
Stochastic Search versus Genetic Algorithms for
Real Time and Over-Constrained Temporal

Constraint Problems

Malek Mouhoub
Department of Computer Science

University of Regina
3737 Waskana Parkway,

Regina SK, Canada, S4S 0A2
phone : +1 (306) 585 4700 fax : +1 (306) 585 4745

email : mouhoubm@cs.uregina.ca

ABSTRACT

The aim of this work is to study the applicability of Genetic Algorithms (GAs)
and stochastic local search methods to solve real time and over constrained temporal
constraint problems. Solving these two type of problems consists of finding a pos-
sible scenario (solution) satisfying the temporal constraints within a given deadline.
In the case where a complete scenario satisfying the constraints cannot be found, a
partial one maximizing the number of solved constraints should be returned. This is
an optimization problem where the objective function corresponds to the number of
solved constraints. Experimental comparison of genetic algorithms and three stochas-
tic local search methods have been conducted on randomly generated temporal con-
straint problems. The results of the experimentation favour the Min-Conflicts-Random-
Walk (MCRW) local search method for under constrained problems while the GA base
method is the technique of choice for middle constrained and over constrained prob-
lems.

KEY WORDS
Genetic Algorithms, Local Search, Temporal Reasoning, Constraint Satisfaction.

1

1 Introduction

Genetic algorithms and local search methods are among the techniques of choice for
solving optimization problems. In an optimization problem, the goal consists of finding
an optimal solution given some objective function and a list of constraints. These kind
of problems are tackled differently depending on the type of the resolution method.
Algorithms based on local search, branch and bound or dynamic programming, for ex-
ample, rely on a single solution as the basis for future exploration with each iteration.
Each of these algorithms works on or builds a single solution at a time. Dynamic pro-
gramming, for example, obtains a complete solution after solving a list of subproblems.
A branch and bound algorithm uses a cost function and a lower bound on this function
to eliminate some branches of the search space in a systematic manner. Local search
methods keep the best solution found so far and try to improve it in the next iteration.
In each of the above three techniques, we can use one of the following two rules.

• Deterministic rules : in the case of local search, for example, if an examined
neighbor is better, choose that neighbor and continue the search from there.

• Probabilistic rules : we talk here about randomized algorithms where, depend-
ing on a random parameter, the next iteration does not necessarily improve the
current one (sometimes a weaker neighbor is chosen for the next step). The goal
here is to avoid being trapped in a local optima.

On the other hand, genetic algorithms maintain a set (population) of solutions in-
stead of a single one. This has the advantage to allow the competition between solutions
of the same population which simulates the natural process of evolution.

Our goal in this paper is to study the applicability of genetic algorithms and stochas-
tic local search methods for managing numeric and symbolic time information. Dealing
with these two type of information is very important in many application areas such as
planning [1], scheduling [2, 3], computational linguistics [4, 5], database design [6],
and computational models for molecular biology [7]. In the case of scheduling prob-
lems, for instance, we can have qualitative information such as the ordering between
tasks and quantitative information describing the temporal windows of the tasks i.e ear-
liest start time, latest end time and the duration of each task. Thus having a model that
handles both types of information is practically important.

In [8] we have defined the model TemPro, based on the interval algebra of Allen [9]
and a discrete representation of time, to convert a problem involving a list of numeric
and symbolic constraints into a unique constraint-based model that we call Temporal
Constraint Satisfaction Problem (TCSP). A TCSP is a binary Constraint Satisfaction
Problem (CSP) involving temporal constraints. A binary CSP[10, 11] involves a list
of variables defined on finite domains of values and a list of binary relations between
variables. Solving a TCSP consists of finding a complete solution (scenario) that satis-
fies all the temporal constraints. Note that the name Temporal Constraint Satisfaction
Problem and its corresponding acronym, TCSP, was used in [12]. The TCSP, as de-
fined by Dechter et al, is a quantitative temporal network used to represent only numeric
temporal information. Nodes represent time points while arcs are labeled by a set of

2

disjoint intervals denoting a disjunction of bounded differences between each pair of
time points.

In order to deal with real time applications where a solution should be provided
within a given deadline or those applications where it is impossible or impractical to
solve these problems completely, we may have to look for a partial solution that solves
most constraints instead of a complete one. This is an optimization problem where the
objective function to maximize corresponds to the number of solved constraints. We
will show in this paper how to solve these kind of optimization problems using genetic
algorithms and stochastic local search methods.

The rest of the paper is structured as follows. In the next section we present the
TCSP representation of temporal constraints using our model TemPro. Section 3 de-
scribes the method based on genetic algorithms we use to solve a TCSP. In section
4 we will show the way to solve TCSPs using local search algorithms. Experimental
comparison of the different methods we present in this paper for solving randomly gen-
erated TCSPs is then presented in section 5. Finally, concluding remarks are presented
in section 6.

2 CSP-Based Representation of Temporal Constraints

One important issue when dealing with problems involving temporal information is the
ability to manage both the symbolic and numeric aspects of time. This motivates us
to develop the model TemPro [8], extending the Interval Algebra defined by Allen [9]
to handle numeric constraints. TemPro transforms any problem under qualitative and
quantitative constraints into a binary CSP where constraints are disjunctions of Allen
primitives [9] (see table 1 for the definition of the 13 Allen primitives) and variables,
representing temporal events, are defined on domains of time intervals. We call this
later a Temporal Constraint Satisfaction Problem (TCSP). Each event domain (called
also temporal window) contains the Set of Possible Occurrences (SOPO) of numeric
intervals the corresponding event can take. The SOPO is the numeric constraint of the
event. It is expressed by the quadruple[earliest start, latest end, duration, step]
where :earliest start is the earliest start time of the event,latest end is the latest end
time of the event,duration is the duration of the event andstep is the discretization
step corresponding to the number of time units between the start time of two adjacent
intervals belonging to the event domain. To illustrate the different components of the
model TemPro let us consider the following scheduling problem1.

Example 1

The production of two itemsA andB requires three mono processor ma-
chinesM1,M2 andM3. Each of the two items can be produced using two
different ways depending on the order in which the machines are used.
The process time of each machine is variable and depends on the task to
be processed. The following lists the different ways to produce each of the
two items (the process time for each machine is mentioned in brackets) :

1This problem is taken from [13]

3

itemA: M2(3),M1(3),M3(6) or
M2(3),M3(6),M1(3)

itemB: M2(2),M1(5),M2(2),M3(7) or
M2(2),M3(7),M2(2),M1(5)

The goal here is to find a possible schedule of the different machines to produce the
two items and respecting all the constraints of the problem. We also assume that items
A andB should be produced within 25 and 30 units of time respectively.

In the following we will describe how is the above problem transformed into a
TCSP using our model TemPro. Figure 1 illustrates the graph representation of the
TCSP corresponding the the scheduling problem. A temporal event corresponds here
to the contribution of a given machine to produce a certain item. For example, the
eventAM1 corresponds to the use of machineM1 to produce the itemA, . . ., etc.
Seven events are needed in total to produce the two items as follows :

itemA: AM2(3), AM1(3), AM3(6) or
AM2(3), AM3(6), AM1(3)

itemB: BM21(2), BM1(5), BM22(2), BM3(7) or
BM21(2), BM3(7), BM22(2), BM1(5)

The translation to Allen primitives of the disjunction of the two sequences required
to produce itemB needs a 3-ary relation involvingBM1, BM22 and BM3. This
relation states thatBM22 should occur betweenBM1 andBM3. Since our temporal
network handles only binary relations, the way we use to represent this kind of 3-
ary relations is as follows : we create an additional event (EV T1) and represent the
constraints for producing itemB as shown in figure 1. The durationX of EV T1 is
greater (or equal) than the sum of the durations ofBM1, BM22 andBM3.

3 Solving TCSPs using Genetic Algorithms

In the previous section we have presented the way to convert temporal constraints into
a particular case of CSPs that we call TCSP. In this section we will present an ap-
proximation search method based on genetic algorithms (GAs) for solving a TCSP i.e.
looking for a scenario (solution) that satisfies all (or most) constraints. Our choice of
GAs as a solving method is motivated by the fact that GAs are very efficient for solving
CSPs in general as shown in [14].

Let us define the concepts of Genetic Algorithms in general and in the case of TC-
SPs. Genetic Algorithms perform multi-directional searches by maintaining a popula-
tion of individuals (called also potential solutions) and encouraging information forma-
tion and exchange between these directions. It is an iterative procedure that maintains
a constant size population of candidate solutions. Each iteration is called a generation
and it undergoes some changes.Crossoverandmutationare the two primary genetic
operators that generate or exchange information in GAs. In general, a genetic algorithm
for any particular problem must have the five components [15] :

4

1. a genetic representation for potential solutions to the problem,

2. a way to create an initial population of potential solutions,

3. an evolution function that plays the role of the environment, to evaluate the so-
lutions in terms of their fitness,

4. genetic operators that alter the composition of children during reproduction,

5. and values for various parameters that the genetic algorithm uses (population
size, probabilities of applying genetic operators,. . . etc).

Under each generation,good solutionsare expected to be produced andbad solu-
tionsdie. It is the role of the objective (evaluation or fitness) function to distinguish the
goodness of the solution.

The idea of crossover operators is to combine the information from parents and to
produce a child that obtains the characteristics of its ancestors. For example, parent
A (in a binary representation) has a value of 00101000 and parent B has a value of
10010111. If the crossover operator combines the first four bits of parent A with the
last four bits of parent B, then the child will obtain the value of 00100111. Crossover
operators have a special characteristic that they require two or more inputs in order to
perform the crossover. In contrast, mutation is a unary operator that only needs one
input. During the process, mutation operators produce a child by selecting some bad
genes from the parent and replacing them with the good genes. For example, parent
C has a value of 01011101. If the second and third bits are determined to be the
bad genes, the mutation operators will replace them with the good genes (they may
be the opposite value in the case of binary representation). The child will obtain the
value of 00111101. The two operators may behave differently but they both follow the
characteristic of GAs in that the next generation is expected to perform better than the
ancestors.

In the case of TCSPs, we define the following.

Individual (potential solution) : one possible assignment of numeric intervals to all
events i.e set of couples(evi, occj), whereevi is an event andoccj is a possible
interval belonging to the domain ofevi. In other words the individual represents
a potential solution to the problem.

Random individual : random assignment of intervals to all events.

Population : a set of individuals (potential solutions).

Mutation : unary operator that returns a new individual (child) by assigning new val-
ues (numeric intervals) to some events of a given individual (parent).

Crossover : n-ary operator that takes as arguments two or more individuals and returns
a new individual with assignments belonging to parent individuals.

Fitness (evaluation) function : returns a measure of an individual. The measure cor-
responds here to the quality of the solution. The quality is defined by the number
of satisfied constraints.

5

The pseudo code of the GA based method is illustrated in figure 2. The method
starts from a population ofp random individuals and iterates until the termination
condition is satisfied. The method maintains a population ofn individuals,P (1) =
{ind1

1, . . . , ind1
n} for iteration 1,. . . P (t) = {indt

1, . . . , indt
n} for iterationt, . . . etc.

Each individual (potential solution)indt
i is evaluated using the fitness function. A new

population at iterationt + 1 is then formed by selecting the more fit individuals (select
step in line 9) from the population of iterationt. Some of the selected individuals will
be transformed (alter step in line 10) by the mutation and crossover operators. The
algorithm is executed until it is running out of time or a solution with the best (or ac-
ceptable) quality is found.

Let us illustrate the GA based method on the example we have seen is section 2.
Since the problem involves 8 variables, an individual corresponds here to a vector of
size 8. Each entry of the vector will contain a possible value of the corresponding vari-
able domain. According to our example, a possible individual can be :

< AM1 = (2 5), AM2 = (3 6), AM3 = (6 12), BM1 = (17 22),
BM21 = (12 14), BM22 = (14 16), BM3 = (7 14), EV T1 = (2 18) >

Our method starts with a randomized population ofn of these individuals. Each
individual will be generated by randomly selecting a value from each variable domain.
The next step will be to evaluate each individual to see if we have discovered the op-
timum solution (satisfying all the constraints of the problem). If not we will apply the
selectfunction on the individuals of the population. The way we will proceed here
consists of assigning a probability of being selected to each individual in proportion
of their relative fitness (number of solved constraints). An individual with 10 solved
constraints is 10 times more likely to be chosen than an individual with one solved
constraint. Since we have to maintain a population ofn individuals, we will randomly
pick n individuals from the initial population. Note that we may obtain multiple copies
of individuals that happened to be chosen more than once (case, for example, of in-
dividuals with good fitness function) and some individuals very likely would not be
selected at all. Note also that even the individual with the best fitness function might
not be selected, just by random chance. After theselectfunction, we will perform the
alter function in which some chosen individuals will recombine using thecrossover
operator or mutate using themutationoperator. The new population is then evaluated
to perform theselectandalter functions at the next iteration.

4 Solving TCSPs using Local Search Methods

In this section we present the way to solve a TCSP using stochastic local search meth-
ods. We will use the following terms:

State : one possible assignment of all events i.e set of couples(evi, occj), whereevi

is an event andoccj is a possible interval belonging to the domain ofevi; the
number of states is equal to the product of domains sizes.

6

State or solution quality : the number of constraint violations of the state or the solu-
tion.

Neighbor : the state which is obtained from the current state by changing one event
value.

Local-minimum : the state that is not a solution and the evaluation values of all of its
neighbors are larger than or equal to the evaluation value of this state.

Strict local-minimum : the state that is not a solution and the quality of all of its
neighbors are larger than the evaluation value of this state.

The different algorithms that we will consider in the following are based on a com-
mon idea known under the notion of local search. In local search, an initial configu-
ration (assignment of events) is generated randomly and the algorithm moves from the
current configuration to a neighborhood configurations until a complete solution or a
good one has been found or the resources available are exhausted.

4.1 Min-Conflict-Random-Walk method (MCRW)

After an initial configuration is randomly generated, the Min-conflicts method chooses
randomly any conflicting event, i.e., the event that is involved in any unsatisfied con-
straint, and then picks a value which minimizes the number of violated constraints. If
no such value exists, it picks randomly one value that does not increase the number
of violated constraints. The problem of this method is that it is not able to escape a
local-minimum. In addition, if the algorithm achieves a strict local-minimum it does
not perform any move at all and, consequently, it does not terminate. Thus, noise
strategies should be introduced. Among them, the random-walk strategy that works
as follows : for a given conflicting event, the random-walk strategy picks randomly a
value with probabilityp, and apply the Min Conflict heuristic with probability1 − p.
In the worst case, the time cost required in each move corresponds to the time needed
to determine the value that minimizes the number of violated constraints. This time
is of orderO(N Max1≤i≤N (supi−infi−di

si
)) whereN is the number of variables and

supi, infi, si anddi are respectively the latest end time, earliest start time, duration
and step of a given eventevti. Max is the function that returns the maximum of a
list of numbers. Figure 3 presents the pseudo-code of the MCRW method for solving
TCSPs.

4.2 Steepest-Descent-Random-Walk (SDRW)

In the Steepest-Descent method, instead of selecting the event in conflict randomly as
it is the case of MCRW, this algorithm explores the whole neighborhood of the current
configuration and selects the best neighbor (neighbor with the best quality). This al-
gorithm can be randomized by using the random-walk strategy in the same manner as
for Min-Conflicts to avoid getting stuck at ”local optima”. The time cost required in
each iteration corresponds to the time needed to find the best neighbor and is of order
O(N2Max1≤i≤N (supi−infi−di

si
)) in the worst case. The pseudo-code of the SDRW

method is presented in figure 4.

7

4.3 Tabu-Search (TS)

The pseudo-code of Tabu search method is illustrated in figure 5. This method is based
on the notion of Tabu list used to maintain a selective history, composed of previously
encountered configurations in order to prevent Tabu from being trapped in short term
cycling and allows the search process to go beyond local optima. In each iteration
of the algorithm, a couple< event, intv > that does not belong to the Tabu list and
corresponding to the best performance is selected and considered as an assignment
of the current configuration.< event, intv > will then replace the oldest move in
the Tabu list. The time cost required in each iteration is the same as for SDRW, i.e
O(N2Max1≤i≤N (supi−infi−di

si
)) in the worst case.

5 Experimentation

In order to compare the performance of the GA based method and the three local search
techniques, tests were performed on randomly generated consistent and inconsistent
temporal constraint problems, each having 200 variables. The goal here is to return a
complete solution if the problem is consistent or a partial one maximizing the number
of solved constraints otherwise. The experiments were performed on a SUN SPARC
Ultra 5 station. All the procedures are coded in C/C++. The advantage of performing
the tests on randomly generated TCSPs is that we can control the tightness of the gen-
erated problems. The tightness, as defined later in this section, is a measure that tells
how constrained is a given problem. This will allow us to generate under constrained,
middle constrained and over constrained problems and test the different search methods
on each type of problems.

5.1 Comparison Criteria

We use two criteria to compare the different methods. The first one is the quality of
the solution, i.e the minimum number of violated constraints of the solution provided
by the method. The second criterion is the computing effort needed by an algorithm
to find its best solution. This last criterion is measured by the running time in seconds
required by each algorithm.

5.2 Generated Instances

Each generated problem is characterized by two parameters :N , the number of events
andHorizon the parameter before which all events must be processed. In the follow-
ing we will describe the generation of consistent and inconsistent problems.

Consistent problems of sizeN are those having at least one complete numeric
solution (set ofN numeric intervals satisfying all the constraints of the problem). Thus,
to generate a consistent problem we first randomly generate a numeric solution and
then add other numeric and symbolic information to it. More precisely the generation
is performed using the following steps.

8

1. Generation of the numeric solution : Randomly pickN pairs (x, y) of integers
such thatx < y andx, y ∈ [0, . . . , Horizon] (Horizon is the parameter be-
fore which all events must be processed). This set ofN pairs forms the initial
solution where each pair corresponds to a time interval.

2. Generation of the numeric constraints : For each interval(x, y) randomly pick
an interval contained within[0, . . . , Horizon] and containing the interval(x, y).
This newly generated interval defines the SOPO of the corresponding variable.

3. Generation of the symbolic constraints :Compute the basic Allen primitives that
can hold between each interval pair of the initial solution. Add to each rela-
tion a random number in the interval[0, Nr] (1 ≤ Nr ≤ 13) of chosen Allen
primitives.

Each inconsistent problem of sizeN (N is the number of variables) is generated
using the following steps.

1. Generation of numeric constraints : Randomly pickN pairs of ordered values
(x, y) such thatx, y ∈ [0, . . . , Horizon]. x andy are respectively the earli-
est start time and the latest end time of a given event. For each pair of values
(x, y), randomly pick a numberd ∈ [1 . . . y − x]. d is the duration of the event.

2. Generation of symbolic constraints :Randomly generateC constraints between
the N events whereC ∈ [1 . . . N(N−1)

2] (C = N(N−1)
2 in the case of a com-

plete constraint graph). Each constraintC is a disjunction of a random number
Nb (Nb ∈ [1 . . . 13]) of relations chosen randomly from the set of the 13 Allen
primitives.

3. Consistency check of the generated problem :Perform a backtrack search method
on the generated problem. If a solution is foundgoto 1otherwise the problem is
inconsistent.

The generated problems are characterized by their tightness, which can be mea-
sured, as shown in [16], using the following definition :

The tightness of a CSP problem is the fraction of all possible pairs of
values from the domain of two variables that are not allowed by the con-
straint.

The tightness depends in our case on the parametersHorizon (time before which
all tasks should be processed),Nr (the maximal number of Allen primitives per sym-
bolic constraint) and the density of the problem (2C

N(N−1) whereC is the number of
constraints of the problem).

5.3 Results

Table 2 presents the results of the tests performed on randomly generated temporal
consistent problems. It gives a summary of the best results of MCRW, SDRW, Tabu

9

Search and the GA based method for the chosen instances in terms of quality of the
solutions. The results correspond to the average running time and the quality of the
solution provided by each method. To obtain these results, the algorithms were run
100 times on each instance, each run being given a maximum of 100,000 iterations
in the case of MCRW and the GA based method, and 10,000 iterations in the case of
SDRW and Tabu Search. Note that, as we mentioned in section 4, the cost in time of a
move in the case of Tabu Search and SDRW is equal toN times the cost of a move in
the case of the MCRW method, whereN is the number of variables.

From the data of table 2 we can make the following observations. For under con-
strained and middle constrained problems, the MCRW method always provides the
best results. It always founds a complete solution within a reasonable amount of time
which is not the case of the other methods. It is also faster than the other methods
to find solutions of the same quality. However, for over-constrained problems SDRW
and Tabu Search have better performance. We can explain this by the fact that, for
under constrained problems the initial configuration is in general of good quality. A
complete solution can be obtained in this case by only changing the values of some
conflicting variables (case of MCRW) instead of looking for the best neighbor (case
of SDRW and Tabu) which is much more expensive. When comparing the GA based
method with the methods based on local search, we notice that GA provides better re-
sults for over-constrained and middle constrained problems and comparable results for
under constrained problems. It also obtains, in each case, the solution with the best
quality.

Table 3 presents tests performed on randomly generated inconsistent temporal prob-
lems. For each instance, an exact method based on branch and bound techniques [18] is
first performed in order to get the optimal solution (solution with the minimum number
of violated constraints). The three algorithms are then run 100 times on each instance,
each run being given a maximum of 100,000 iterations in the case of MCRW and the
GA based method, and 10,000 iterations in the case of SDRW and Tabu search. From
table 3 we can make the same observations we made for table 2 i.e the MCRW method
is the algorithm of choice if we have to deal with under constrained or middle con-
strained problems. The effort made by SDRW and Tabu Search methods to look for
the best neighbor helps only in the case of over constrained problems. As we can
easily see, the GA based method presents comparable and sometimes better results (in
the case of over-constrained problems) than MCRW. An exact algorithm based on the
branch and bound techniques, we have proposed in [18], is used here to check the
goodness of the solution provided by the approximation methods.

6 Conclusion

In this paper we have presented two type of methods for solving numeric and symbolic
temporal constraints. The first type is based on genetic algorithms while the second
one uses randomized local search techniques. Both methods have the property to pro-
vide a solution with a quality proportional to the allocated running time. This is very
relevant since when dealing with these kind of problems in the real world, we often
look for a solution that solves the maximal number of temporal constraints instead of a

10

complete one. This can be the case of over constrained problems or those applications
where a solution needs to be found within a given deadline. In order to evaluate the
performance of the two type of methods, experimental comparison has been performed
on randomly generated TCSPs. The results of the tests show that the GA based method
is the technique of choice for middle constrained and over constrained problems while
the MCRW local search method is the best technique for under constrained problems.

References

[1] P. Laborie and M. Ghallab. Planning with sharable resource constraints. InIJCAI-
95, pages 1643–1649, 1995.

[2] C. Le Pape and S. Smith. Management of Temporal Constraints for Factory
Scheduling. InTemporal Aspects in Information Systems Conference, pages 165–
176, Sophia Antipolis, France, Mai 1987.

[3] P. Baptispte and C. Le Pape. Disjunctive constraints for manufacturing schedul-
ing : Principles and extensions. InThird International Conference on Computer
Integrated Manufacturing, Singapore, 1995.

[4] F. Song and R. Cohen. Tense interpretation in the context of narrative. In
AAAI’91, pages 131–136, 1991.

[5] C. Hwang and L. Shubert. Interpreting tense, aspect, and time adverbials: a com-
positional, unified approach. InProceedings of the first International Conference
on Temporal Logic, LNAI, vol 827, pages 237–264, Berlin, 1994.

[6] M. Orgun. On temporal deductive databases.Computational Intelligence,
12(2):235–259, 1996.

[7] C. Golumbic and R. Shamir. Complexity and algorithms for reasoning about
time: a graphic-theoretic approach.Journal of the Association for Computing
Machinery, 40(5):1108–1133, 1993.

[8] M. Mouhoub, F. Charpillet, and J.P. Haton. Experimental Analysis of Numeric
and Symbolic Constraint Satisfaction Techniques for Temporal Reasoning.Con-
straints: An International Journal, 2:151–164, Kluwer Academic Publishers,
1998.

[9] J.F. Allen. Maintaining knowledge about temporal intervals.CACM, 26(11):832–
843, 1983.

[10] A. K. Mackworth. Consistency in networks of relations.Artificial Intelligence,
8:99–118, 1977.

[11] V. Kumar. Algorithms for Constraint Satisfaction Problems: A survey.AI Maga-
zine, 1992.

11

[12] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.Artificial Intel-
ligence, 49:61–95, 1991.

[13] P. Laborie.Une approche int́egŕee pour la gestion de ressources et la synthèse de
plans. PhD thesis,́Ecole Nationale Suṕerieure des T́elécommunications, 1995.

[14] B. Craenen and A.E. Eiben. Comparing evolutionary algorithms on binary con-
straint satisfaction problems.IEEE Transactions on Evolutionary Computation,
7(5):424–444, 2003.

[15] Zbigniew Michalewicz.Genetic Algorithms + Data Structures = Evaluation Pro-
gram. Springer-Verlag, 1992.

[16] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint
satisfaction. InProc. 11th ECAI, pages 125–129, Amsterdam, Holland, 1994.

[17] M. Mouhoub. Reasoning about Numeric and Symbolic Time Information.
In the Twelfth IEEE International Conference on Tools with Artificial Intelli-
gence(ICTAI’2000), pages 164–172, Vancouver, 2000. IEEE Computer Society.

[18] M. Mouhoub. Reasoning with numeric and symbolic time information.Artificial
Intelligence Review, 21:25–56, 2004.

12

X precedes Y

X equals Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

Relation Symbol Inverse Meaning

X Y
P P-

E E
X

YM M- X

Y

O

D

S

F

O-

D-

S-

F-

YX

YX

YX

Y X

Table 1: Allen Primitives.

13

Tightness MCRW SDRW Tabu Search GA
of the problem qual time # iterations qual time # iterations qual time # iterations qual time # iterations
0.0002 0 0.12 5 0 2.67 80 0 0.17 4 0 5.44 8
0.0004 0 0.28 18 0 4.95 136 1 19.25 10000 0 5.58 22
0.001 0 0.46 28 0 8.24 193 0 0.6 16 0 7.22 44
0.002 0 0.95 68 0 11.22 212 2 294 10000 0 10.8 76
0.0037 0 1.74 145 0 126 712 1 270 10000 0 6.24 287
0.006 0 4 255 0 33 336 3 286 10000 0 12.2 412
0.03 0 86 3713 33 33802 10000 12 349 10000 0 17.18 2612
0.044 0 73 1633 4 9595 10000 25 355 10000 0 38.5 817
0.045 0 72 1633 4 9614 10000 16 376 10000 0 34.2 911
0.058 0 15 433 74 12333 10000 12 364 10000 0 17.22 548
0.1 0 12 332 0 34 225 0 112 211 0 14 784
0.14 0 8.47 304 0 39 243 0 112 193 0 12.5 546
0.35 0 181 2009 0 66 210 68 714 10000 0 34 1255
0.44 0 137 1291 220 8346 10000 63 646 10000 0 38.5 623
0.55 0 315 2505 0 66 210 0 262 190 0 40 711
0.67 372 13945 100000 0 130 297 0 422 224 20 89 7615

Table 2: Comparative results of Tabu Search, MCRW, SDRW and the GA based
method for consistent problems.

14

Tightness MCRW SDRW Tabu Search GA B Bound
of the problem qual time # iterations qual time # iterations qual time # iterations qual time # iterations qual
0.0002 8 0.44 32 8 4.5 107 8 0.28 6 12 13 32 8
0.001 10 0.7 53 10 10.26 199 11 242 10000 15 17 178 10
0.002 2 0.68 43 3 7.77 10000 2 194 5432 8 21 256 2
0.0037 14 1237 9100 14 14.62 238 18 230 10000 20 22 1321 14
0.006 20 5.83 425 20 33 336 22 377 10000 24 15.12 1239 20
0.03 21 190 5406 32 3663 10000 85 341 10000 25 177 4934 21
0.044 43 853 25 46 4827 10000 45 255 10000 43 120 2655 43
0.1 41 10 318 106 41 10000 91 25 10000 41 21 311 41
0.14 208 10.14 279 208 37 215 230 22 10000 208 17 612 208
0.35 141 259 3015 141 439 554 141 201 415 141 34 314 141
0.44 531 105 271 531 82 216 531 48 195 531 21 89 531
0.67 858 156 315 858 98 206 924 58 10000 858 25.5 117 858

Table 3: Comparative results of Tabu Search, MCRW, SDRW and the GA based
method for non consistent problems.

15

AM2 AM1 AM3

BM22 BM21 BM1 BM3

EVT1

PM PP-MM-

PM

PP-MM- PP-MM- PP-MM- PP-MM-

PM

SF

PM PP-MM-

D

[0,25,3,1]=
{(0 3)..(22 25)}

[0,25,3,1]={(0 3)..(22 25)} [0,25,6,1]={(0 6)..(19 25)}

[0,30,2,1]=
{(0 2)..(28 30)} [0,30,2,1]=

{(0 2)..(28 30)}

[0,30,5,1]=
{(0 5)..(25 30)}

[0,30,7,1]={(0 7)..(23 30)}

[0,30,X,1]

Figure 1: TCSP corresponding to the problem presented in example 1.

16

1. begin
2. t ← 1
3. // P (t) denotes a population at iterationt
4. P (t) ← n randomly generated individuals
5. eval ← evaluate P (t)
6. while termination condition is not satisfieddo
7. begin
8. t ← t + 1
9. selectP (t) from P (t− 1)
10. alterP (t)
11. evaluateP (t)
12. end
13. end

Figure 2: Genetic Algorithm.

17

procedureMCRW(Max Moves,p)
begin

s← random valuation of events;
nb moves← 0;
while eval(s)> 0 and nb moves< Max Movesdo

if probability p verifiedthen
choose randomly an event evt in conflict;
choose randomly an interval intv for evt;

else
choose randomly an event evt in conflict;
choose an interval intv that minimizes
the number of conflicts for evt;

endif
if intv 6= current value of evtthen

assign intv to evt;
nb moves← nb moves+1;

endif
endwhile
return s

end

Figure 3: Pseudo-code of the MCRW method.

18

procedureSDRW(MaxMoves,p)
begin

s← random valuation of variables;
nb moves← 0;
while eval(s)> 0 and nb moves< Max Movesdo

if probability p verifiedthen
choose randomly a variable evt in conflict;
choose randomly a value intv for evt;

else
choose a move<evt,intv> with the best performance

endif
if intv 6= current value of evtthen

assign intv to evt;
nb moves← nb moves+1;
endif

endwhile
return s

end

Figure 4: Pseudo-code of the SDRW method.

19

procedureTabu-Search(MaxIter)
begin

s← random valuation of variables;
nb iter← 0;
initialize randomly the tabu list of size tlsize;
while eval(s)> 0 and nb iter < Max Iter do

choose a move<evt,intv> with the best performance
among the non-tabu moves;
remove the oldest move from the tabu list;
introduce<evt,intv> in the tabu list,
where intv is the current values of evt;
assign intv to evt;
nb iter← nb iter+1;

endwhile
return s

end

Figure 5: Pseudo-code of the Tabu Search method.

20

