering and constraint propagation for constrained CP-nets

5 —+— Plain Backtrack
1.2-10 o FC
FC+MCH

1-10° | | — AC+FC+MCH

m— AC+MAC+MCH
80,000
60,000
40,000 7

/
20,000 3

Fig. 11 Finding 10 Pareto solutions

effective is the constraint propagation and variable ordering
heuristic.

8.4 Finding k Pareto outcomes

In this section, we evaluate the performance of our pro-
posed method for finiding more than one Pareto optimal
solution (k > 1). Note that such experiments have not been
conducted in the past as most of the existing work only
shows experiments for only one Pareto optimal. We know
from the discussion of Section 6 that the number of solu-
tions depends largely on the underlying CSP and CP-net
structures. Surprisingly enough, when conducting the exper-
iments we found that the number of solutions is usually
small (as a matter of fact the largest number of solutions
found was 22 out of over a million possible dominated solu-
tions). We set the parameters as follows: n = 20, p = 0.3
with a CSP ratio of 70 % (CSP variables are 70 % of the
total number of variables) and an acyclic CP-net structure
(DAG). We further alter the RB model and fix the domain
size to 2. Thus, every instance in our experiment corre-
sponds to a binary CP-net with 20 variables out of which 14
are constrained with 0.30 tightness density.

Figure 11 shows the time needed to find the solutions
while varying k such that 1 < k < 10. We record the time
over 20 runs of each instance and report its average. It is
easy to see from the Figure that MAC with variable ordering
really pays off when k is getting larger.

9 Conclusion and future work

In this work, we showed that the standard backtrack-
ing algorithm achieves significant improvements in terms
of process time when constraint propagation and variable
ordering heuristics are added. Indeed, the experimental
results conducted on randomly generated constrained CP-
nets clearly show, in many situations, the superiority of
extending backtracking with constraint propagation and

the most constrained variable heuristics before and during
search.

In the near future we plan to study closely those con-
strained CP-net instances that are near the phase transition.
We will as well explore other variable ordering heuris-
tics based on learning and metaheuristics [1, 11]. Another
important line of work consists of managing the number
k of Pareto solutions by adding/removing constraints. For
instance, if the problem is inconsistent (k = 0) or has very
few solutions to return (< k), then we can increase k by
relaxing some of the problem constraints. On the other hand,
if the number of solutions is very large, then we need to
carefully select a set of manageable size by adding new con-
straints rather than overwhelming the user with too many
solutions.

Acknowledgments We thank the anonymous reviewers for their
helpful comments over the submitted manuscript. We specially thank
the reviewer who suggested the experiment to find more than one
Pareto. Eisa Alanazi is supported by Ministry of Education, Saudi
Arabia.

References

1. Abbasian R, Mouhoub M (2011) An efficient hierarchical par-
allel genetic algorithm for graph coloring problem. In: GECCO,
pp 521-528

2. Alanazi E, Mouhoub M (2012) Managing qualitative preferences
with constraints. In: ICONIP (3), pp 653-662

3. Boutilier C, Brafman RI, Domshlak C, Hoos HH, Poole D (2004)
Cp-nets: A tool for representing and reasoning with conditional
ceteris paribus preference statements. J Artif Intell Res (JAIR)
21:135-191

4. Boutilier C, Brafman RI, Hoos HH, Poole D (2001) Preference-
based constrained optimization with cp-nets. Comput Intell
20:137-157

5. Dechter R (2003) Constraint processing. Elsevier Morgan Kauf-
mann

6. Domshlak C (2002) On recursively directed hypercubes. Electr J
Comb 9(1)

7. Domshlak C, Rossi F, Venable KB, Walsh T (2009) Rea-
soning about soft constraints and conditional preferences:
complexity results and approximation techniques. CoRR
arXiv:0905.3766

8. Boerkoel Jr JC, Durfee EH, Purrington K (2010) Generalized
solution techniques for preference-based constrained optimization
with cp-nets. In: AAMAS, pp 291-298

9. Lang J, Mengin J (2009) The complexity of learning separa-
ble ceteris paribus preferences. In: IJCAI 2009, Proceedings
of the 21st International Joint Conference on Artificial Intelli-
gence, Pasadena, California, USA, July 11-17, 2009, pp 848-853.
http://ijcai.org/papers09/Papers/IJCAI09-145.pdf

10. Mackworth AK (1977) Consistency in networks of relations. Artif
Intell 8(1):99-118

11. Mouhoub M, Jashmi BJ (2011) Heuristic techniques for variable
and value ordering in csps. In: GECCO, pp 457464

12. Prestwich SD, Rossi F, Venable KB, Walsh T (2005) Constraint-
based preferential optimization. In: AAAI pp 461-466

13. Xu K, Li W (2000) Exact phase transitions in random constraint
satisfaction problems. J Artif Intell Res 12:93-103

@ Springer

http://arxiv.org/abs/0905.3766
http://ijcai.org/papers09/Papers/IJCAI09-145.pdf

E. Alanazi, M. Mouhoub

@ Springer

Eisa Alanazi obtained his
MSc degree in Computer Sci-
ence from the University of
Regina in Canada. He is cur-
rently a PhD student at the
same school. Eisa is also a
lecturer at the Umm AlQura
University (UQU) in Saudi
Arabia. Eisa’s research inter-
est is in the area of reasoning
with non-probabilistic graphi-
cal models. Eisa’s research is
fully supported by UQU and
the ministry of education in
Saudi Arabia.

Malek Mouhoub obtained his
M.Sc. and Ph.D. in Computer
Science from the Univer-
sity of Nancy in France.
He is currently Professor of
Computer Science at the Uni-
versity of Regina in Canada.
His research interests are in
Artificial Intelligence and
include Temporal Reason-
ing, Constraint Solving and
Programming, Scheduling
and Planning. Dr. Mouhoub’s
research is supported by the
Natural Sciences and Engi-
neering Research Council
of Canada (NSERC) federal
grant in addition to several

provincial and University funds and awards.

	Variable ordering and constraint propagation for constrained CP-nets
	Abstract
	Introduction
	Background
	Conditional preference networks (CP-nets)
	Constraint satisfaction

	Problem formulation
	Related work
	Coupled approaches
	Decoupled approaches

	Variable ordering for constrained CP-nets
	A detailed example

	Finding the Pareto outcomes
	Estimating the size of the Pareto set
	Bounds on the number of solutions

	Experimentation
	Experiment settings
	Generating CSPs

	Generating CP-nets
	Results
	Finding k Pareto outcomes

	Conclusion and future work
	Acknowledgments
	References

