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Abstract. A combinatorial query is a request for tuples from multiple relations
that satisfy a conjunction of constraints on tuple attribute values. Managing com-
binatorial queries using the traditional database systems is very challenging due
to the combinatorial nature of the problem. Indeed, for queries involving a large
number of constraints, relations and tuples, the response time to satisfy these
queries becomes an issue. To overcome this difficulty in practice we propose
a new model integrating the Constraint Satisfaction Problem (CSP) framework
into the database systems. Indeed, CSPs are very popular for solving combi-
natorial problems and have demonstrated their ability to tackle, in an efficient
manner, real life large scale applications under constraints. In order to com-
pare the performance in response time of our CSP-based model with the tra-
ditional way for handling combinatorial queries and implemented by MS SQL
Server, we have conducted several experiments on large size databases. The re-
sults are very promising and show the superiority of our method comparing to the
traditional one.

1 Introduction

It is generally acknowledged that relational databases have become the most signifi-
cant and the main platform [1] to implement data management and query searching
in practice. The efficiency and veracity for query solving is acquiring more concerns
and has been improved among various database systems. However, along with the com-
plex requirement for query from the customer, a problem is triggered: the conventional
relational database system often fails to obtain answers to the combinatorial query effi-
ciently. Indeed, current Relational Database Management Systems (RDBMS) require a
lot of time effort in answering complex combinatorial queries. [2] has given an accurate
definition of a combinatorial query: a request for tuples from multiple relations that
satisfy a conjunction of constraints on tuple attribute values. The following example
illustrates the above definition.

Example 1. Let us assume we have a relational database containing three tables de-
scribing computer equipments: CPU (CPU id, Price, Frequency, Quality), Memory
(Memory id, Price, Frequency, Quality), and Motherboard (Motherboard id, Price,
Frequency, Quality).
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CPU id Price Freq Quality
1 200 5 80
2 500 10 80
3 1100 8 90
4 2000 15 95

Mem id Price Freq Quality
1 1000 7 80
2 900 9 90
3 800 10 90
4 1000 15 100

Mboard id Price Freq Quality
1 100 6 50
2 200 6 50
3 300 11 80
4 400 15 70

Select CPU_id, Memory_id,Motherboard_id
From CPU, Memory, Motherboard Where
CPU.Price + Memory.Price + Motherboard.Price < 1500
And CPU.Frequency + Memory.Frequency + Motherboard.Frequency < 30
And CPU.Quality + Memory.Quality + Motherboard.Quality < 250

Fig. 1. An example of a combinatorial query.

Figure 1 illustrates the three tables and an example of a related combinatorial query.
Here the combinatorial query involves a conjunction of three arithmetic constraints on
attributes of the three tables.

Although a variety of query evaluation technologies such as hash-join [3], sorted-
join, pair-wise join [4,1] have been implemented into the relational model attempt-
ing to optimize searching process, the effect is extremely unsatisfactory since most of
them concentrate on handling simple constraints, not the complex ones [2,3,5,6]. For
instance, in example 1 the arithmetic query involves a conjunction of three constraints
that should be satisfied together. This requires higher complexity and selectivity [6]
since the traditional model has to perform further complex combinatorial computations
after searching for each sub query (corresponding to each of these 3 constraints) which
will cost more time effort. In order to overcome this difficulty in practice, we propose
in this paper a model that integrates the Constraint Satisfaction Problem (CSP) frame-
work in the relational database system. Indeed, CSPs are very powerful for represent-
ing and solving discrete combinatorial problems. In the past three decades, CSPs have
demonstrated their ability to efficiently tackle large size real-life applications, such as
scheduling and planning problems, natural language processing, business applications
and scene analysis. More precisely, a CSP consists of a finite set of variables with finite
domains, and a finite set of constraints restricting the possible combinations of variable
values [7,8]. A solution tuple to a CSP is a set of assigned values to variables that satisfy
all the constraints. Since a CSP is known to be an NP-hard problem in general1, a back-
track search algorithm of exponential time cost is needed to find a complete solution.
In order to overcome this difficulty in practice, constraint propagation techniques have
been proposed [7,9,11,10]. The goal of theses techniques is to reduce the size of the
search space before and during the backtrack search. Note that some work on CSPs and
databases has already been proposed in the literature. For instance, in [12] an analysis
of the similarities between database theories and CSPs has been conducted. Later, [2]
has proposed a general framework for modeling the combinatorial aspect, when dealing

1 There are special cases where CSPs are solved in polynomial time, for instance, the case where
a CSP network is a tree [9,10].
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with relational databases, into a CSP. Query searching has then been improved by CSP
techniques. Other work on using CSP search techniques to improve query searching has
been reported in [13,14,15].

In this paper, our aim is to improve combinatorial query searching using the CSP
framework. Experimental tests comparing our model to the MS SQL Sever demonstrate
the superiority in time efficiency of our model when dealing with complex queries and
large databases.

In the next section we will show how can the CSP framework be integrated within the
RDBMS. Section 3 describes the details of our solving method. Section 4 provides the
structure of the RDBMS with the CSP module. The experimental tests we conducted to
evaluate the performance of our model are reported in section 5. We finally conclude in
section 6 with some remarks and possible future work.

2 Mapping a Database with the Combinatorial Query into a CSP

There are many similarities between the structure of a database and the CSP model.
Each table within the database can be considered as a relation (or a CSP constraint)
where the table attributes correspond to the variables involved by the constraint. The
domain of each variable corresponds to the range of values of the corresponding at-
tribute. The combinatorial query is here an arithmetic constraint of the related CSP. For
instance, the database of example 1 with the combinatorial query can be mapped into
the CSP defined as follows.

– Variables:
• CPU.Price,
• CPU.Frequency,
• CPU.Quality,
• Memory id.Price,
• Memory id.Frequency,
• Memory id.Quality,
• Motherboard id.Price,
• Motherboard id.Frequency
• and Motherboard id.Quality.

– Domains: Domains of the above variables.

• CPU.Price: {200,500,1100,2000}.
• CPU.Frequency: {7,9,10,15}.
• CPU.Quality: {80,90,95}.
• Memory id.Price: {800,900,1000}.
• Memory id.Frequency: {7,9,10,15}.
• Memory id.Quality: {80,90,100}.
• Motherboard id.Price: {100,200,300,400}.
• Motherboard id.Frequency: {6,11,15}.
• Motherboard id.Quality: {100,200,300,400}.
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– Constraints:
• Semantic Constraints:
∗ CPU(CPU id, Price, Frequency, Quality)
∗ Memory(Memory id, Price, Frequency, Quality)
∗ Motherboard(Motherboard id, Price,Quality)

• Arithmetic constraint:
CPU.Price + Memory.Price + Mother.Price < 1500
And CPU.Frequency + Memory.Frequency + Motherboard.Frequency < 30
And CPU.Quality + Memory.Quality + Motherboard.Quality < 250

After this conversion into a CSP, we use CSP search techniques, that we will describe
in the next section, in order to handle the combinatorial query in an efficient manner.

3 Solving Method

As we mentioned earlier, solving a CSP requires a backtrack search algorithm of ex-
ponential time cost. In order to overcome this difficulty in practice, local consistency
techniques have been proposed [7,9,11,10]. The goal of theses techniques is to reduce
the size of the search space before and during the backtrack search. More precisely,
local consistency consists of checking to see if a consistency is satisfied on a subset of
variables. If the local consistency is not successful then the entire CSP is not consistent.
In the other case many values that are locally inconsistent will be removed which will
reduce the size of the search space. Various local consistency techniques have been pro-
posed [7]: node consistency which checks the consistency according to unary constraint
of each variable, arc consistency which checks the consistency between any subset shar-
ing one constraint, path consistency which checks the consistency between any subset
sharing two constraints . . ., etc.

In this paper we use arc consistency in our solving method. More formally, arc con-
sistency [7] works as follows. Given a constraint C(X1, . . . ,Xp) then arc consistency is
enforced through C on the set X1, . . . ,Xp as follows. Each value v ∈ D(Xi) (1 ≤ i ≤ n)
is removed if it does not have a support (value such that C is satisfied) in at least one
domain D(Xj) (1 ≤ j ≤ n and j �= i). D(Xi) and D(Xj) are the domains of Xi and Xj

respectively.

Our method is described as follows.

1. First, arc consistency is applied on all the variables to reduce their domains. If a
given variable domain is empty then the CSP is inconsistent (this will save us the
next phase) which means that the query cannot be satisfied.

2. A backtrack search algorithm using arc consistency [7,9] is then performed as fol-
lows. We select at each time a variable and assign a value to it. Arc consistency is
then performed on the domains of the non assigned variables in order to remove
some inconsistent values and reduce the size of the search space. If one variable
domain becomes empty then assign another value to the current variable or back-
track to the previously assigned variable in order to assign another value to this
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latter. This backtrack search process will continue until all the variables are as-
signed values in which case we obtain a solution (satisfaction of the combinatorial
query) or the entire search space has been explored without success. Note that dur-
ing the backtrack search variables are selected following the most constrained first
policy. This rule consists of picking the variable that appears in the largest number
of constraints.

Before we present the details of the arc consistency algorithm, let us see with the fol-
lowing examples how arc consistency, through arithmetic and semantic constraints, is
used to reduce the domains of the different attributes in both phases of our solving
method.

Example 2. Let us consider the database of example 1. The domain of the variable
CPU.Price is equal to {200,500,1100,2000}. Using arc consistency with the subquery
CPU.Price + Memory.Price + Mother.Price < 1500, we can remove the values
1100 and 2000 from the domain of CPU.price. Indeed there are no values in the domains
of Memory.Price and Mother.Price such that the above arithmetic constraint is satisfied
for 1100 and 2000.

Example 3. Let us now take another example where each attribute has a large number
of values within a given range. For example let us consider the following ranges for the
attributes of the table CPU.

200 <= Price <= 2000.
5 <= Frequency <= 15.
80 <= Quality <=95.

Using the above range for Price and the subquery:

CPU.Price + Memory.Price + Mother.Price < 1500

we can first reduce, the range of the attribute CPU.Price as follows:

200 <= CPU.Price < 1500.

When using the attributes Memory.Price and Motherboard.Price we reduce the upper
bound of the above range as follows.

CPU.Price < 1500 - [Min(Memory.Price) + Min(Motherboard.Price)]
< 1500 - [800 + 100]
< 600

We will finally obtain the following range for CPU.Price:

200 <= CPU.Price < 600.
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During the second phase of our solving method arc consistency is used through arith-
metic and semantic constraints. The following example shows how an assignment of a
value to a variable, during backtrack search, is propagated using arc consistency through
the arithmetic constraint to update the domains (ranges) of the non assigned variables
which will reduce the size of the search space.

Example 4. Let us consider the arithmetic constraint A + B +C < 100, where the do-
mains of A, B and C are respectively: [10, 80], [20, 90] and [20, 70]. Using arc consis-
tency we will reduce the domains of A and B as follows. 10 < A < 100−(20+20)= 60.
20 < B < 100−(10+20)= 70. Suppose now that, during the search, we first assign the
value 50 to A. Through arc consistency and the above arithmetic constraint, the domain
of B will be updated as follows: 20 < B < 100− (50 + 20)= 30.

Example 5. Let us consider the previous example and assume that we have the follow-
ing semantic constraints (corresponding to three tables):
Table1(A, D, . . .),
Table2(B, E , . . .)
and Table3(C, F , . . .).

After assigning the value 50 to A as shown above in example 4, the domain of B will
be reduced to [20,30]. Now through the semantic constraint Table1 all the tuples where
A �= 50 should be removed from Table1. Also, through Table2 all tuples where B /∈
[20,30] will be removed from Table2. This will reduce the domains of D,E and F .

Arc consistency is enforced with an arc consistency algorithm. In the past three decades
several arc consistency algorithms have been developed. However most of these algo-
rithms deal with binary constraints [11,16,17,18,19,20]. In the case of n-ary constraints
there are three types of algorithms [7].

– Generalized Arc Consistency: for general non binary constraints.
– Global constraints: for constraints involving all the variables of a given CSP (such

as the constraint allDi f f erent(X1, . . . ,Xn) which means that the values assigned to
each of the variables X1, . . . ,Xn should be mutually different).

– Bounds-Consistency: which is a weaker (but less expensive) form of arc consis-
tency. It consists of applying arc consistency to the upper and lower bounds of the
variable domains. Examples 3 and 4 above use a form of bounds-consistency which
motivates our choice of this type of algorithm for arithmetic constraints as shown
below.

In our work we use the improved generalized arc consistency (GAC) algorithm [21]
for semantic constraints (since this algorithm is dedicated for positive table constraints)
and the bound consistency algorithm for discrete CSPs [22] in the case of arithmetic
constraints. More precisely, bounds consistency is first used through arithmetic con-
straints to reduce the bounds of the different domains of variables. The improved GAC
[21] is then used through the semantic constraints to reduce the domains of the attributes
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Algorithm GAC
1. Given a constraint network CN = (X ,C)

(X: set of variables, C: set of constraints between variables)
2. Q←{(i, j) | i ∈C∧ j ∈ vars(C)}
3. (vars(C) is the list of variables involved by C)
4. While Q �= Nil Do
5. Q← Q−{(i, j)}
6. If REV ISE(i, j) Then
7. If Domain( j) = Nil Then return false
8. Q← Q	{(k, l) | k ∈C∧ j ∈ vars(k)
9. ∧ l ∈ vars(k)∧ k �= i∧ j �= l}
10. End-If
11. End-While
12. Return true

Function REV ISE(i, j)
(REVISE for bound consistency)
1. domainSize← |Domain( j)|
2. While |Domain( j)|> 0
∧¬seekSupportArc(i, j,min( j)) Do

3. remove min( j) from Domain( j)
4. End-While
5. While |Domain( j)|> 1
∧¬seekSupportArc(i, j,max( j)) Do

6. remove max( j) from Domain( j)
7. End-While
8. Return domainSize �= |Domain( j)|

Function REV ISE(i, j)
(REVISE for handling semantic constraints)
1. REV ISE← f alse
2. nbElts← |Domain( j)|
3. For each value a ∈Domain( j) Do
4. If ¬seekSupport(i, j,a) Then
5. remove a from Domain( j)
6. REV ISE← true
7. End-If
8. End-For
9. Return Revise

Fig. 2. GAC algorithm and Revise for bound consistency (bottom left) and for handling semantic
constraints (bottom right).

even more. Let us describe now the details of our method. The basic GAC algorithm
[23,21] is described in figure 2. This algorithm enforces the arc consistency on all vari-
ables domains. GAC starts with all possible pairs (i, j) where j is a variable involved by
the constraint i. Each pair is then processed, through the function REVISE as follows.
Each value v of the domain of j should have a value supporting it (such that the con-
straint j is satisfied) on the domain on every variable involved by i otherwise v will be
removed. If there is a change in the domain of j (after removing values without support)
after calling the function REVISE then this change should be propagated to all the other
variables sharing a constraint with j.

When used with arithmetic constraints (as a bound consistency algorithm) C contains
the list of arithmetic constraints and the REVISE function (the function that does the ac-
tual revision of the domains) is defined as shown in figure 2 [22]. In the other case where
GAC is used with semantic constraints C contains these arithmetic constraints and the
REVISE function is defined as shown in the bottom right of figure 2 [21]. In the function
REVISE (for bound consistency) of figure 2, the function seekSupportArc (respectively
thefunction seekSupport of REVISE for semantic constraints in figure 2) is called to
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find a support for a given variable with a particular value. For instance when called
in line 2 of the function REVISE for bound consistency, the function seekSupportArc
looks, starting from the lower bound of j’s domain, for the first value that has a support
in i’s domain. When doing so, any value not supported will be removed.

4 Structure of the RDBMS with the CSP Module

Figure 3 presents the architecture of the module handling combinatorial queries. In the
CSP module, the CSP converter translates the query and the other information obtained

Fig. 3. Relational database model with the CSP module.
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for the database such as the semantic constraints into a CSP. The solver contains the
solving techniques we described in the previous section.

More precisely, in the traditional RDBMS model the query submitted by the user
through the user interface is first received by the query parser which will transform the
string form of the query into query objects that will be handled by the query processor.
Regularly, the query optimizer will choose the appropriate query solving plan (query
execution order with the least estimated cost) and send the execution request to the
interpreter. The interpreter will then handle the request and implements the input/output
operations by driving storage engine.

We address the function and working process of every component indicated in Fig-
ure 3 as follows.

User Interface. This is the interface being responsible to communicate with ”front
stage” such as website or other applications which have needs for data operations or
retrievals. For instance, RDBMS like Microsoft SQL server provides a common user
interface by setting connection string and corresponding parameters for .Net, PHP or
Java platform.

Query Processor. The query processor is the most significant part in RDBMS that
will handle query construction and optimization once the query is approached from
the User Interface. It has to engender query execution plan sending to the next part
of the system. The traditional model includes query parser, query optimizer and query
execution interpreter. For our improved RDBMS model, the CSP module will be added
into the system to deal with combinational query solving.

Query Parser. The query parser is the component in the query processor which will
create the query to other solvers of RDBMS according to the requirement of query from
User.

Query Optimizer. The query optimizer is one of the key parts in the query processor
that attempts to determine the more efficient query execution plan of the given query.
Usually, the query optimizer is called as cost-based because it mainly considers system
resource like memory and CPU cost as well as I/O operations to estimate the cost for
the query execution and then select the best one to implement. The join algorithm [63]
(pair-wise join, hash join or sorted merge join) will be formed in the query optimizer
supported with indexing.

Query Execution Interpreter. This part takes responsibility of translating the query
plan into the language which can be understood by the Storage Engine. Meanwhile, the
solution returned from the database will be posted back to the application by the query
execution interpreter.

CSP Module. The new module added into RDBMS to solve combinational query has
two sub components: CSP Query Converter and CSP Solver. The CSP Query Converter
will convert the combinational query into the CSP which can be accessed and solved
by the CSP Solver. Since some combinational query still need structural adjustment or



140 M. Mouhoub and C. Feng

join order optimization, for some cases the query should be optimized by the query
optimizer before it is sent to the CSP query parser. Moreover, some database technolo-
gies and information will support the CSP query parser to reduce the size of the search
problem such as indexing and semantic constraints.

Storage Engine. The Storage Engine implements related operations with data in
database based on the order submitted by the query processor.

In the case of the RDBMS model integrating the CSP module, once the combinatorial
query is parsed by the query parser, it is sent to the CSP module. The converter will
convert the query (including the arithmetic constraints) and the semantic constraints
obtained from the database into the CSP. The solver will then solve it and send the
solution to the execution interpreter.

4.1 CSP Module Design

The class diagram in Figure 4 gives the details of how the CSP module is designed to
handle combinational queries. The sequence diagram in Figure 5 indicates the working
steps of the CSP module during the search.

The query parser gains the query by using the GetQuery function from the applica-
tion. The system will decide to activate the query optimizer or not. Because sometimes
the order of query can be optimized that will increase the efficiency of search, but
sometimes it cannot. After index and semantic constraints information are obtained by
the Query Converter, the optimized combinational query will be converted into a CSP.
Continuously, the QueryAnalyze function is run to analyze the CSP and decide which
specific consistency checking strategy will be used to prune the domains of the CSP.
The solving method we presented in the previous section will then be applied to find a
solution to the query. The Solver will then call the query interpreter to send request to
the lower component to carry out the compilation.

The sequence diagram in Figure 5 shows how CSP module solves the combinational
query step by step based on the main functions made in the Figure 4. Sometimes the

Fig. 4. Class Diagram for the CSP module.
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Fig. 5. Sequence Diagram for the CSP module.

query optimizer will not be activated during the search process, since it is not a neces-
sary part for solving combinational query. The relations among it and other components
have been described in Figures 4 and 5. In the following we will provide two concrete
examples to show the whole solving process.

4.2 Examples

4.2.1 Computer Components Selection
We take a combinational query as an example to introduce the solving process in the
CSP module as shown in Figure 4. Suppose the data source for the combinational query
in Figure 6 is the one shown in Figure 1.

After optimization by the query optimizer, the second sub query is removed from
the combinational query by using the merge sorted join algorithm [26]. The reason is
although the constraint for the first and second sub query is all about the sum of com-
puter components price, the arithmetic constraint condition of the first one is smaller
than the second, which means the first sub query requires the smaller variable domain
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Select CPU_id, Memory_id, Motherboard_id
From CPU, Memory, Motherboard Where
CPU.Price + Memory.Price + Motherboard.Price <1500 And
CPU.Price + Memory.Price + Motherboard.Price <1600 And
CPU.Frequency + Memory.Frequency + Motherboard.Frequency <32
And CPU.Quality + Memory.Quality + Motherboard.Quality < 250

Fig. 6. A SQL combinational query.

Select CPU_id, Memory_id, Motherboard_id
From CPU, Memory, Motherboard Where
CPU.Price + Memory.Price + Motherboard.Price <1500 And
CPU.Frequency + Memory.Frequency + Motherboard.Frequency <32 And
CPU.Quality + Memory.Quality + Motherboard.Quality < 250

Fig. 7. The optimized SQL combinational query

for solving than the second. As a result, the condition for the combinational query is
optimized as shown in Figure 4.

In the next step, the query converter will implement converting from a combinational
query into a CSP. The optimized SQL combinational query in Figure 5 is converted as
follows.

– Variables:
• CPU id,
• CPU.Price,
• CPU.Frequency,
• CPU.Quality,
• Memory id,
• Memory.Price,
• Memory.Frequency,
• Memory.Quality,
• Motherboard id,
• Motherboard.Price,
• Motherboard.Frequency,
• Motherboard.Quality

– Domains: Domains of the above variables.
• CPU id [1, 4],
• CPU.Price [200, 2000],
• CPU.Frequency [5, 15],
• CPU.Quality [80, 95],
• Memory id [1, 4],
• Memory.Price [800, 1000],
• Memory.Frequency [7, 15],
• Memeory.Quality [80, 100],
• Motherboard id [1, 4],
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• Motherboard.Price [100, 400],
• Motherboard.Frequence [6, 15],
• Motherboard.Quality [50, 80]

– Constraints:
• Semantic Constraints:
∗ CPU(CPU id, Price, Frequency, Quality)
∗ Memory(Memory id, Price, Frequency, Quality)
∗ Motherboard(Motherboard id, Price,Frequency,Quality)

• Arithmetic constraint:
CPU.Price + Memory.Price + Motherboard.Price < 1500
And CPU.Frequency + Memory.Frequency + Motherboard.Frequency < 32
And CPU.Quality + Memory.Quality + Motherboard.Quality < 250

Furthermore, index information (filtering information) needs to be collected for consis-
tency checking of Solver. For example, the filtering information in Figure 1 is:

– CPU.Price [200, 2000],
– CPU.Frequency [5, 15],
– CPU.Quality [80, 95],
– Memory.Price [800, 1000],
– Memory.Frequency [7, 15],
– Memeory.Quality [80, 100],
– Motherboard.Price [100, 400],
– Motherboard.Frequence [6, 15],
– Motherboard.Quality [50, 80],

The above information could be applied for the node or bound consistency checking in
the solving process. The semantic constraints shown above will be used for arc consis-
tency checking.

Once all necessary information has been gained by the system, our solver will look
for a possible solution. Finally, the interpreter will translate the solution found by the
solver into the execution order, which can be understood by the storage engine and will
be carried out by the compilation. One solution to the above example is:

– CPU (1, 200, 5, 80),
– Memory (1, 1000, 7, 80),
– Motherboard (1, 100, 6, 50).

4.2.2 Vehicle Elements Selection
Let us take another example to explain the solving process. Since the solving pro-
cess is similar to the previous example, only the result of each step will be repre-
sented in this example. The data source for the combinational query are shown in
Figure 8.

To look for the available combinations of vehicle elements, the user creates a com-
binational query as follows.
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Engine id Price Usage Rate
1 4000 11 8
2 5000 10 8.5
3 2000 8 9
4 5000 15 9

Clutch id Price Usage Rate
1 2000 5 7
2 1000 7 6
3 1100 8 5.5
4 1500 10 5

Gear id Price Usage Rate
1 1000 3 7
2 500 5 8
3 800 8 7
4 1000 10 6

Fig. 8. Tables of vehicle elements

Select Engine_id, Clutch_id, Gear_id
From Engine, Clutch, Gear Where
Engine.Price + Clutch.Price + Gear.Price >5500 And
Engine.Usage + Clutch.Usage + Gear.Usage <20 And
Engine.Rate + Clutch.Rate + Gear.Rate < 28

Unlike the combinational query in the previous example, there is no sub query that
can be optimized or removed in the Query Optimizer. As a result, the combinational
query is directly converted into a CSP by the query converter as follows.

– Variables
• Engine id,
• Engine.Price,
• Engine.Usage,
• Engine.Rate,
• Clutch id,
• Clutch.Price,
• Clutch.Usage,
• Clutch.Rate,
• Gear id,
• Gear.Price,
• Gear.Usage,
• Gear.Rate

– Domains
• Engine id [1, 4],
• Engine.Price [2000, 5000],
• Engine.Usage [8, 15],
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• Engine.Rate [8, 9],
• Clutch id [1, 4],
• Clutch.Price [1000, 2000],
• Clutch.Usage [5, 10],
• Clutch. Rate [5, 7],
• Gear id [1, 4],
• Gear.Price [500, 1000],
• Gear.Usage [3, 10],
• Gear.Rate [6, 8]

– Constraints
• Semantic Constraints:
∗ Engine(Engine id, Price, Usage, Rate)
∗ Memory(Clutch id, Price, Usage, Rate)
∗ Motherboard(Gear id, Price,Usage,Rate)

• Arithmetic constraint:
Engine.Price + Clutch.Price + Gear.Price < 5500
And Engine.Usage + Clutch.Usage + Gear.Usage < 20
And Engine.Rate + Clutch.Rate + Gear.Rate < 28

The index information is collected by RDBMS: Engine.Price [2000, 5000], Engine.Usage
[8, 15], Engine.Rate [8, 9], Clutch.Price [1000, 2000], Clutch.Usage [5, 10], Clutch. Rate
[5, 7], Gear.Price [500, 1000], Gear.Usage [3, 10], Gear.Rate [6, 8]. This will be applied
in node and bound consistency checking to prune search space in the solving process.
In the final step, the system will run a backtrack search to find the solution using the
algorithm we presented earlier. One solution to this problem is Engine (3, 2000, 8, 9),
Clutch (1, 2000, 8, 9), Gear (1, 1000, 3, 7).

5 Experimentation

In order to compare the time performance of our query processor with one of the most
advanced relational databases (MS SQL server 2005) we run several tests on randomly
generated databases and take the running time in seconds needed (by our method and
MS SQL) to satisfy the query. The tests are conducted on a IBM T42 with a P4 1.7 GHz
processor and 512 MB RAM memory, running Windows XP.

We have built a web-based application to simulate the CSP model and run the exper-
iments. This application has been developed using ASP.NET (C#) connected with SQL
server (See Figure 10). In the tests, we can compare the efficiency of operations from
RDBMS and the simulated CSP model. At first, three tables are set up in the RDBMS,
and the data in the tables are randomly created and input by data access layer of the
application for tests. We create all the data creation, manipulation and solving classes
in this layer, which is responsible to connect with the relational database and imple-
ment all data operations. CSP search algorithms, constraint propagation and heuristic
methods are written in this layer, all of which achieve the functions of the CSP solver as
shown in Figure 3. The size and number of tables, as well as the complexity of combina-
tional queries are changed during the testing for the performance comparison between
the old and new models. Index is added for the first non-primary key column in the
table, in order to offer the acceleration for traditional search and ”filtering” information
for consistency checking of the new CSP module.
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Fig. 9. The user interface of new RDBMS with CSP module.

Fig. 10. The programming environment for the CSP module.
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Fig. 11. Test results when varying the tightness.

Fig. 12. Test results when varying the number of rows.
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Fig. 13. Test results when varying the number of columns.

Figure 9 is the screen shot of the comparative result of the test on the combinational
query of the example in Section 4.1. The three tables are displayed with the correspond-
ing results from the traditional RDBMS model and our model as shown in the right.
Figure 10 is the screen shot of the programming environment for the experiments.

Each database and its corresponding combinatorial query are randomly generated
according to the following parameters: T (the number of tables within the database), R
and C (respectively the number of rows and columns of each table within the database);
and P the constraint tightness. This last parameter defines how easy|hard is the CSP
corresponding to the generated database. More precisely, the constraint tightness P of
a given constraint is defined as ”the fraction of all possible pairs of intervals from
the domains of the variables (involved by the constraint) that are not allowed by the
constraint [24].” According to this definition, the value of P is between 0 and 1. Easy
problems are those where the tightness is small and hard problems correspond to a high
tightness value.

Figure 11 presents tests performed when varying the tightness P. T,R and C are
respectively equal to 3, 800 and 8. Note that the logarithmic scale is used here for the y
coordinates As we notice on the chart, when T is below 0.8 (the case where %80 of the
possibilities are not solutions) the 2 methods have similar running time. However when
T is more than 0.8 (which corresponds to hard problems where only few possibilities
are solutions) we can see the superiority of our method over the traditional model. The
other figures 14, 12, and 13 correspond to the situation where we vary T , R and C
respectively. In all these 3 cases we can easily see that our method outperforms MS
SQL (especially when R or T increases). Note that in the case where T is greater than 3
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Fig. 14. Test results when varying the number of tables.

(in figure 14), the problem becomes inconsistent (the query cannot be satisfied). In this
particular case, our method detects the inconsistency before the backtrack search (see
step 1 of our solving method in Section 3). Since the backtrack search phase is saved in
this case, the total running time is even better than the case where T is equal to 3.

6 Conclusion and Future Work

CSPs are a very powerful framework to deal with discrete combinatorial problems. In
this paper we apply CSPs in order to solve a particular case of combinatorial applica-
tions consisting of satisfying a combinatorial query. More precisely our method trans-
lates the combinatorial query with the database information into a CSP. CSP techniques
including constraint propagation and backtrack search are then used to satisfy the query
by looking for a possible solution to the CSP. In order to demonstrate the efficiency in
practice of our method, we conducted different tests on large databases and compared
the running time needed by our method and the well known SQL server 2000 in order
to satisfy combinatorial queries. The results of the tests demonstrate the superiority of
our method for all the cases.

In the near future, we intend to integrate other search methods such as local search
techniques and genetic algorithms in order to speed up the query search process. In-
deed, we believe that while these approximation algorithms do not guarantee a com-
plete solution they can be very useful in case we want an answer within a short time.
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Another problem we intent to explore is handling several combinatorial queries at the
same time. The obvious way is to process them one by one using the method we have
proposed in this paper. However, this might not be the best idea. May be it is better
to first pre-process the set of queries using arc consistency and then (if the queries are
arc consistent) we can proceed with solving these queries together. An experimental
comparative study of both ways needs to be carried out in order to find out which one
is better in terms of processing time.
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