
Appl Intell
DOI 10.1007/s10489-010-0246-z

Conditional and composite temporal CSPs

Malek Mouhoub · Amrudee Sukpan

© Springer Science+Business Media, LLC 2010

Abstract Constraint Satisfaction Problems (CSPs) have
been widely used to solve combinatorial problems. In order
to deal with dynamic CSPs where the information regarding
any possible change is known a priori and can thus be enu-
merated beforehand, conditional constraints and composite
variables have been studied in the past decade. Indeed, these
two concepts allow the addition of variables and their re-
lated constraints in a dynamic manner during the resolution
process. More precisely, a conditional constraint restricts
the participation of a variable in a feasible scenario while
a composite variable allows us to express a disjunction of
variables where only one will be added to the problem to
solve. In order to deal with a wide variety of real life ap-
plications under temporal constraints, we present in this pa-
per a unique temporal CSP framework including numeric
and symbolic temporal information, conditional constraints
and composite variables. We call this model, a Conditional
and Composite Temporal CSP (or CCTCSP). To solve the
CCTCSP we propose two methods respectively based on
Stochastic Local Search (SLS) and constraint propagation.
In order to assess the efficiency in time of the solving meth-
ods we propose, experimental tests have been conducted on
randomly generated CCTCSPs. The results demonstrate the
superiority of a variant of the Maintaining Arc Consistency
(MAC) technique (that we call MAX+) over the other con-
straint propagation strategies, Forward Checking (FC) and
its variants, for both consistent and inconsistent problems.
It has also been shown that, in the case of consistent prob-
lems, MAC+ outperforms the SLS method Min Conflict

M. Mouhoub (�) · A. Sukpan
Univ. of Regina, Regina, Canada
e-mail: mouhoubm@uregina.ca

A. Sukpan
e-mail: sukpan1a@uregina.ca

Random Walk (MCRW) for highly constrained CCTCSPs
while both methods have comparable time performance for
under and middle constrained problems. MCRW is, how-
ever, the method of choice for highly constrained CCTCSPs
if we decide to trade search time for the quality of the solu-
tion returned (number of solved constraints).

Keywords Temporal Reasoning · Constraint Satisfaction ·
Stochastic Local Search

1 Introduction

1.1 Problem definitions

A well-known approach to managing the numeric and sym-
bolic aspects of time is to view them as Constraint Satis-
faction Problems (CSPs). We talk then about temporal con-
straint networks [2, 7, 12, 20, 30, 46, 49]. Here, a CSP in-
volves a list of variables defined on discrete domains of val-
ues and a list of relations constraining the values that the
variables can simultaneously take [11, 21, 27].

In a temporal constraint network, variables, correspond-
ing to temporal objects, are defined on a set of time points
or time intervals while constraints can either restrict the
domains of the variables and/or express the relative posi-
tion between the temporal objects these variables represent.
The relative position between temporal objects can be ex-
pressed via qualitative or quantitative relations. Quantita-
tive relations are temporal distances between temporal vari-
ables while qualitative relations represent incomplete and
less specific symbolic information between variables. Con-
straint propagation techniques and backtrack search are then
used to check the consistency of the temporal network and

mailto:mouhoubm@uregina.ca
mailto:sukpan1a@uregina.ca

M. Mouhoub, A. Sukpan

to infer new temporal information. While a considerable re-
search work has been concerned with reasoning on the met-
ric or the symbolic aspects of time (respectively through
metric or qualitative networks), little work such as [18, 25,
29, 43] has been developed to manage both types of informa-
tion. In [33, 34], we have developed a temporal model, Tem-
Pro, based on Allen’s interval algebra [2] and a discrete rep-
resentation of time, to express numeric and symbolic time
information in terms of qualitative and quantitative tempo-
ral constraints. More precisely, TemPro translates an appli-
cation involving numeric and symbolic temporal informa-
tion into a binary CSP1 called Temporal CSP (or TCSP2)
where variables are temporal events defined on domains of
numeric intervals and binary constraints between variables
correspond to disjunctions of Allen primitives [2]. The res-
olution method for solving the TCSP is based on constraint
propagation and requires two stages. In the first stage, local
consistency is enforced by applying the arc consistency on
variable domains and the path consistency on symbolic re-
lations. A backtrack search algorithm using constraint prop-
agation is then performed in the second stage to check the
consistency of the TCSP by looking for a feasible scenario.
A feasible scenario (or solution to the TCSP) is a complete
assignment of intervals to all the events such that all the con-
straints are satisfied. Note that for some TCSPs local consis-
tency implies the consistency of the TCSP network as indi-
cated in [29]. The backtrack search phase can be avoided in
this case.

When solving real life applications under (temporal) con-
straints we often need to deal with uncertain information.
These latter are the result of uncontrollable external factors.
Variables, domains and constraints in CSPs and temporal
CSPs can thus be uncertain and some research work in this
regard has been addressed. In a Mixed-CSP [13], variables
are divided into two categories. One includes controllable
variables (decision variables) that are totally under control
of users and the other includes uncontrollable variables (en-
vironmental variables) that are not under control. The uncer-
tainty is reflected by uncontrollable variables. In the stochas-
tic CSP [50], a probability distribution is associated with
the domain of each variable. In probabilistic CSPs [13], the
uncertain factors are the probabilities of the existence of
various constraints. Simple Temporal Networks [12], very
popular for representing quantitative temporal information,
have been augmented to model the uncertain duration be-
tween time points. One of the resulting frameworks is called

1In a binary CSP, constraints can only be unary or binary relations.
2Note that the acronym TCSP was used in [12]. The well known TCSP,
as defined by Dechter et al., is a quantitative temporal network used
to represent only numeric temporal information. Nodes represent time
points while arcs are labeled by a set of disjoint intervals denoting a
disjunction of bounded differences between each pair of time points.

Simple Temporal Network with Uncertainty (STNU) [47].
Solving algorithms and tractable classes for the STNU have
been proposed in [32, 48]. Another resulting framework is
the Fuzzy Temporal Constraint Network [28]. This latter
model extends the STN with fuzzy durations using the pos-
sibilistic distributions. Qualitative temporal networks han-
dling uncertainty include the fuzzy extension of Allen’s In-
terval Algebra [3] and the Probabilistic Temporal Interval
Network (PTI) [35]. Both of these two formalisms are based
on the possibility theory used to model the uncertain sym-
bolic relations by assigning a preference degree to every ba-
sic Allen’s primitive [2]. A path consistency algorithm has
been proposed in each model. Finally, a framework for rea-
soning about qualitative and metric temporal relations be-
tween vague time periods has been proposed in [40].

1.2 Motivation

Representing and reasoning about numeric and/or symbolic
aspects of time is crucial in many real world applications
[14] such as scheduling and planning [1, 4, 8, 18, 26], nat-
ural language processing [22, 42], molecular biology [19]
and temporal database [9, 44]. In all these applications we
have to deal with both the numeric and the symbolic aspects
of time in a dynamic and evolving world. While many ef-
forts have been dedicated to tackle constraint problems in a
dynamic environment [10, 16, 23, 24, 31, 37, 38, 45], none
of these works manages both the numeric and the symbolic
aspects of time in a very expressive way as we will show
in the next section. This has motivated us to develop such a
model based on our TemPro framework.

1.3 Proposed solution and contributions

We present in this paper an extension of the modeling frame-
work TemPro in order to deal with a large variety of dynamic
real world temporal applications and where the information
regarding any possible change can be enumerated before-
hand. This extension includes the following:

Variable status. Each variable has either active or inactive
status. Only active variables require an assignment from
their domain of values. Inactive variables will not be
considered during the resolution of the temporal net-
work until they are activated. A variable can be activated
by default (in the initial problem), through an activity
constraint or a composite variable.

Composite temporal variables. Composite temporal vari-
ables are variables whose values are temporal events.3

During the resolution process, an active composite vari-
able will be assigned (replaced with) one event from its

3An event is defined here as a preposition that holds over a time inter-
val.

Conditional and composite temporal CSPs

domain. This latter event will then be activated. For in-
stance, if we have a list of events Evt1, . . . ,Evtn where
only one Evti should be present in the problem to solve,
then we can create a composite variable X defined on
the domain DX = {Evt1, . . . ,Evtn}.

Activity (or conditional) constraints. An activity constraint

has the following form: X1 ∧ · · · ∧ Xp
condition→ Y where

X1, . . . ,Xp and Y are temporal variables (composite
or events). This activity constraint will activate Y if
X1, . . . ,Xp are active and condition holds on these vari-
ables. condition corresponds here to the assignment of
particular values to the variables X1, . . . ,Xp .

The main difference between an activity constraint and a
composite variable is the fact that:

– An activity constraint requires a condition (over a set of
active variables) to be satisfied in order to activate a given
variable.

– A composite variable represents the fact that among a list
of events only one should be activated (without a specific
condition).

Note that we could as well express the disjunction of
events Evt1, . . . ,Evtn we mentioned above (when describing
composite variables) using conditional constraints. In this
case we need to do the following:

1. Create a variable X defined on DX = {e1, . . . , en} where
each value ei corresponds to the activation of event Evti .

2. Create n activity constraints as follows:

– X
X=e1→ Evt1

– . . . ,

– X
X=en→ Evtn

Using the above, each time X is assigned a particular
value, the corresponding event is activated. As we can see, it
is natural and easier to represent a disjunction of events with
a composite variable rather than a set of activity constraints.
Also, from a conceptual point of view it is better to distin-
guish between the events that are unconditionally selected
(from a list) and activated through composite variables and
those activated via activity constraints.

We call a Composite TCSP (CTCSP) a TCSP including
composite temporal variables. A CTCSP represents a finite
set of possible TCSPs where each TCSP corresponds to a
complete assignment of values (temporal events) to compos-
ite variables. Solving a CTCSP consists of finding a feasible
scenario for one of its possible TCSPs. Solving a TCSP re-
quires a backtrack search algorithm with exponential com-
plexity in time O(DN) where N is the total number of tem-
poral events and D the domain size of each event (num-
ber of values in the domain). The possible number of TC-
SPs the CTCSP involves is dM where M is the number of

composite variables and d their domain size. Thus, solv-
ing a CTCSP requires a backtrack search algorithm of com-
plexity O(dM × DN+M) in the worst case. We call Con-
ditional CTCSP (CCTCSP) a CTCSP augmented by activ-
ity constraints. Solving a CCTCSP can be seen like solv-
ing a CTCSP dynamically i.e. when some of the variables
(events or composites) and their corresponding constraints
are added or removed dynamically during the resolution of
the CSP. To overcome this difficulty in practice, we propose
in this paper two methods respectively based on constraint
propagation and Stochastic Local Search (SLS) for solv-
ing efficiently CCTCSPs. Constraint propagation includes
Arc Consistency (AC) [27] as well as forward check and
MAC strategies [21]. On the other hand, the SLS methods
we use are Min-Conflict-Random-Walk (MCRW), Steepest-
Descent-Random-Walk (SDRW) and Tabu [39].

In order to assess the efficiency in time of the solving
methods we propose, experimental comparative tests have
been conducted on random CCTCSPs generated using the
model RB [51] as this latter has the ability to generate as-
ymptotically hard instances. The test results demonstrate
the superiority of a variant of the MAC technique (that we
call MAX+) over the other constraint propagation strategies
(FC and its variant FC+) for both consistent and inconsis-
tent problems. It has also been shown that, in the case of
consistent problems, MAC+ outperforms the SLS method
MCRW for highly constrained CCTCSPs while both meth-
ods have comparable time performance for under and mid-
dle constrained problems. MCRW is, however, the method
of choice for highly constrained CCTCSPs if we decide to
trade search time for the quality of the solution returned
(number of solved constraints).

1.4 Plan of the paper

The rest of the paper is structured as follows. In the next sec-
tion we introduce the CCTCSP framework through an exam-
ple. Sections 3 and 4 are respectively dedicated to the con-
straint propagation technique and the SLS methods for solv-
ing CCTCSPs. Section 5 describes the experimental com-
parative tests we have conducted on random CCTCSPs. Fi-
nally, concluding remarks are covered in Sect. 6.

2 Conditional and composite temporal constraint
satisfaction problems (CCTCSPs)

Managing conditional, composite and dynamic CSPs has al-
ready been reported in the literature [10, 16, 23, 24, 31,
37, 38, 45]. Mittal and Falkenkainer [31] introduced the no-
tion of Dynamic Constraint Satisfaction Problems for con-
figuration problems (renamed Conditional Constraint Satis-
faction Problems (CCSPs) later). In contrast with the stan-
dard CSP paradigm, in a CCSP the set of variables requiring

M. Mouhoub, A. Sukpan

assignment is not fixed by the problem definition. A vari-
able has either active or nonactive status. An activity con-
straint enforces the change of the status of a given vari-
able from nonactive to active. In [37], Freuder and Sabin
have extended the traditional CSP framework by including
the combination of three new CSP paradigms : Meta CSPs,
Hierarchical Domain CSPs, and Dynamic CSPs. This ex-
tension is called composite CSP. In a composite CSP, the
variable values can be entire sub CSPs. A domain can be
a set of variables instead of atomic values (as it is the case
in the traditional CSP). The domains of variable values can
be hierarchically organized. The participation of variables in
a solution is dynamically controlled by activity constraints.
Jónsson and Frank [23] proposed a general framework us-
ing procedural constraints for solving dynamic CSPs. This
framework has been extended to a new paradigm called
Constraint-Based Attribute and Interval Planning (CAIP) for
representing and reasoning about plans [24]. CAIP and its
implementation, the EUROPA system, enable the descrip-
tion of planning domains with time, resources, concurrent
activities, disjunctive preconditions and conditional con-
straints. The main difference, comparing to the formalisms
we described earlier, is that in this latter framework [23] the
set of constraints, variables and their possible values do not
need to be enumerated beforehand which gives a more gen-
eral definition of dynamic CSPs. Note that the definition of
dynamic CSPs in [23] is also more general than the one in
[10] since in this latter work variable domains are prede-
termined. Finally, in [45], Tsamardinos et al. propose the
Conditional Temporal Problem (CTP) formalism for Condi-
tional Planning under temporal constraints. This model ex-
tends the well known qualitative temporal network proposed
in [12] by adding instantaneous events (called observation
nodes) representing conditional constraints.

We adopt both the CCSP [31] and the composite CSP
[37] paradigms and extend the modeling framework Tem-
Pro [34] by including conditional temporal constraints and
composite temporal events as shown in introduction. Tem-
Pro will then have the ability to transform constraint prob-
lems involving numeric information, symbolic informa-
tion, conditional constraints and composite variables into
the CCTCSP we have described in introduction. Compar-
ing to the formalisms we mentioned above and those we
mentioned in introduction on hybrid temporal constraints
[18, 25, 29, 43], ours has the following specifics.

1. Our work focuses on temporal constraints while the pre-
vious literature is on general constraints, if we exclude
the work in [45] and [24]. Both these two latter for-
malisms, however, handle only quantitative time infor-
mation while ours combines both quantitative and quali-
tative temporal constraints.

2. Our model is application independent and is not re-
stricted to a particular area such as planning or schedul-
ing. It can thus be used in a large variety of applications

involving symbolic and|or numeric temporal constraints.
Moreover, the qualitative constraints are based on the
whole Allen Algebra [2] which offers more expressive-
ness. Altough this will lead to NP-hard problems, the
solving techniques that we will present in the next two
sections overcome this difficulty, in practice, as demon-
strated by the test results in Sect. 5.

3. Our model is based on a discrete representation of time.
Thus, events are defined on discrete values (numeric in-
tervals). This offers an easier way to handle numeric tem-
poral information with different granularities. It will also
enable the constraint propagation techniques and approx-
imation methods to be applied in a straight forward man-
ner.

4. Numeric and symbolic temporal constraints as well as
conditional constraints and composite variables, are man-
aged within the same constraint graph and not, for exam-
ple, like in [25] where numeric and symbolic temporal
constraints are managed in two separate systems.

5. Our model is more expressive then IxTeT [18] since this
latter is restricted to the Point Algebra (PA) while ours
is based on the full Allen Interval Algebra (IA). Also,
when using a discrete representation of time, temporal
problems represented by our model include those repre-
sented by the well known formalisms proposed in [29]
and [43] as we will show later in example 2.

6. As we will see in Sect. 3, unlike the work in [38] where
constraint propagation is performed during search (using
forward checking and MAC strategies) through activity
constraints, in our model the propagation is performed
through compatibility constraints.

7. Unlike the model in [37] where a variable can unfold into
sub CSPs in a recursive manner, in our framework a com-
posite variable is defined on a set of events and can thus
be replaced by only one event from this set.

In the following we will define the CCTCSP model and
its corresponding network (graph representation) through an
example.

Definition

A CCTCSP is a tuple 〈E,DE,X,DX, IV,C,Act〉, where:

E = {e1, . . . , en} is a finite set of temporal variables that we
call events. In the same way as in [2], we define an event
e as the proposition that occurs over the smallest possible
time interval I for it to occur:

OCCURS(e, I) ∧ I ′ ⊂ I ⇒ ¬OCCURS(e, I ′)

where I ′ is a subinterval of I . For the sake of notation
simplicity, an event is used in this paper to denote its tem-
poral qualification (time interval during which the event
occurs).

Conditional and composite temporal CSPs

DE = {De1, . . . ,Den} is the set of domains of the events.
Each domain Dei

is the finite and discrete set of nu-
meric and continuous time intervals the event ei can
take. Dei

is expressed by the fourfold [EarliestStartei
,

LatestEndei
, Durationei

, Stepei
] where EarliestStartei

and LatestEndei
are respectively the earliest start time

and the latest end time of ei , Durationei
is its duration

and Stepei
defines the distance (number of time units) be-

tween the starting time of two adjacent intervals within
Dei

. The discretization step Stepei
allows us to handle

temporal information with different granularities as in [5,
6]. Note that EarliestStartei

, LatestEndei
, Durationei

and
Stepei

are natural numbers expressed as constants, vari-
ables defined over specific domain or as arithmetic ex-
pressions including natural variables and arithmetic op-
erators (‘+’, ‘−’, ‘∗’ or ‘/’). See Fig. 3 for an example.

X = {x1, . . . , xm} is the finite set of composite variables.
DX = {Dx1 , . . . ,Dxm} is the set of domains of the com-

posite variables. Each domain Dxi
is the set of possible

events the composite variable xi can take.
IV is the set of initial variables. An initial variable can be a

composite variable or an event. IV ⊆ E ∪ X.
C = {C1, . . . ,Cp} is the set of compatibility constraints.

Each compatibility constraint is a qualitative temporal
relation between two variables in case the two variables
are events, or a set of qualitative relations if at least one
of the two variables involved is composite. A qualitative
temporal relation is a disjunction of Allen primitives [2].

Act is the set of activity constraints. Each activity con-

straint has the following form: X1 ∧ · · · ∧ Xp
condition→ Y

where X1, . . . ,Xp and Y are temporal variables (com-
posite or events). This activity constraint will activate Y

if
X1, . . . ,Xp are active and condition holds on these vari-

ables. condition corresponds here to the assignment of
particular values to the variables X1, . . . ,Xp .

Let us illustrate the CCTCSP through the following ex-
ample.

Example 1

John, Mike and Lisa are going to see a movie on Fri-
day. John will pick Lisa up and Mike will meet them
at the theatre. If John arrives at Lisa’s before 7:30,
then they will stop at a convenient store to get some
snacks and pops. It will take them 35 minutes to reach
the theater if they stop at the store and 15 minutes
otherwise. There are three different shows playing:
movie1,movie2 and movie3. If they finish the movie by
9:15, they will stop at a Pizza place 10 minutes after
the end of the movie and will stay there for 30 minutes.
John leaves home between 7:00 and 7:20. Lisa lives
far from John (15 minutes driving). Mike leaves home

Table 1 Allen primitives

Fig. 1 CCTCSP of example 1

between 7:15 and 7:20 and it takes him 20 minutes to
go to the theater. movie1,movie2 and movie3 start at
7:30, 7:45 and 7:35 and finish at 9:00, 9:10 and 9:20
respectively.

The goal here is to check if this story is consistent
(has a feasible scenario). The story can be represented by
the CCTCSP in Fig. 1. Each event domain is represented
by the fourfold [EarliestStart, LatestEnd, Duration, Step].

M. Mouhoub, A. Sukpan

Fig. 2 Meiri’s Temporal
Network [29] of example 2

Fig. 3 CCTCSP of example 2

In the case of the event John_Pick_Lisa, the domain is
[0,35,15,1] where 0 (the time origin corresponding to 7:00)
is the earliest start time, 35 is the latest end time, 15 is the
duration, and 1 (corresponding to 1 min) is the discretiza-
tion step. This domain corresponds to the following set of
intervals: {[0,15], [1,16], . . . , [20,35]}. For the sake of sim-
plicity all the events in this story have the same step. Arcs
represent either a compatibility constraint or an activity con-
straint (case of arcs with diamond) between variables. The
compatibility constraint is denoted by one or more qual-
itative relations. The activity constraint shows the condi-
tion to be satisfied and the qualitative relation between the
two variables in case the condition is true. Each qualita-
tive relation is a disjunction of some Allen primitives [2].
For example, the relation BM between John_Pick_Lisa and
John_Lisa_Store denotes the disjunction Before ∨ Meets.
The JPL (John_Pick_Lisa) related activity constraint shown
in Fig. 1 expresses the fact that if JPL ending time is be-
fore or equal 30 (7:30) then the event John_Lisa_Store
is activated, otherwise (if JPL starting time is after 20)
John_Lisa_Movie is activated. This activity constraint is a
representation of the sentence “If John arrives at Lisa’s be-
fore 7:30, then they will stop at a convenient store to get
some snacks and pops”.

In order to compare our model to Meiri’s general frame-
work for representing qualitative and quantitative tempo-
ral constraints [29] we will see how the following example
(taken from [29]) is represented by both models.

Example 2

John and Fred work for a company that has local and
main offices in Los Angeles. They usually work at the
local office, in which case it takes John less than 20

minutes and Fred 15–20 minutes to get to work. Twice
a week John works at the main office, in which case his
commute to work takes at least 60 minutes. Today John
left home between 7:05–7:10 a.m., and Fred arrived
at work between 7:50–7:55 a.m. We also know that
Fred and John met at a traffic light on their way to
work.

Using Meiri’s model the above story can be repre-
sented by the constraint network of Fig. 2 and taken from
[29]. In the graph, nodes represent time instants (case of
P0,P1,P2,P3 and P4) or time intervals (J and F) while
arcs are labeled with qualitative or quantitative constraints.
A qualitative constraint is a binary relation between two
nodes each of which may correspond to a time instant or
an interval. Indeed, Meiri has defined three types of qualita-
tive constraints: Interval–Interval (II) relations (case of the
constraint (J,F)), Point–Interval PI) relations (case of the
constraint (P2, J)) and Point–Point (PP) relations. A quan-
titative constraint (case of the relation (P1,P2)) represents
the distance between time points and is represented by an
interval set in the same way as in the well known TCSP
[12]. Using our CCTCSP we represent the story in example
2 with the graph in Fig. 3. Note that, on the graph, the vari-
able X is a natural number. Thus, the two temporal networks
respectively in Figs. 2 and 3, are not completely equivalent.
Indeed, metric information are continuous in Meiri’s model
and discrete in ours.

From example 2 we can see that our CCTCSP can repre-
sent any temporal problem that can be modeled with Meiri’s
framework. In addition, CCTCSP has the ability to deal with
temporal information that are added to the problem dynam-
ically via activity constraints and composite variables.

Conditional and composite temporal CSPs

3 Constraint propagation for solving CCTCSPs

Different methods for solving conditional CSPs have been
reported in the literature [15, 16, 31, 38]. In [16], all possible
CSPs are first generated from the CCSP to solve. CSP tech-
niques are then used on the generated CSPs in order to look
for a possible solution. Dependencies between the activity
constraints are considered in order to generate a directed a-
cyclic graph (DAG), where the root node corresponds to the
set of initially active variables. Activity constraints are ap-
plied during the derivation of one total order from the par-
tial order given by the resulting DAG. In [31, 38] resolution
methods have been proposed and are directly applied on CC-
SPs. Maintaining arc consistency (MAC) is used to prune in-
consistent branches by removing inconsistent values during
the search [38]. The solving method starts by instantiating
the active variables. For each active variable instantiation,
the algorithm first checks the compatibility constraints and
then activates the activity constraints. The method will then
enforce look-ahead consistency (through arc consistency)
along the compatibility constraints and prunes inconsistent
values from the domains of future variables. When activ-
ity constraints come into play, newly activated variables are
added to the set of future variables. MAC is then applied to
the set of all active variables. In [15, 38], a CCSP is reformu-
lated into an equivalent standard CSP. A special value “null”
is added to the domains of all the variables which are not
initially active. A variable instantiation with “null” indicates
that the variable does not participate in the problem resolu-
tion. The CCSP is transformed into a CSP by including the
“null” values. The disadvantage is that, in a large constraint
problem, all variables and all constraints are taken into ac-
count simultaneously even if some are not relevant to the
problem at hand. In the above methods, backtrack search is
used for both the generation of possible CSPs and the search
for a solution in each of the generated CSPs. Thus, these
methods require an exponential time for generating the dif-
ferent CSPs and an exponential time for searching a solu-
tion in each generated CSP. Moreover these methods per-
form the propagation through activity constraints (while it
is done through compatibility constraints in our case). The
other problem of the above methods (since the goal is to look
for all solutions) is the redundant work done when check-
ing at each time the consistency of the same set of variables
(subset of a given generated CSP). Our aim in this paper is
to check for the consistency of the CCTCSP and to return
one solution in case this latter is consistent.

The goal of the constraint propagation method we pro-
pose for solving CCTCSPs is to overcome, in practice, the
difficulty due to the exponential search space of the possi-
ble TCSPs generated by the CCTCSP to solve and also the
search space we consider when solving each TCSP. In the
same way as reported in [31, 38], we use constraint propa-
gation in order to detect earlier later failure. This will allow

us to discard at the early stage any subset containing con-
flicting variables. The description of the method we propose
is as follows.

1. The method starts with an initial problem containing a
list of initially activated temporal events and composite
variables. Arc consistency is applied on the initial tem-
poral events and composite variables in order to reduce
some inconsistent values which will reduce the size of
the search space. If the temporal events are not consis-
tent (in the case of an empty domain) then the method
will stop. The CCTCSP is inconsistent in this case.

2. Following the Forward Check (FC) principle [21], pick
an active variable v, assign a value to it and perform arc
consistency between this variable and each of the unas-
signed active variables. If one domain of the non assigned
variables becomes empty then assign another value to v

or backtrack to the previously assigned variable if there
are no more values to assign to v. Activate any variable
v′ resulting from this assignment and perform arc con-
sistency between v′ and all the active variables. If arc
inconsistency is detected then deactivate v′ and choose
another value for v (since the current assignment of v

leads to an inconsistent CCTCSP). If v is a composite
variable then assign an event to it (from its domain). Ba-
sically, this consists of replacing the composite variable
with one event evt of its domain. We then assign a value
to evt and proceed as shown before except that we do
not backtrack in case all values of evt are explored. In-
stead, we will choose another event from the domain of
the composite variable v or backtrack to the previously
assigned variable if all values (events) of v have been ex-
plored. This process will continue until all the variables
are assigned in which case we obtain a solution to the
CCTCSP. The arc consistency in the above two steps is
enforced as shown in the four cases below. We will as-
sume in the following that evt1 and evt2 are two events
while x1 and x2 are two composite variables.

(a) The constraint is (evt1, evt2). Arc consistency [27] is
applied here i.e. each interval a of evt1 should have
a support in the domain of evt2.

(b) The constraint is (evt1, x1). Each interval a, from the
domain of evt1, should have a support in at least one
domain of the variables within x1.

(c) The constraint is (x1, evt1). Each interval a, from the
domain of every event evt within x1, should have a
support in the domain of evt1.

(d) The constraint is (x1, x2). Apply case (b) between
each interval evt within x1, and x2.

Using the above rules, we have implemented a new arc
consistency algorithm for CCTCSPs as shown in Fig. 4.

M. Mouhoub, A. Sukpan

REVISE(Di,Dj)

REVISE ← false
for each value a ∈ Di do

if not compatible(a, b) for any value b ∈ Dj then
remove a from Di

REVISE ← true
end if

end for
return REVISE

REVISE_COMP (Di,Dj)

REVISE_COMP ← false
if i is an event and j is a composite variable (case b)

D ← ∅
Dtmp ← Di

for each event k ∈ Dj do
REVISE(Di,Dk)

D ← D ∪ Di

Di ← Dtmp
end for
Di ← D

if Di �= Dtmp
REVISE_COMP ← true

end if
end if
if i is a composite variable and j is an event (case c)

for each event k ∈ Di do
REVISE_COMP ← REVISE(Dk,Dj)

end for
end if
if both i and j are composite variables (case d)

for each event k ∈ Di do
REVISE_COMP(Dk,Dj)

end for
end if
return REVISE_COMP

AC − 3 − CCTCSP
Given a CCTCSP 〈E,DE,X,DX, IV,C,Act〉
i, j and k are variables defined on Di , Dj and Dk

respectively Q ← {(i, j)|(i, j) ∈ C}
while Q �= Nil do

Q ← Q − {(i, j)}
if i or j is a composite variable (case b, c or d)

if REVISE_COMP(Di,Dj) then
Q ← ∪{(k, i)|(k, i) ∈ C and k �= j}

end if
else (both i and j are events (case a))

if REVISE(Di,Dj) then
Q ← ∪{(k, i)|(k, i) ∈ C and k �= j}

end if
end if

end while

Fig. 4 AC-3 for CCTCSPs

This algorithm is an extension of the well known AC-3 pro-
cedure [27]. We call it AC-3-CCTCSP. Like AC-3, AC-3-
CCTCSP starts with a list of pairs of variables to revise (all
the pair of variables sharing a constraint) and goes through

this list until this latter is empty. Each pair (i, j) is then
processed (revised) according to the above 4 cases as fol-
lows.

Case (a) Both i and j are events. Here we apply the tradi-
tional REVISE function of AC-3 [27].

Case (b) i is an event and j is a composite variable. As we
stated in rule (b) above, each value a of Di (where Di is
the domain of event i) should have a support in at least
one domain Dk (where k is an event within the compos-
ite variable j). In other words, a is removed from Di if
it does not have any support in any domain Dk . This is
implemented by computing the union of the sets respec-
tively obtained by revising Di with each of the events
within j .

Case (c) i is a composite variable and j is an event. The
function REVISE is applied here on each pair of events
(k, j) where k is an event within i.

Case (d) Both i and j are composite variables. Here we ap-
ply case (b) on each event within i, and j .

Like for general CSPs, variable and value ordering, dur-
ing search, has a significant impact on the size of the ex-
plored space in the case of CCTCSPs. For variable selection,
we will follow the idea of choosing the most constrained
variable first in the hope of triggering early failure. In the
case of value selection, we start with the value that leads to
an easiest to solve CCTCSP first since our goal here is to
find the first solution and that there is no preference on the
solution obtained. More precisely, our variable and value se-
lection policy works as follows.

1. The variables (simple and composite variables) are se-
lected by decreasing order of the number of constraints
they share with other variables. For a given variable x,
this number (that we call degree of a variable) corre-
sponds to the node degree (number of edges connected
to the node) of the node corresponding to x in the con-
straint graph.

2. The degree of a composite variable x is equal to the min-
imum variable degree of all the variables (events) within
its domain Dx .

3. If a variable x can activate other variables then we add to
its variable degree, the minimum number of constraints
it can generate (activate) through the activity constraints.

4. For value selection, in the case of a composite variable
x, select the simple variables, within the domain of x, by
decreasing number of their degrees.

5. For an event, select the least constrained value first (the
value that causes the activation of the minimum number
of constraints).

Note that preliminary tests we have conducted on ran-
domply generated CCTCSPs clearly demonstrated the im-
portance of using the above policy. Indeed, for CCTC-
SPs with more than 40 variables the constraint propagation

Conditional and composite temporal CSPs

Fig. 5 Arc consistency on the initial CCTCSP of example 1

method always fails to solve the problem, while the solution
is returned within a reasonable time (as shown in Sect. 5) in
case the variable|value policy is considered.

Example 3

In the following we will apply our constraint propaga-
tion method to solve the problem presented in example 1.
The initial problem containing the initially active vari-
ables is presented in the top graph of Fig. 5. When apply-
ing the arc consistency algorithm to this initial CCTCSP
(phase 1 of our method) the event Movie1 of the com-
posite variable Watch_Movie will be removed as it does
not have any interval that is arc consistent with the val-
ues of the event Mike_Movie. The bottom graph of Fig. 5
shows the initial CCTCSP after enforcing the arc consis-
tency. John_Pick_Lisa will then be selected and assigned
the first interval from its domain: (0 15). This will activate
John_Lisa_Store as shown in the top left graph of Fig. 6.
Applying the arc consistency between this newly activated

event and all the other active variables will result in an
empty domain of the composite variable Watch_Movie. In-
deed none of the two events of this latter composite vari-
able has an interval that is arc consistent with the values
of the event John_Lisa_Store (since the earliest end time
of John_Lisa_Store is greater than the earliest start time of
both Movie2 and Movie3). John_Lisa_Store will then be de-
activated and the next value to assign to John_Pick_Lisa is
(1 16). This latter assignment and all the others until (14 29)

will fail in the same way. (15 30), the first interval that does
not activate John_Lisa_Store, will then be chosen. This will
result in the activation of the event John_Lisa_Movie. When
applying arc consistency between this new event and the
other active variables, the event Movie3 will be removed
as illustrated in the top right graph of Fig. 6. After assign-
ing the values (30 45), (15 35) and Movie2 respectively to
John_Lisa_Movie, Mike_Movie and Watch_Movie we will
obtain the CCTCSP in the bottom right of Fig. 6. Finally the
consistent solution is obtained as shown in the bottom left
graph of Fig. 6.

Note that, in addition to the Forward Check (FC) princi-
ple we described earlier in phase 2 of our constraint prop-
agation method, we have explored other propagation strate-
gies. More precisely we are considering the following four
techniques.

1. FC. As we mentioned earlier, this strategy consists of
checking the arc consistency, during the search, between
the current variable (the variable that we are assigning a
value) and each of the future active variables (active vari-
ables that are not assigned yet) sharing a constraint with
the current variable.

2. Maintaining Arc Consistency (MAC). This strategy
maintains a full arc consistency on the current and fu-
ture active variables.

3. FC+. Same as FC except that the applicability of arc con-
sistency is extended to inactive variables as well. This
means that the arc consistency is performed between the
current variable and each of the future active and non ac-
tive variables sharing a constraint with the current one.

4. MAC+. Same as MAC except that the applicability of
the arc consistency is extended to inactive variables as
well. This means that the full arc consistency is enforced
on the current and the future variables (active and inac-
tive).

4 Approximation methods for CCTCSPs

The method we presented in the previous section is an ex-
act technique that guarantees a complete solution. In many
real-life applications where the execution time is an issue,
an alternative will be to trade the execution time for the

M. Mouhoub, A. Sukpan

Fig. 6 Constraint propagation for the CCTCSP of example 1

quality of the solution returned (number of solved con-
straints). This can be done by applying approximation meth-
ods such as local search and where the quality of the so-
lution returned is proportional to the running time (as-
suming that the local search method will not be trapped
in a local optimum). In this section we will study the
applicability of the following local search techniques for
solving CCTCSPs: Min-Conflict-Random-Walk (MCRW),

Steepest-Descent-Random-Walk (SDRW) and Tabu Search
(TS) [39]. In the following we will show how each of these
methods is applied on CCTCSPs.

4.1 MCRW-CCTCSP

MCRW has already been applied to solve TCSPs [34]. Basi-
cally, this method starts from a complete assignment of tem-
poral intervals to events and iterates by improving at each

Conditional and composite temporal CSPs

step the quality of the assignment (number of solved con-
straints) until a complete solution is found or a maximum
number of iterations is reached. Given the dynamic aspect
of CCTCSPs (some variables are added|removed dynami-
cally during the resolution process) we propose the follow-
ing algorithm based on MCRW for solving CCTCSPs. This
algorithm is called MCRW-CCTCSP.

1. The algorithm starts with a random assignment of val-
ues to the initial variables. If the initial variable is an
event then it will be randomly assigned a temporal in-
terval from its domain. In the case where the initial vari-
able is composite then it will be replaced by one variable
selected randomly from its domain. This latter variable
will then be randomly assigned a temporal interval from
its domain.

2. Activate any variable where the activating condition is
true and randomly assign to it a value from its domain as
shown in the previous step.

3. If a complete solution is not found and the maximum
number of iterations is not reached, randomly select an
active variable v involved in a conflict and proceed with
one of the following cases:

– If v belongs to the domain of a given composite vari-
able X then select the pair 〈vi, intvi

〉 that increases the
quality of the current solution (number of solved con-
straints). vi belongs here to the domain of X and intvi

is a value of v′
is domain,

– otherwise, assign to v a value that increases the quality
of the solution.

In the above two cases, if there is no value to increase
the quality of the solution then the method picks ran-
domly one value that does not increase the number of vio-
lated constraints (the current value of the event is picked
only if all the other values increase the number of vio-
lated constraints).

4. Deactivate any variable activated by the old assignment
of v and goto 2.

The problem of the above method is that it can easily
be trapped in a local-minimum. In order to prevent that we
use the random-walk strategy as follows. In step 3 of the
method, the best value is chosen for the event with prob-
ability 1 − pWalk while a random value is assigned to the
event with probability pWalk. Note that, to improve the per-
formance of MCRW-CCTCSP, if we have more than one
assignment that increases the quality of the solution (in step
3 above) then we choose the one that does not cause the de-
activation of variables. Indeed, as demonstrated by the test
results of the next section, variable deactivation affects dra-
matically the performance of the search as it will result in a
change of the CCTCSP which forces MCRW to restart the
search with a new one. Figure 7 illustrates the pseudo-code
of MCRW-CCTCSP.

MCRW − CCTCSP(maxMoves,pWalk)
1. Given a CCTCSP 〈E,DE,X,DX, IV,C,Act〉
2. S ← randomAssign(IV)

3. activate non active variables if the condition is true
4. newActiveVar = list of new active variables
5. IV ← IV ∪ newActiveVar
6. newS ← randomAssign(newActiveVar)
7. S ← S ∪ newS
8. nbMoves ← 0
9. while eval(S) > 0 and nbMoves < maxMoves
10. choose randomly an active variable v involved

in a conflict
11. randomly pick rWalk from [0 . . .1]
12. if rWalk ≤ pWalk then
13. assignment ← randomAssign({v})
14. else
15. assignment ← bestAssign({v})
16. end if
17. insert(S,assignment)
18. nbMoves ← nbMoves + 1
19. end while

randomAssign(listVar)
1. assignment ← NIL
2. while (listVar �= NIL)
3. pick v from listVar
4. if v ∈ E (v is an event)
5. randomly pick intv from Dv (Dv ∈ DE)
6. assignment ← assignment ∪ 〈v, intv〉
7. else (v is a composite variable)
8. randomly pick vx from Dv (Dv ∈ DE)
9. randomly pick intv from Dvx (Dvx ∈ DE)
10. assignment ← assignment ∪ 〈vx, intv〉
11. end if
12. end while
13. return assignment

bestAssign(listVar)
1. assignment ← NIL
2. while (listVar �= NIL)
3. pick v from listVar
4. if v ∈ E (v is an event)
5. pick intv from Dv (Dv ∈ DE) that minimizes

the number of conflicts for v

6. assignment ← assignment ∪ 〈v, intv〉
7. else (v is a composite variable)
8. pick the pair 〈vx, intv〉 that minimizes

the number of conflicts for v

9. (vx ∈ Dv where Dv ∈ DE

10. (intv ∈ Dvx where Dvx ∈ DE

11. assignment ← assignment ∪ 〈vx, intv〉
12. end if
13. end while
14. return assignment

Fig. 7 MCRW-CCTCSP

Example 4

Let us illustrate our MCRW-CCTCSP method through the
example 1. The first step is to randomly assign values to

M. Mouhoub, A. Sukpan

Fig. 8 MCRW for the CCTCSP of example 1

the initial variables and then activate (and randomly assign a
value to) any variable where the activating condition is true.
The result is shown in the top graph of Fig. 8. There are
two conflicts here and the composite variable Watch_Movie
is selected and assigned the value Movie2 since this will re-
duce the number of conflicts to 1 as we can see in the mid-
dle graph of Fig. 8.4 The variable John_Pick_Lisa is then

4Note that we could as well select one of the other 2 variables in con-
flicts: Mike_Movie and John_Lisa_Store. However this latter choice
will not reduce the number of conflicts.

selected and assigned the value (18 32) since this will re-
duce the number of conflicts to 0 and a complete solution is
obtained in this case as shown in the bottom graph of Fig. 8.

4.2 SDRW-CCTCSP

SDRW-CCTCSP is similar to MCRW-CCTCSP with the
following difference. Instead of selecting the variable in
conflict randomly as it is the case in step 3 of MCRW-
CCTCSP (see Fig. 8), SDRW-CCTCSP algorithm explores
the whole neighborhood of the current configuration and
selects the best neighbor (neighbor with the best quality).
A neighbor of a given configuration (or complete assign-
ment) is obtained from this latter by changing one variable
value. The neighborhood of a given configuration is the set
of all its possible neighbors. SDRW-CCTCSP is randomized
by using the random-walk strategy in the same manner as
for MCRW-CCTCSP to avoid getting stuck at local optima.
The pseudo-code of SDRW-CCTCSP is the same as the one
of MCRW-CCTCSP illustrated in Fig. 7 with the following
slight difference. In line 15 of MCRW − CCTCSP function,
instead of passing the variable v to the function bestAssign()

we pass the entire set of active variables. More precisely line
15 will be as follows.

15. ListActive ← list of active variables in conflict.
15bis assignment ← bestAssign({ListActive})

4.3 Tabu-CCTCSP

Tabu-CCTCSP is based on the notion of Tabu list used to
maintain a selective history, composed of previously en-
countered configurations in order to prevent Tabu from be-
ing trapped in short term cycling and allows the search
process to go beyond local optima. In each iteration of the
algorithm, a couple 〈variable, value〉 that does not belong
to the Tabu list and corresponding to the best performance
is selected and considered as an assignment of the current
configuration. 〈variable, value〉 will then replace the oldest
move in the Tabu list. More precisely, the pseudo-code of
the function Tabu-CCTCSP is described in Fig. 9.

5 Experimentation

5.1 Comparison criteria

The goal of the tests reported in this section is to evaluate
and compare the performance for solving randomly gener-
ated CCTCSPs using the methods we presented in the pre-
vious two sections. More precisely we will first compare
the following four constraint propagation strategies we de-
scribed in Sect. 3 (FC, FC+, MAC and MAC+).

Conditional and composite temporal CSPs

Tabu − CCTCSP(maxMoves)
1. Given a CCTCSP 〈E,DE,X,DX, IV,C,Act〉
2. S ← randomAssign(IV)

3. activate non active variables if the activation condition is true
4. newActiveVar = list of new active variables
5. IV ← IV ∪ newActiveVar
6. newS ← randomAssign(newActiveVar)
7. S ← S ∪ newS
8. nbMoves ← 0
9. tabuList ← nil
10. while eval(S) > 0 and nbMoves < maxMoves
11. listActive ← list of active variables
12. do
13. assignment ← bestAssign(listActive)
14. while assignment contains a variable ∈ listActive
15. insert(S,assignment)
16. nbMoves ← nbMoves + 1
17. remove the oldest assignment from tabuList
18. tabuList ← tabuList ∪ assignment
17. end while

Fig. 9 Pseudo-code of the Tabu Search method

In the second type of experiments we will compare the
best of the above complete methods with the three local
search methods covered in Sect. 4.

All the experiments are performed on a PC Pentium 4
computer running Linux. All the procedures are coded in
C/C++.

5.2 CCTCSP instances

CCTCSPs are build from TCSPs randomly generated using
the model RB proposed in [51]. This model is a revision to
the standard Model B [17, 41], has exact phase transition and
the ability to generate asymptotically hard instances. Fol-
lowing the model RB, we generate each TCSP instance in
two steps as shown below and using the parameters n, p, α

and r where:

– n is the number of events,
– p (0 < p < 1) is the constraint tightness which can be

measured, as shown in [36], as the fraction of all possible
pairs of intervals from the domain of two events that are
not allowed by the constraint,

– and r and α (0 < r, α < 1) are two positive constants.

1. Select with repetition rn lnn random constraints.5 Each
random constraint is formed by selecting without repeti-
tion 2 of n events.

2. For each constraint we uniformly select without repe-
tition pd2 incompatible pairs of intervals from the do-

5According to the RB model, in order to be able to compute accu-
rately the phase transition, the number of constraints should be equal
to rn lnn [51].

mains of the pair of events involved by the constraint.
d = nα is the domain size of each event.

Each CCTCSP instance is then generated as follows us-
ing the parameters N , D, I and a which respectively denote
the number of composite variables, their domain size (num-
ber of events within each composite variable), the percent-
age of variables that are initially active and the density of
activity constraints.

1. Randomly generate a TCSP with the parameters n, p, α

and r as shown above.
2. Generate N composite variables each containing D

events.
3. Select with repetition r[(n + N) ln(n + N) − n lnn] new

random constraints (between the n + N composite vari-
ables and events), each formed by selecting without rep-
etition 2 of the n + N variables. This will guarantee that
the total number of constraints is r(n + N) ln(n + N)

(as per the requirements of the RB model). Each selected
constraint Cij involving two variables Xi and Xj is then
generated following one of the procedures below.
(a) If both Xi and Xj are events then we uniformly select

without repetition pd2 incompatible pairs of intervals
from the domains of Xi and Xj .

(b) If Xi is composite and Xj is an event (or vise versa)
then the constraint will be a disjunction of D relations
between the event Xj and each event within Xi ’s do-
main. Each of these D relations will be generated as
shown above in (a).

(c) If both Xi and Xj are composite then the constraint
will be a disjunction of D2 relations between the pair
of events from Xi and Xj domains. Each of these D2

relations will then be generated as shown above in (a).
4. Select I (n+N) initial variables from n+N (0 < I < 1).
5. Select a ∗ nbActivity activity constraints where 0 < a <

1. Here nbActivity is the number of possible activity con-
straints. For simplicity, the generated activity constraints
have the following form (Xi = val) → Xj (where val
belongs to Xi ’s domain) which is less general then the
definition we have provided in Sect. 2. Thus, the to-
tal number of possible activity constraints is equal to
(nd + ND) ∗ (n + N − I (n + N)).

As demonstrated in [51], when the number of variables
approaches infinity the phase transition occurs when the
constraint tightness p = 1 − e− α

r . Thus the phase transition
is an asymptotic phenomenon since, only for infinite number
of variables, we can have sharp phase transitions. In addi-
tion, the number of variables and constraints of the possible
CSPs, each CCTCSP contains, is slightly different from the
one of the CCTCSP they are generated from.

M. Mouhoub, A. Sukpan

Fig. 10 Comparative tests when varying the tightness p

5.3 Comparing complete methods

In the following we will present the results of tests per-
formed by each of the four strategies described in Sect. 3
on several CCTCSP sets. Each set is generated by varying
one of the following parameters: p,a, I,N,D,α and r . For
each test, each of the four methods is executed on 100 in-
stances and the average running time in seconds is taken.

5.3.1 Easy versus hard problems: varying p

Here the parameters are set as follows. n = 140, N = 10,
D = 5, α = 0.8, I = 0.8, a = 0.2 and r = 0.6. p varies from
0.2 to 0.9 (in order to consider under and over constrained
problems as well as those near the phase transition). As men-
tioned before, according to the RB model, the phase transi-

tion is computed as follows: p = 1 − e− α
r = 1 − e− 0.8

0.6 =
0.73. In practice it is around 0.7 as we can see from the
test results shown in Fig. 10. In the case of over constrained
problems (tightness greater than 0.8), all the four methods
have comparable running time. This is because the inconsis-
tency is detected in the first stage of the resolution method
we provided in Sect. 3 (corresponding to the application of
the AC3-CCTCSP (see Fig. 4) to the initial problem). In-
deed, the first stage is the same for all the four methods. All
the methods have also similar running times in the case of
under constrained problems. Indeed, in this particular case
the extra effort done by MAC and MAC+ does not remove
much of the inconsistent values and thus does not improve
the overall running time to find a solution. However, when
we move toward the phase transition the extra work per-
formed by MAC and especially MAC+ starts to pay off.
At the phase transition MAC+ is almost 10,000 times faster
than FC and FC+; and 100 times faster than MAC. Note that
the superiority of MAC over FC for hard CSPs has already
been noticed and reported in [36]. Also, considering inac-
tive variables during the propagation through MAC+ does

Fig. 11 Comparative tests when varying a (% of possible activity con-
straints)

Fig. 12 Comparative tests when varying I

help a lot on the complexity peaks. Indeed, at the phase tran-
sition more search space is explored through the backtrack
and many of the inactive variables are activated. Reducing
the domains of these latter is thus very relevant in this par-
ticular situation.

5.3.2 More versus less dynamic problems: varying a, I , N

and D

Figure 11 reports the results of comparative tests conducted
when the parameter a varies from 0.02 to 0.3. The other
parameters are fixed as follows: n = 50, N = 10, D = 5,
p = 0.5, α = 0.8, I = 0.8, r = 0.6.

Figure 12 reports the results of comparative tests con-
ducted when the parameter I varies from 0.2 to 0.9. The
other parameters are fixed as follows: n = 50, N = 10,
D = 5, p = 0.5, α = 0.8, a = 0.2, r = 0.6. The lower the
value of I is, the more “dynamic” (and diffult to solve) is
the problem. In both Figs. 11 and 12 the winners are again
MAC and MAC+. While MAC+ does more efforts than
MAC when I decreases (since the difference between the
two strategies is that MAC+ does the propagation to non
active variables as well as active variables) it is the only

Conditional and composite temporal CSPs

Fig. 13 Comparative tests when varying the number of composite
variables

Fig. 14 Comparative tests when varying the domain size of the com-
posite variables

method solving all the problem instances when the tight-
ness is equal to 0.6. Indeed we have conducted other tests
(that we did not report here) where p = 0.6. The results in-
dicate that FC and FC+ fail to solve all the problems when
I < 0.9.

Figure 13 reports the results of the tests when varying N .
Here the number of composite variables N varies from 5 to
20. The other parameters are fixed as follows: n = 50, D =
5, p = 0.5, α = 0.8, a = 0.2, r = 0.6 and I = 0.8. Figure 14
reports the results of the tests when varying D from 2 to 10.
The other parameters are fixed as follows: n = 50, N = 10,
p = 0.5, α = 0.8, a = 0.2, r = 0.6 and I = 0.8.

When N or D is increasing, the generated problems be-
come more dynamic. Here again, MAC and MAC+ outper-
form the other two methods.

5.3.3 Small versus large size problems: varying α and r

Figure 15 reports the results of the tests when varying α

from 0.2 to 1. The other parameters are fixed as follows:
n = 50, N = 10, D = 5, p = 0.5, a = 0.2, r = 0.6 and

Fig. 15 Comparative tests when varying α

Fig. 16 Comparative tests on random CCTCSPs when varying r

I = 0.8. Figure 16 reports the results of the tests when vary-
ing r from 0.2 to 1. The other parameters are fixed as fol-
lows: n = 50, N = 10, α = 0.8, D = 5, p = 0.5, a = 0.2
and I = 0.8. According to the RB model, the domain size
d of the events is equal to nα , and the number of generated
constraints is equal to rn lnn. Thus, when α increases the
domain size of the events becomes very large, and when r

increases, the number of constraints increases and the re-
lated generated problem becomes more constrained. In both
Figs. 15 and 16 MAC and MAC+ outperform FC and FC+.

5.4 Comparing complete and incomplete methods

Since MAC+ is the best method according to the previous
tests, we will compare it to the local search methods we
described in Sect. 4. The comparative tests are conducted
on problem instances generated with the parameters fixed
as shown in Sect. 5.3.1. Since MCRW-CCTCSP (respec-
tively SDRW-CCTCSP and Tabu-CCTCSP) is an incom-
plete method, in case it does not find a complete solution for
a given instance we report the quality (percentage of solved
constraints) of the best solution obtained and the time it took

M. Mouhoub, A. Sukpan

Table 2 Comparative tests on random CCTCSPs

Tightness MCRW SDRW TABU MAC+
Time success (%) Time success (%) Time success (%)

0.1 0 100 0 100 0 100 0

0.2 0 100 0 100 0.02 100 0.01

0.3 0 100 0.01 100 0.02 100 0.01

0.4 0.01 100 0.02 100 0.03 100 0.05

0.5 0.08 100 0.12 100 0.13 100 0.14

0.6 0.3 80 0.44 80 0.58 80 1.3

0.7 0.4 70 1.6 68 0.9 65 5.2

to get this quality. Note also that we only consider consis-
tent instances. More specifically we only consider those in-
stances with tightness less than or equal to 0.7. For each of
these instances we run MAC+ to check that the problem is
consistent. The test results are reported in Table 2. For each
test, each method is executed on 100 instances and the aver-
age running time in seconds is taken. In the case of the three
SLS methods, maxMoves (the maximum number of itera-
tions), pWalk (the random walk parameter) and the size of
the tabu list are respectively equal to 10,000, 0.1 and 20. In-
deed, preliminary experiments conducted on randomly gen-
erated CCTCSPs showed that these values provide the best
results for the SLS methods.

As we can see in the table, MCRW outperforms SDRW
and Tabu for all tightness values. This is due to the fact that
these two latter methods perform more efforts at each iter-
ation than MCRW. Indeed, as we have seen in the previous
section, instead of randomly selecting one variable at each
iteration (case of MCRW) SDRW and Tabu consider all the
active variables. In addition, in the case of Tabu we need to
reset the Tabu list anytime the constraint network changes
(due to activation|deactivation of variables). We also note
that MCRW is as good as MAC+ for under and middle con-
strained problems. Indeed, in the case of under constrained
problems, for example, the solution is obtained in the case
of MCRW after a couple of random assignments. However,
when we approach the phase transition, the random search
is affected by the change of the constraint network at each
iteration. Indeed, each time an assignment is reconsidered it
usually results in deactivating several variables and activat-
ing others. MCRW has then to restart with this new config-
uration. Note that while MCRW does not solve completely
highly constrained problems, it is still a method of choice in
case we want to trade search time for the quality of the solu-
tion returned. As we can see in the table, in the case where
the tightness is equal to 0.7 for example, we can decide to
get the incomplete solution (solving 70% of the constraints)
within 0.4 seconds with MCRW instead of waiting 5.2 sec-
onds to get a complete one. Trading search time for the qual-
ity of the solution can be very relevant for reactive and real

time applications where an answer is needed within a given
deadline.

6 Conclusion

We have presented in this paper a CSP based framework
for representing and managing numeric and symbolic tem-
poral constraints, activity constraints and composite vari-
ables with a unique constraint network that we call Con-
ditional Composite Temporal Constraint Satisfaction Prob-
lem (CCTCSP). Solving a CCTCSP consists of finding a
solution for one of its possible TCSPs. When considering
only composite TCSPs (CTCSPs) the solving algorithm re-
quires O(DN+MdM) time cost where N,D,M and d are
respectively the number of events and their domain size,
and the number of composite variables and their domain
size. Adding activity constraints will make the problem even
harder. In order to overcome this difficulty in practice, we
have proposed 2 methods respectively based on constraint
propagation and stochastic local search. Constraint propa-
gation prevents later failure earlier which improves, in prac-
tice, the performance in time of the backtrack search espe-
cially when the propagation is performed through the MAC
principle. On the other hand, due to its polynomial time
cost and incompleteness, the stochastic local search method
MCRW is the method of choice, for highly constrained
problems, in case we decide to trade search time for the qual-
ity of the solution returned (number of solved constraints).

References

1. Alfonso MI, Barber F (2004) A mixed closure-CSP method for
solving scheduling problems. Appl Intell 21(2):173–193

2. Allen JF (1983) Maintaining knowledge about temporal intervals.
CACM 26(11):832–843

3. Badaloni S, Giacomin M (1999) A fuzzy extension of Allen’s
interval algebra. In: E. Lamma, P. Mello, (eds) Proc. of the 6th
congress of the Italian assoc. for artificial intelligence, pp 228–
237

Conditional and composite temporal CSPs

4. Baptiste P, Le Pape C (1995) Disjunctive constraints for manu-
facturing scheduling: principles and extensions. In: Third interna-
tional conference on computer integrated manufacturing. Singa-
pore

5. Bettini C, Wang X, Jajodia S (1998) A general framework for time
granularity and its application to temporal reasoning. Ann Math
Artif Intell 22:29–58

6. Bettini C, Wang X, Jajodia S (2002) Solving multi-granularity
temporal constraint networks. Artif Intell 140(1–2):107–152

7. Bodirsky M, Kára J (2010) The complexity of temporal constraint
satisfaction problems. J Assoc Comput Mach 57(2):1–41

8. Boerkoel JC Jr., Durfee EH (2009) Evaluating hybrid constraint
tightening for scheduling agents. In: The proceedings of the 8th in-
ternational conference on autonomous agents and multiagent sys-
tems, pp 673–680

9. Dean T (1989) Using temporal hierarchies to efficiently maintain
large temporal databases. J Assoc Comput Mach, pp 686–709

10. Dechter R, Dechter A (1988) Belief maintenance in dynamic con-
straint networks. In: 7th national conference on artificial intelli-
gence, pp 37–42, St Paul

11. Dechter R (2003) Constraint processing. Morgan Kaufmann, San
Mateo

12. Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks.
Artif Intell 49:61–95

13. Fargier H, Lang J, Schiex T (1996) Mixed constraint satisfaction:
a framework for decision problems under incomplete knowledge.
In: The 13th national conference on artificial intelligence (AAAI-
96), pp 175–180

14. Fisher M, Gabbay D, Vila L (2005) Handbook of temporal reason-
ing in artificial intelligence (foundations of artificial intelligence),
Elsevier, Amsterdam. ISBN: 0444514937

15. Gelle E (1998) On the generation of locally consistent solution
spaces in mixed dynamic constraint problems. PhD thesis, 1826,
pp 101–140

16. Gelle E Faltings B (2003) Solving mixed and conditional con-
straint satisfaction problems. Constraints 8:107–141

17. Gent IP, MacIntyre E, Prosser P, Smith BM, Walsh T (1998) Ran-
dom constraint satisfaction: flaws and structure

18. Ghallab M, Laruelle H (1994) Representation and control in Ix-
TeT, a temporal planner. In: AIPS 1994:61–67

19. Golumbic C, Shamir R (1993) Complexity and algorithms for rea-
soning about time: a graphic-theoretic approach. J Assoc Comput
Mach 40(5):1108–1133

20. Guesgen H, Hertzberg J (1993) A constraint-based approach to
spatiotemporal reasoning. Appl Intell 3(1):71–90

21. Haralick RM, Elliott GL (1980) Increasing tree search efficiency
for constraint satisfaction problems. Artif Intell 14:263–313

22. Hwang C, Shubert L (1994) Interpreting tense, aspect, and time
adverbials: a compositional, unified approach. In: Proceedings of
the first international conference on temporal logic, LNAI, vol
827, Berlin, pp 237–264

23. Jónsson AK, Frank J (2000) A framework for dynamic constraint
reasoning using procedural constraints. In: ECAI 2000, pp 93–97

24. Jónsson AK, Frank J (2003) Constraint-based attribute and inter-
val planning. Constraints 8(4):339–364

25. Kautz HA, Ladkin PB (1991) Integrating metric and qualitative
temporal reasoning. In: AAAI’91, Anaheim, CA, pp 241–246

26. Laborie P (2003) Resource temporal networks: definition and
complexity. In: Eighteenth international joint conference on artifi-
cial intelligence (IJCAI’03), pp 948–953

27. Mackworth AK (1977) Consistency in networks of relations. Artif
Intell 8:99–118

28. Marin R, Cardenas M, Balsa M, Sanchez J (1997) Obtaining solu-
tions in fuzzy constraint networks. Int J Approx Reason 16:261–
288

29. Meiri I (1996) Combining qualitative and quantitative constraints
in temporal reasoning. Artif Intell 87:343–385

30. Mitra D (2002) A path-consistent singleton modeling (CSM) al-
gorithm for arc-constrained networks. Appl Intell 17(3):313–318

31. Mittal S, Falkenhainer B (1990) Dynamic constraint satisfaction
problems. In: Proceedings of the 8th national conference on artifi-
cial intelligence. AAAI Press, Boston, pp 25–32

32. Morris P, Muscettola N (2000) Execution of temporal plans with
uncertainty. In: AAAI 2000, pp 491–496

33. Mouhoub M, Charpillet F, Haton JP (1998) Experimental analy-
sis of numeric and symbolic constraint satisfaction techniques for
temporal reasoning. Constraints Int J 2:151–164

34. Mouhoub M (2004) Reasoning with numeric and symbolic time
information. Artif Intell Rev 21:25–56

35. Ryabov V Trudel A (2004) Probabilistic temporal interval net-
works. In: TIME 2004, pp 64–67

36. Sabin D, Freuder EC (1994) Contradicting conventional wisdom
in constraint satisfaction. In: Proceedings of the eleventh European
conference on artificial intelligence. Wiley, Amsterdam, pp 125–
129

37. Sabin D, Freuder EC (1996) Configuration as composite constraint
satisfaction. In: Luger GF (ed) Proceedings of the (1st) artifi-
cial intelligence and manufacturing research planning workshop.
AAAI Press, Menlo Park, pp 153–161

38. Sabin D, Freuder EC, Wallace RJ (2003) Greater efficiency
for conditional constraint satisfaction. In: Proc., ninth inter-
national conference on principles and practice of, constraint
programming—CP 2003, 2833, pp 649–663

39. Selman B, Kautz H (1993) Domain-independent extensions to
GSAT: solving large structured satisfiability problems. In: Pro-
ceedings of the 13th international joint conference on artificial in-
telligence, Chambéry, France. Morgan Kaufmann, San Mateo, pp
290–295

40. Schockaert S, De Cock M (2008) Temporal reasoning about fuzzy
intervals. Artif. Intell. 172(8–9):1158–1193

41. Smith B, Dyer M (1996) Locating the phase transition in binary
constraint satisfaction problems. Artif Intell 81:155–181

42. Song F, Cohen R (1991) Tense interpretation in the context of nar-
rative. In: AAAI’91, pp 131–136

43. Thornton J, Beaumont M, Sattar A, Maher M (2004) A local
search approach to modelling and solving interval algebra prob-
lems. J Logic Computat 14(1):93–112

44. Theodoulidis C, Loucopoulos P, Wangler B (1991) A conceptual
modelling formalism for temporal database applications. Inf Syst
16(4):401–416

45. Tsamardinos I, Vidal T, Pollack ME (2003) CTP: a new constraint-
based formalism for conditional temporal planning. Constraints
8(4):365–388

46. van Beek P (1992) Reasoning about qualitative temporal informa-
tion. Artif Intell 58:297–326

47. Vidal T, Ghallab M (1996) Dealing with uncertain durations in
temporal constraint networks dedicated to planning. In: ECAI-
1996, pp 48–52

48. Vidal T, Fargier H (1999) Handling consistency in temporal con-
straint networks: from consistency to controllabilities. J Exp Theor
11:23–45

49. Vilain M, Kautz H (1986) Constraint propagation algorithms for
temporal reasoning. In: Proceedings of the fifth national confer-
ence on arifical intelligence (AAAI’86), Philadelphia, PA. MIT
Press, Cambridge, pp 377–382

50. Walsh T (2002) Stochastic constraint programming. In: The 15th
European conference on artificial intelligence (ECAI-02)

51. Xu K, Li W (2000) Exact phase transitions in random constraint
satisfaction problems. J Artif Intell Res 12:93–103

M. Mouhoub, A. Sukpan

Malek Mouhoub obtained his MSc
and PhD in Computer Science from
the University of Nancy in France.
He is currently Professor of Com-
puter Science at the University of
Regina in Canada. His research in-
terests are in Artificial Intelligence
and include Temporal Reasoning,
Constraint Solving and Program-
ming, Scheduling and Planning. Dr.
Mouhoub’s research is supported by
the Natural Sciences and Engineer-
ing Research Council of Canada
(NSERC) federal grant in addition
to several provincial and University
funds and awards.

Amrudee Sukpan obtained her
MSc and PhD degrees in Computer
Science respectively from Prince of
Songkla University in Thailand and
the University of Regina in Canada.
Her research interests are in the
area of Constraint Programming and
Temporal Reasoning. Amrudee’s
PhD thesis has been nominated by
the department of Computer Sci-
ence, at the University of Regina,
for the Natural Sciences and Engi-
neering Research Council of Canada
(NSERC) doctoral award.

	Conditional and composite temporal CSPs
	Abstract
	Introduction
	Problem definitions
	Motivation
	Proposed solution and contributions
	Plan of the paper

	Conditional and composite temporal constraint satisfaction problems (CCTCSPs)
	Definition
	Example 1
	Example 2

	Constraint propagation for solving CCTCSPs
	Example 3

	Approximation methods for CCTCSPs
	MCRW-CCTCSP
	Example 4
	SDRW-CCTCSP
	Tabu-CCTCSP

	Experimentation
	Comparison criteria
	CCTCSP instances
	Comparing complete methods
	Easy versus hard problems: varying p
	More versus less dynamic problems: varying a, I, N and D
	Small versus large size problems: varying alpha and r

	Comparing complete and incomplete methods

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

