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Abstract: Preferences in temporal problems are common but significant in many

real world applications. In this paper, we extend our temporal reasoning framework,

managing numeric and symbolic information, in order to handle preferences. Unlike

the existing models managing single temporal preferences, ours supports four types of

preferences, namely: numeric and symbolic temporal preferences, composite prefer-

ences and conditional preferences. This offers more expressive power in representing

a wide variety of temporal constraint problems. The preferences are considered here as

a set of soft constraints using a c-semiring structure with combination and projection

operators. Solving temporal constraint problems with preferences consists in finding a

solution satisfying all the temporal constraints while optimizing the preference values.

This is handled by a variant of the branch and bound algorithm, we propose in

this paper, and where constraint propagation is used to improve the time efficiency.

Experimental tests, we conducted on randomly generated temporal constraint problems

with preferences, favor a variant of MAC as the constraint propagation strategy that

should be used within the branch and bound algorithm.

Keywords: temporal reasoning, constraint satisfaction, preference reasoning

1. INTRODUCTION

Temporal preferences play an important role in many real world applications.

In general, they express noncrisp desire of start/end times, time intervals, and

temporal relations of feasible scenarios. Obviously, preferences are not hard

constraints that have to be fully satisfied, but have an effect on choosing a

good or the best scenario satisfying all the hard constraints. Moreover, often

temporal preferences are implicit. In order to deal with temporal preferences

such as early, late, about 6 pm, etc., we need to transform each of them into a

formal explicit preference function. Furthermore, these preference functions

are often combined with other forms of preferences in order to have a global

preference for a given temporal scenario.
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132 M. Mouhoub and A. Sukpan

In Mouhoub and Sukpan (2004) we have proposed a modeling framework

that allows the management of numeric and symbolic time information within

a unique constraint network. In addition, this model enables the addition of

temporal information dynamically to the problem to solve, during the res-

olution process, via composite variables and activity constraints. Composite

variables are variables whose possible values are temporal events.1 In other

words this allows us to represent disjunctive temporal events. An activity

constraint has the following form X1 ^ : : : Xp

condition
! Y where X1; : : : ; Xp

and Y are temporal variables (composite or events). This activity constraint

will activate Y (Y will be added to the problem to solve) if X1 ^ : : : Xp are

active (currently present in the problem to solve) and condition holds between

these variables. condition corresponds to the assignment of particular values

to the variables X1; : : : ; Xp. We call Conditional and Composite Temporal

Constraint Satisfaction Problem (CCTCSP) this model we have proposed.

In this paper, the CCTCSP is extended to include four types of temporal

preference: numeric, symbolic, composite, and conditional preferences. We

call this model CCTCSP with Preferences (or CCTCSPP). Numeric and

symbolic temporal preferences associate degrees of preferences respectively

to time intervals and symbolic relations, in order to favor some temporal

decisions. A composite preference is a higher level of preference among

the temporal choices of a composite variable. Conditional preferences allow

some preference functions (numeric, symbolic or composite) to be added

dynamically to the problem (associated to a given event or composite vari-

able), during the resolution process, if a given condition on some temporal

variables is true. Solving a CCTCSP is a decision problem which consists in

finding an assignment of time intervals to the temporal events such that all

the constraints are satisfied. This can be handled by approximation methods

based on stochastic local search or by a systematic backtrack search algorithm

where constraint propagation is used to prevent earlier later failure (Mouhoub

& Sukpan, 2005a, 2005b). On the other hand, solving a CCTCSPP is an

optimization problem which consists of finding the best solution according

to the preference values. This can be done by a variant of the branch an

bound algorithm we propose in this paper. Note that constraint propagation

is also used here to prune some inconsistent values at the early stage of

the resolution process. Experimental tests we conducted on randomly gener-

ated temporal constraint problems with preferences, favor a variant of MAC

as the constraint propagation strategy to use within the branch and bound

algorithm.

In the next section we will introduce the CCTCSP model and its related

solving techniques. In Section 3 we will summarize the related work in

the area of temporal preferences. Section 4 is then dedicated to numeric,

symbolic, composite, and conditional preferences. In Section 5 we present the

branch and bound algorithm for solving CCTCSPPs. Section 6 is dedicated

1An event is defined here as a proposition that holds over a time interval.
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Managing Temporal Constraints 133

to the experimental tests we conducted on randomly generated CCTCSPPs.

Conclusion and perspectives are finally listed in Section 7.

2. MANAGING CONDITIONAL CONSTRAINTS AND

COMPOSITE VARIABLES

In the following, we define the CCTCSP model and its corresponding con-

straint network (graph representation) through an example.

Definition 1: Conditional and Composite Temporal Constraint Satisfac-

tion Problem (CCTCSP). A Conditional and Composite Temporal Con-

straint Satisfaction Problem (CCTCSP) is a tuple hE; DE ; X; DX ; IV; C; Acti,

where

E D fe1; : : : ; eng is a finite set of temporal variables that we call events.

Events have a uniform reified representation made up of a proposition

and its temporal qualification: Evt D OCCUR.p; I / defined by Allen

(1983) and denoting the fact that the proposition p occurred over the

interval I . For the sake of notation simplicity, an event is used in this

paper to denote its temporal qualification.

DE D fDe1 ; : : : ; Deng is the set of domains of the events. Each domain Dei

is the finite and discrete set of numeric time intervals the event ei can

take. Dei is expressed by the 4-tuple Œbegintimeei
, endtimeei , durationei ,

stepei
� where begintimeei

and endtimeei are respectively the earliest start

time and the latest end time of the corresponding event, durationei is

the duration of the event and stepei
defines the distance (number of

time units) between the starting time of two adjacent intervals within the

event domain. The discretization step stepei
allows us to handle temporal

information with different granularities.

X D fx1; : : : ; xmg is the finite set of composite variables.

DX D fDx1 ; : : : ; Dxmg is the set of domains of the composite variables. Each

domain Dxi is the set of possible events the composite variable xi can take.

IV is the set of initial variables. An initial variable can be a composite variable

or an event. IV � E
S

X .

C D fC1; : : : ; Cpg is the set of compatibility constraints. Each compatibility

constraint is a qualitative temporal relation between two variables in case

the two variables are events, or a set of qualitative relations if at least

one of the two variables involved is composite. A qualitative temporal

relation is a disjunction of Allen primitives (Allen, 1983).

Act is the set of activity constraints. Each activity constraint has the following

form:

X1 ^ : : : Xp

condition
! Y where X1; : : : ; Xp and Y are temporal variables (com-

posite or events). This activity constraint will activate Y if X1; : : : ; Xp

are active and condition holds on these variables. condition corresponds

to the assignment of particular values to the variables X1; : : : ; Xp.
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134 M. Mouhoub and A. Sukpan

Let us illustrate the CCTCSP through the following example.

Example 1. John, Mike and Lisa are going to see a movie on Friday. John

will pick Lisa up and Mike will meet them at the theater. If John arrives

at Lisa’s before 7:30, then they will stop at a convenient store to get some

snacks and pops. It will take them 30 minutes to reach the theater if they

stop at the store and 15 minutes otherwise. There are three different shows

playing: movie1, movie2, and movie3. If they finish the movie by 9:15, they

will stop at a Pizza place 10 minutes after the end of the movie and will

stay there for 30 minutes. John leaves home between 7:00 and 7:20. Lisa

lives far from John (15 minutes driving). Mike leaves home between 7:15

and 7:20 and it takes him 20 minutes to go to the theater. movie1; movie2,

and movie3 start at 7:30, 7:45, and 7:55 and finish at 9:00, 9:10, and 9:20,

respectively.

The goal here is to check if this story is consistent (has a feasible sce-

nario). The story can be represented by the CCTCSP in Figure 1. Each event

domain is represented by the 4-tuple Œbegintime; endtime; duration; step�. In

the case of John_Pick_Lisa, the domain is Œ0; 35; 15; 1� where 0 (the time

origin corresponding to 7:00) is the earliest start time, 35 is the latest end

time, 15 is the duration, and 1 (corresponding to 1 min) is the discretization

step. For the sake of simplicity all the events in this story have the same

step. Arcs represent either a compatibility constraint or an activity constraint

(case of arcs with diamond) between variables. The compatibility constraint

is denoted by one or more qualitative relations (in case it involves at least one

composite variable). The activity constraint shows the condition to be satisfied

and the qualitative relation between the two variables in case the condition

is true. Each qualitative relation is a disjunction of some Allen primitives

(Allen, 1983). For example, the relation BM between John_Pick_Lisa and

John_Lisa denotes the disjunction Before _ Meets.

In Mouhoub and Sukpan (2005a, 2005b) we have proposed two methods

for solving CCTCSPs. These two methods are respectively based on constraint

propagation and stochastic local search. The goal of the constraint propagation

method is to overcome, in practice, the difficulty due to the exponential search

space of the possible TCSPs generated by the CCTCSP to solve and also

the search space we consider when solving each TCSP. Indeed, a CCTCSP

represents DM possible TCSPs where D is the domain size of the composite

variables and M the number of composite variables. In the same way as

reported in Mittal and Falkenhainer (1990) and Sabin, D., Freuder, E. C.,

and Wallace, R. J. (2003), we use constraint propagation in order to detect

earlier later failure. This will allow us to discard at the early stage any subset

containing conflicting variables. The method based on constraint propagation

is an exact technique that guarantees a complete solution. The method suffers

however from its exponential time cost as shown in Mouhoub and Sukpan

(2005a, 2005b). In many real-life applications where the execution time is an
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Managing Temporal Constraints 135

Figure 1. CCTCSP representing Example 1.

issue, an alternative will be to trade the execution time for the quality of the

solution returned (number of solved constraints).

This can be done by applying approximation methods such as local search

and where the quality of the solution returned is proportional to the running

time. In Mouhoub and Sukpan (2005a, 2005b) we studied the applicability of

a local search technique based on the Min-Conflict-Random-Walk (MCRW)

(Selman & Kautz, 1993a) algorithm for solving CCTCSPs. MCRW has

already been applied to solve TCSPs (Mouhoub, 2004). Basically, the method

consists of starting from a complete assignment of temporal intervals to events

and iterating by improving at each step the quality of the assignment (number

of solved constraints) until a complete solution is found or a maximum num-

ber of iterations is reached. Experimental study we conducted, in Mouhoub

and Sukpan (2005a, 2005b), on randomly generated CCTCSPs demonstrates
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136 M. Mouhoub and A. Sukpan

the efficiency of our exact method based on constraint propagation in the case

of middle constrained and over constrained problems while the SLS-based

method is the technique of choice for underconstrained problems and also

in case we want to trade search time for the quality of the solution returned

(number of solved constraints).

3. RELATED WORK

Managing preferences has been extensively studied in the past decade. The

CP-net framework (Apt, Rossi, & Venable, 2005; Boutilier, Brafman, Hoos,

& Poole, 1999; Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004) is

a model for qualitative and conditional preferences under ceteris paribus.

Preferences are represented separately from hard constraints. Lexicographi-

cally ordered CSP in Freuder, Wallace, and Heffernan (2003) is an another

alternative framework for preferred variables and values. In this latter model,

variable selection is the primary factor while value assignment is secondary.

Recently, this framework has been extended to Conditional lexicographic CSP

(Wallace, 2005) for conditional preferences. Finally, quantitative preferences

are modeled as a set of soft constraints in Bistarelli, Montanari, and Rossi

(1995, 1997a) and Schiex, Fargier, and Verfaillie (1995) supporting different

kinds of soft constraints including fuzzy CSPs, weighted CSPs and partial

CSPs. These latter frameworks based on semiring structure have been widely

used for quantitative preferences in CSPs (Bistarelli et al., 1995, 1997a). A

semiring is a tuple hA; C; �; 0; 1i such that:

� A is a set and 0; 1 2 A;
� C, called the additive operation, is a commutative and associative operation

such that 0 is its unit element;
� �, called the multiplicative operation, is an associative operation such that

1 is its unit element and 0 is its absorbing element. � distributes over C.

The set of the semiring specifies the values to be associated with each

tuple of values of the variable domain. The two semiring operations (C and

�) represent constraint projection and combination respectively. A semiring

for handling constraints is called c-semiring. A c-semiring is a semiring with

additional properties on the two operations such that C is idempotent, � is

commutative, and 1 is the absorbing element of C. A partial order relation

� is defined over A to compare tuples of values and constraints.

In temporal constraint reasoning, quantitative preferences have been in-

tegrated into some existing temporal frameworks (Allen, 1983; Beek, 1992;

Dechter, Meiri, & Pearl, 1991; Vilain & Kautz, 1986). Khatib, Morris, Morris,

and Rossi (2001) introduced the Simple Temporal Problem with Preferences

(STPP). In this latter model, a preference on an interval I is a function
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Managing Temporal Constraints 137

with co-domain A (the c-semiring). In Sheini, Peintner, Sakallah, and Pollack

(2005) the Disjunctive Temporal Problem (DTP) is extended with preferences

using SAT techniques. The Temporal Constraint Network (TCN) (Dechter

et al., 1991) is integrated with the addition of a mechanism for specifying

preferences, based on the soft constraint formalism (Bistarelli, Montanari,

& Rossi, 1997b). In this new model called Temporal Constraint Satisfaction

Problem with Preferences (TCSPP), a soft temporal constraint is represented

by a pair consisting of a set of disjoint intervals and a preference func-

tion: hI D fŒa1; b1�; : : : ; Œan; bn�g; f i where f is defined from I to the c-

semiring A. Each feasible solution has a global preference value, obtained

by combining the local preference values found. � is idempotent and also

restricts a total order on the elements of A. The c-semiring operations:

C: a C b D max.a; b/ and �: a � b D min.a; b/ allow complete solu-

tions to be evaluated in terms of the preference values assigned locally.

The optimal solutions to a TCSPP are those solutions that have the best

global preference values by the ordering of the values in the c-semiring.

Finally, in Badaloni and Giacomin (1999) the 13 basic Allen’s relations are

assigned with a preference degree, belonging to the interval Œ0; 1� called

IAfuz. IAfuz is closed under Inverse, Conjunctive Combination, and Com-

position. IAfuz is defined on the set: I D .r1Œ˛1�; r2Œ˛2�; : : : ; r13Œ˛13�/ where

˛i 2 Œ0; 1�; ri 2 R, i D 1; : : : ; 13. If ˛i is 0, then ri is an inconsistent

relation.

4. NUMERIC, SYMBOLIC, COMPOSITE, AND CONDITIONAL

TEMPORAL PREFERENCES

In the following we will define the four types of preferences using the c-

semiring structure hA; C; �; 0; 1i for quantitative preferences (Bistarelli et al.,

1995, 1997a). Each type of preference is illustrated through the following

example (additional information to Example 1).

Example 2. Lisa prefers John to pick her up early. They prefer to arrive at

the theater before the movie starts to get good seats. Lisa prefers to watch

movie1 to movie2 and movie3, whereas Mike prefers movie3 to movie2 and

movie1. Whoever gets there first will pick the movie that he/she likes.

4.1. Numeric and Symbolic Preferences

Since the CCTCSPP supports hybrid temporal problems, preference values

can be imposed on both numeric and symbolic temporal constraints. Thus,

we define two types of soft temporal constraints over the c-semiring: Soft

Numeric Temporal Constraint (SNTC) and Soft Symbolic Temporal Constraint

(SSTC).
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138 M. Mouhoub and A. Sukpan

Definition 2: Soft Numeric Temporal Constraint (SNTC). A Soft Nu-

meric Temporal Constraint (SNTC) is a function fnWei W Dei ! A, where ei

is a temporal event and Dei its domain of values (time intervals).

In Example 2, the SNTC corresponding to “Lisa prefers John to pick

her up early” is the function fnWJohn_Pick_Lisa defined as follows.

fnWJohn_Pick_Lisa..0 15// D 1:0;

fnWJohn_Pick_Lisa..1 16// D 0:95;

: : : ;

fnWJohn_Pick_Lisa..20 35// D 0:05:

Definition 3: Soft Symbolic Temporal Constraint (SSTC). A Soft Sym-

bolic Temporal Constraint (SSTC) is a function fsWcij W Rcij ! A, where cij

is the symbolic temporal relation between ei and ej and Rcij is the set of

Allen primitives within cij .

In Example 2, the symbolic preference “They prefer to arrive at the

theater before the movie starts to get good seats” favors the Allen relation

before. Thus, fsWcMike;Watch_Movie .Before/ has a higher value than fsWCMike;Watch_Movie

.Meets/. Here, we set fsWcMike;Watch_Movie .Before/ D 1:0 and fsWcMike;Watch_Movie

.Meets/ D 0:6.

4.2. Composite and Conditional Preferences

A Composite Preference (CompP) is a function fcWx W Dx ! A, where x is a

composite variable and Dx its domain of values (events). This function allows

us to favor some events within the domain of a given composite variable.

The SNTC fnWx#e of an event e, selected during the backtrack search from

the domain of a composite variable x, is recomputed from the composite

preference of this latter variable as follows.

Definition 4: Composite Preference (CompP).

Given: a composite variable x,

its domainDx D fe1; : : : ; epg,

a composite preference function fcWx,

and the selected event ei ,

then: fnWx#ei .I / D fcWx.ei / � fnWei .bj /,

where I is a possible time interval of ei .

A Conditional Preference (CP) allows a preference function (symbolic,

numeric or composite) to be added dynamically to the CCTCSPP when

a given condition on temporal events or composite variables is true. The

condition can be an assignment of particular values to variables.
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Managing Temporal Constraints 139

Definition 5: Conditional Preference (CP). Given a temporal event e (re-

spectively a composite variable x) and a preference function f , a conditional

preference has the following form:

X1 ^ : : : Xp

condition
! associate f to e (respectively to x)

where X1; : : : ; Xp are temporal variables (composite or events).

Example 3. The above conditional preference will associate f to e (re-

spectively to x) if condition holds on these variables. condition can be an

assignment of particular values to the variables X1; : : : ; Xp. In our Exam-

ple 2, the conditional preference “Lisa prefers to watch movie1 to movie2

and movie3, whereas, Mike prefers movie3 to movie2 and movie1. Whoever

gets there first, will pick the movie that he/she likes.” can be formulated by

the following two conditional preferences.

1. Mike ^ .John_Lisa _ John_Lisa_Store/
condition1

! assign the composite pref-

erence f1 to the composite variable Watch_Movie.

2. Mike ^ .John_Lisa _ John_Lisa_Store/
condition2

! assign the composite pref-

erence f2 to the composite variable Watch_Movie.

where:

� condition1 is: Mike D I and (John_Lisa D J or John_Lisa_Store D J )

and end.I / � end.J /
� condition2 is: Mike D I and (John_Lisa D J or John_Lisa_Store D J )

and end.I / > end.J /
� f1 D fmovie3 D 0:9; movie1 D 0:6; movie2 D 0:6g
� f2 D fmovie1 D 0:9; movie2 D 0:6; movie3 D 0:6g

4.3. Global Preferences and Optimal Solution to the CCTCSPP

In order to define the global preference of a solution to a CCTCSPP, two other

types of preference, namely Associated Local Symbolic Preference (ALSP)

and Consistent Binary Assignment Preference (CBAP), are introduced in the

following. If C is a symbolic temporal constraint between two events ei and

ej then the ALSP of C , fasWC , can be deduced from the numeric preferences

associated to e0

i s and e0

j s values domain.

Definition 6: Associated Local Symbolic Preference (ALSP).

Given: cij a constraint between two events ei and ej ,

Rcij the set of Allen primitives composing cij ,

then: for each r 2 Rcij such that I rJ
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140 M. Mouhoub and A. Sukpan

for a given I 2 D.ei / and J 2 D.ej /

fasWcij .r/ D min.fnWei .I /; fnWej .J //

where fnWei and fnWej are the SNTC respectively

for the events ei and ej .

A solution to the CCTCSPP is an assignment of numeric intervals to all

the temporal events of the problem such that all the compatible constraints are

satisfied. The global preference of a solution can be computed by performing

the min operation on all the Consistent Binary Assignment Preferences. Using

the ALSP defined above, a Consistent Binary Assignment Preference (CBAP)

is defined as follows.

Definition 7: Consistent Binary Assignment Preference (CBAP).

Given: two events ei and ej sharing a constraint cij ,

Rcij the set of Allen primitives composing cij ,

a CBAP fasWcij ,

and a consistent binary assignment

[ei D I � r Œej D J ] where:

r 2 Rcij , I 2 Domain.ei / and J 2 Domain.ej /,

˛i D fnWei .I /; ˛j D fnWej .J / and ˛r D fsWCij .r/

then: fasWcij .r/ D min.˛i ; ˛j / and CBAP.I; J / D min.fasWcij .r/; ˛r/

Example 4. In our Examples 1 and 2, let us assume that during the back-

track search we have made the following decisions (assignments):

� Mike D .15 35/, John_Pick_Lisa D .0 15/, and John_Lisa_Store D

.15 45/

Using the conditional preferences we have seen earlier in Example 3,

the preference function f1 will be assigned to Watch_Movie. Movie3 (denoted

by M3 in the following) will then be the first value chosen for Watch_Movie.

The SNTC of M3 and the ALSP of Mike and M3 events with the relation B

will be computed as follows:

fnWWatch_Movie#M3 .55 140/ D fnWWatch_Movie.M3/ � fnWM3 .55 140/

D 0:9 � 1 D 0:9

fasW.Mike;M3/.B/ D min.fnWMike..15 35//; fnWM3 .55 140// D min.1; 0:9/ D 0:9

The CBAP of the time intervals assigned to Mike and M3 will then be

computed as follows.

CBAP..15 35/; .55 140// D min.fasW.Mike;M3/.B/; fsW.Mike;M3/.B//

D min.0:9; 1/ D 0:9
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Managing Temporal Constraints 141

Note that since there are no SNTCs defined for the events Mike and M3,

the corresponding functions have values 1 for all their elements. The same

can be said about the symbolic relation between Mike and M3.

Definition 8: Global Preference (GP). A Global Preference (GP) of a

solution s D fI1; I2; : : : ; Ing to a CCTCSPP is computed as follows.

Given:

a set of consistent assignments ca D f.Ii ; Ij / such that

i; j 2 n and there is a constraint between ei and ej g,

Then:

GP.s/ D minfCBAP.I; J / where .I; J / 2 cag

Definition 9: Optimal Solution (Opt). An Optimal Solution (Opt) of a

given CCTCSPP P is the solution having the highest global preference

degree.

Given: a CCTCSP P and a set of solutions S D fs1; : : : ; sng

then: Opt.P / D maxfGP.s1/; : : : ; GP.sn/g

5. SOLVING CCTCSPPs

Branch and Bound is a well known method for solving optimization problems.

In the case of CCTCSPPs this algorithm is applied to find the optimal solution

as follows.

Step 1. The method starts with an initial problem containing a list of initially

activated temporal events and composite variables. In order to ensure that

domain values are considered according to their preference functions, all

the values within each domain are sorted in decreasing order of their

SNTC or CompP values (depending whether they belong to an event or a

composite variable domain). Similarly, Allen primitives are sorted within

their symbolic relations in decreasing order of their SSTC values. Arc

consistency is then applied on the initial temporal events and composite

variables in order to reduce some inconsistent values which will reduce

the size of the search space. If the temporal events are not consistent (in

the case of an empty domain) then the method will stop. The CCTCSPP

is inconsistent in this case.

Step 2. Following the forward check principle (Haralick & Elliott, 1980),

pick an active variable v, assign a value to it and perform arc consis-

tency between this variable and the non assigned active variables. If

one domain of the non assigned variables becomes empty then assign

another value to v or backtrack to the previously assigned variable if
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142 M. Mouhoub and A. Sukpan

there are no more values to assign to v. Activate any preference function

(through conditional preference) and any variable v0 (through activity

constraint) resulting from this assignment and perform arc consistency

between v0 and all the active variables. If arc inconsistency is detected

then deactivate v0 and choose another value for v (since the current

assignment of v leads to an inconsistent CCTCSPP). If v is a composite

variable then assign an event to it. Basically, this consists in replac-

ing the composite variable with one event evt of its domain. We then

assign a value to evt and proceed as shown before except that we do

not backtrack in case all values of evt are explored. Instead, we will

choose another event from the domain of the composite variable v or

backtrack to the previously assigned variable if all values (events) of v

have been explored. This process will continue until all the variables

are assigned in which case we obtain a solution to the CCTCSPP. Since

we are looking for the highest global preference degree, the GP value

of this solution will be used as a lower bound (LB) of our branch and

bound algorithm. Note that anytime a preference function f is activated

(added to the CCTCSPP) through a conditional preference, the domain

of values of the variable associated to f is sorted according to this

latter.

Step 3. The rest of the search space is then systematically explored as

follows. Each time the current variable (event or composite) is assigned

a value, an overestimation of the GP value of any possible solution

following this decision is computed and used as an upper bound (UB).

If UB < LB then the current variable is assigned another value or the

algorithm backtracks to the previous variable if all the values have been

explored. The overestimated GP is the minimum of the CBAPs of all

the assigned variables and the estimated CBAPs involving non assigned

variables (including those that can be activated during the remaining

search process). An estimated CBAP involving a non assigned variable

Xi is calculated as follows.

If the other variable Xj involved by the CBAP is an assigned variable

then the estimated CBAP is the minimum of the following:
� the SNTC of the value assigned to Xj ,
� the maximum of the SSTCs of all the Allen primitives within the

symbolic relation between Xi and Xj ,
� and the maximum of the SNTCs of all the values belonging to Xi ’s

domain.

Else (Xj is not assigned yet):
� the maximum of the SNTCs of all the values belonging to Xj ’s and

Xi ’s domains,
� and the minimum of the SSTCs of all the Allen primitives within the

symbolic relation between Xi and Xj .
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Managing Temporal Constraints 143

Note that the arc consistency in steps 1 and 2 above is enforced as shown

in the four cases below. We will assume in the following that evt1 and evt2

are two events while x1 and x2 are two composite variables.

1. The constraint is .evt1; evt2/. Arc consistency (Mackworth, 1977) is ap-

plied here i.e., each interval a of evt1 should have a support in the domain

of evt2.

2. The constraint is .x1; evt1/. Each interval a, from the domain of a given

event evt within x1, should have a support in the domain of evt1.

3. The constraint is .evt1; x1/. Each interval a, from the domain of evt1,

should have a support in at least one domain of the variables within x1.

4. The constraint is .x1; x2/. Apply case 2 between x1 and each interval evt

within x2.

The pseudo code of the arc consistency algorithm based on the above

rules is presented in Figure 2. This algorithm is an extension of the well

known AC-3 procedure (Mackworth, 1977).

6. EXPERIMENTATION

In order to evaluate the method we propose, we have performed experimental

tests on randomly generated consistent CCTCSPPs.

The experiments were performed on a PC Pentium 4 computer running

Linux. All the procedures are coded in C/CCC. CCTCSPPs are built from

TCSPs randomly generated by the model RB proposed in Xu and Li (2000).

This model is a revision of the standard Model B (Gent, MacIntyre, Prosser,

Smith, & Walsh, 1998; Smith & Dyer, 1996), has exact phase transition and

the ability to generate asymptotically hard instances. Following the model

RB, we generate each TCSP instance in two steps as shown below and using

the parameters n, p, ˛ and r where:

� n is the number of events,
� p (0 < p < 1) is the constraint tightness which can be measured, as shown

in Sabin and Freuder (1994), as the fraction of all possible pairs of intervals

from the domain of two events that are not allowed by the constraint,
� and r and ˛ (0 < ˛ < 1) are two positive constants.

1. Select with repetition rn ln n random constraints. Each random constraint

is formed by selecting without repetition 2 of n events.

2. For each constraint we uniformly select without repetition pd 2 incompat-

ible pairs of intervals from the domains of the pair of events involved by

the constraint. d D n˛ is the domain size of each event.
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144 M. Mouhoub and A. Sukpan

REVISE.Di ; Dj /

REVISE false

for each value a 2 Di do

if not compatible.a;b/ for any value b 2 Dj then

remove a from Di

REVISE true

end if

end for

return REVISE

REVISE_COMP .Di ; Dj /

REVISE_COMP false

if i is an event and j is a composite variable (case 3)

D ;

Dtmp Di

for each event k 2 Dj do

REVISE.Di ; Dk /

D D [Di

Di  Dtmp

end for

Di  D

if Di ¤ Dtmp

REVISE_COMP true

end if

end if

if i is a composite variable and j is an event (case 2)

for each event k 2 Di do

REVISE_COMP REVISE.Dk ; Dj /

end for

end if

if both i and j are composite variables (case 4)

for each event k 2 Di do

REVISE_COMP.Dk ; Dj /

end for

end if

return REVISE_COMP

AC � 3� CCTCSPP

Given a CCTCSPP hE; DE ; X; DX ; IV; C; Acti

i , j and k are variables defined on Di , Dj and Dk respectively

Q f.i; j /j.i; j / 2 C g

while Q ¤ Nil do

Q Q � f.i; j /g

if i or j is a composite variable (case b, c or d)

if REVISE_COMP.Di ; Dj / then

Q [f.k; i/j.k; i/ 2 C and k ¤ j g

end if

else (both i and j are events (case a))

if REVISE.Di ; Dj / then

Q [f.k; i/j.k; i/ 2 C and k ¤ j g

end if

end if

end while

Figure 2. AC-3 for CCTCSPPs.
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Managing Temporal Constraints 145

Each CCTCSPP instance is then generated as follows using the param-

eters N , D, I and a which respectively denote the number of composite

variables, their domain size (number of events within each composite vari-

able), the percentage of variables that are initially active and the density of

activity constraints.

1. Randomly generate a TCSP with the parameters n, p, ˛ and r as shown

above. Symbolic preference values (randomly picked from [0..1]) are

then associated to each Allen primitive within each constraint (disjunctive

relation). Similarly, random numeric preference values chosen from [0..1]

are associated to each event domain value.

2. Generate N composite variables each containing D events and associate

to each of these events a random number from [0..1]. This number corre-

sponds to the composite preference associated to the event.

3. Select with repetition rŒ.nCN / ln.nCN /�n ln n� new random constraints

(between the n C N composite variables and events), each formed by

selecting without repetition 2 of the n C N variables. This will guarantee

that the total number of constraints is r.n C N / ln.n C N / (as per the

requirements of the RB model). Each selected constraint Cij involving two

variables Xi and Xj is then generated following one of the procedures

below. Random symbolic preferences are then associated to each of these

constraints in the same manner as shown in step 1 above.

(a) If both Xi and Xj are events then we uniformly select without repeti-

tion pd 2 incompatible pairs of intervals from the domains of Xi and

Xj .

(b) If Xi is composite and Xj is an event (or vise versa) then the constraint

will be a disjunction of D relations between the event Xj and each

event within Xi domain. Each of these D relations will be generated

as shown above in (a).

(c) If both Xi and Xj are composite then the constraint will be a dis-

junction of D2 relations between the pair of events from Xi and Xj

domains. Each of these D2 relations will then be generated as shown

above in (a).

4. Select I.n C N / initial variables from n C N (0 < I < 1).

5. Select a.nd C ND/ activity constraints for each of the nC N � I.nC N /

none initial variables (0 < a < 1). Note that the activity constraints are

defined here as Xi D val ! Xj (where val is a value of Xi ’s domain)

which is less general then the definition we have provided in Section 2.

The total number of possible activity constraints is thus equal to nd CND.

As demonstrated in Xu and Li (2000), when the number of variables

approaches infinity the phase transition occurs when the constraint tightness

p D 1 � e�
˛
r . Thus the phase transition is an asymptotic phenomenon since

we can have sharp phase transitions only for infinite number of variables. In

addition, the number of variables and constraints of the possible CSPs, each
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146 M. Mouhoub and A. Sukpan

CCTCSPP contains, is slightly different from the one of the CCTCSPPs from

which they are generated.

Although we mentioned in the previous section that we use the forward

check principle during search, we consider here other propagation strategies

as well. More precisely we compare the following four strategies.

Forward Check (FC). This is the strategy we have described in the previous

section (in Step 2).

Maintaining Arc Consistency (MAC). This strategy maintains a full arc

consistency on the current and future active variables (variables not yet

assigned).

FCC. Same as FC except that the applicability of the arc consistency is

extended to non active variables as well.

MACC. Same as MAC except that the applicability of the arc consistency is

extended to non active variables as well.

The CCTCSPP instances are generated with the following parameters:

n D 140, N D 10, D D 5, ˛ D 0:8, I D 0:8, a D 0:2 and r D 0:6.

As mentioned earlier, the phase transition can be computed as follows: p D

1�e�
˛
r D 1�e�

0:8
0:6 D 0:73. In practice the tightness is around 0.7 as we can

see in Figure 3. For each test (corresponding to a particular tightness value

Figure 3. Comparative tests on random CCTCSPPs.
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Managing Temporal Constraints 147

p), each of the four methods is executed on 100 instances and the average

running time in seconds is taken.

As we can easily see in Figure 3, for under and middle constrained

problems (tightness � 0.4) the four strategies have similar running time.

However in the case of highly constrained problems the time effort spent by

MAC and especially MACC starts to pay off. Indeed when we reach the

phase transition MACC is almost 100 times faster than FC and FCC.

7. CONCLUSIONS

In this paper we have proposed a new framework managing preferences at

different levels of the temporal constraint network and in a dynamic envi-

ronment. This framework is very appealing for a wide variety of real world

applications such as reactive scheduling and planning, logistics and temporal

databases. The approach we adopted consists in converting a given temporal

scenario involving numeric and symbolic time information into a hybrid tem-

poral constraint network where conditional constraints and composite vari-

ables are used to add new information (variables and their related constraints)

to the constraint network in a dynamic manner during the resolution process.

Preferences are associated to numeric, symbolic and conditional constraints as

well as composite variables, in order to favor some solutions to the temporal

scenario. Finding the best solution is carried out by a variant of the branch

and bound algorithm we propose. In order to evaluate the time performance

of our solving method, we conducted preliminary tests comparing different

propagation strategies on randomly generated CCTCSPPs. The results favor a

variant of MAC over the other strategies (Haralick & Elliott, 1980). In the near

future, we intend to conduct more experimental study on real-life applications

under time constraints with preferences. Another perspective is to consider

approximation methods such as Stochastic Local Search (SLS) (Selman &

Kautz, 1993b), Genetic Algorithms (GAs) (Craenen & Eiben, 2003) and Ant

Colony Algorithms (ACAs) (Stützle & Hoos, 1998). Although these tech-

niques do not always guarantee an optimal solution to the problem, they are

very efficient in time (comparing to branch and bound) and can thus be useful

if we want to trade the optimality of the solution for the time performance.
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