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Abstract. A main challenge when designing constraint based systems in general and those involving temporal constraints in
particular, is the ability to deal with constraints in a dynamic and evolutive environment. That is to check, anytime a new constraint
is added, whether a consistent scenario continues to be consistent when a new constraint is added and if not, whether a new
scenario satisfying the old and new constraints can be found. We talk then about on line temporal constraint based systems capable
of reacting, in an efficient way, to any new external information during the constraint resolution process. In this paper, we will
investigate the applicability of systematic versus approximation methods for solving incremental temporal constraint problems.
In order to handle both numeric and symbolic constraints, the systematic method is based on constraint propagation performed
at both the qualitative and quantitative levels. The approximation methods are respectively based on stochastic local search and
genetic algorithms. Experimental evaluation of the performance in time and the quality of the solution returned (number of
violated constraints) of the different techniques has been performed on randomly generated temporal constraint problems. The
results favour the exact method for problems with reasonable size while the approximation techniques are the methods of choice
for very large problems in the case where we want to trade the quality of the solution for the process time. Indeed, while the
approximation methods are faster for large problems, they do not guarantee, in general, the completeness of the solution returned.
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1. Introduction

In any constraint satisfaction problem (CSP) there is
a collection of variables which all have to be assigned
values from their discrete domains, subject to specified
constraints. Because of the importance of these prob-
lems in so many different fields, a wide variety of tech-
niques and programming languages from artificial in-
telligence, operations research and discrete mathemat-
ics are being developed to tackle problems of this kind.
An important issue when dealing with a constraint sat-
isfaction problem, in the real world, is the ability to
maintaining the consistency of the problem anytime a
new constraint is added. Indeed, this change may af-
fect the solution already obtained and respecting the
old constraints. Our goal, in this paper, is to maintain
the consistency in a dynamic environment of a con-
straint satisfaction problem involving qualitative and
quantitative temporal constraints. This is of practical
relevance since it is often required to check whether a
solution to a CSP involving temporal constraints con-

tinues to be a solution when a new constraint is added
and if not, whether a new solution satisfying the old
and new constraints can be found. In scheduling prob-
lems, for example, a solution corresponding to an or-
dering of tasks to be processed can no longer be consis-
tent if a given machine becomes unavailable. We have
then to look for another solution satisfying the old con-
straints and taking into account the new information. In
a previous work [1,2], we have developed a temporal
model, TemPro, based on Allen’s interval algebra [3]
and a discrete representation of time, to express nu-
meric and symbolic time information in terms of quali-
tative and quantitative temporal constraints. More pre-
cisely, TemPro translates an application involving tem-
poral information into a binary Constraint Satisfaction
Problem1 where variables are temporal events defined
on domains of numeric intervals and binary constraints
between variables correspond to disjunctions of Allen

1A binary CSP involves a list of variables defined on finite do-
mains of values and a list of binary relations between variables.
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primitives. We call it Temporal Constraint Satisfaction
Problem (TCSP).2 The solution method for solving the
TCSP is based on constraint propagation and requires
two stages. In the first stage, local consistency is en-
forced by applying the path consistency on symbolic
relations and the arc consistency on variable domains.
A backtrack search algorithm is then performed in the
second stage to check the consistency of the TCSP
by looking for a possible solution. Note that for some
TCSPs local consistency implies the consistency of the
TCSP network [5]. The backtrack search phase can be
avoided in this case.

In order to maintain the consistency of a TCSP (ex-
istence of a solution) in a dynamic environment, we
propose three different resolution techniques. The first
one is an exact method based on the above constraint
propagation techniques that we have adapted in or-
der to handle the addition of constraints in an efficient
way. The second technique is based on stochastic lo-
cal search. Indeed, the underlying local search para-
digm is well suited for recovering solutions after lo-
cal changes (addition of constraints) of the problem
occur. The third method, based on genetic algorithms,
is similar to the second one except that the search is
multi-directional and maintains a list of potential so-
lutions (population of individuals) instead of a single
one. This has the advantage to allow the competition
between solutions of the same population which simu-
lates the natural process of evolution. The main differ-
ence between the three methods is that the first one is
a systematic search technique that guarantees the com-
pleteness of the solution provided which is not the case
of the other two approximation methods. This how-
ever makes the approximation methods faster for large
size problems, as shown by the experimental compar-
ison we conducted and that we present in this paper.
Note that related work on using local search methods
for solving temporal constraint problems has been re-
ported in [6]. This latter work consists of solving static
Interval Algebra (IA) networks (representing symbolic
temporal information) using a local search approach
while our goal is to solve temporal networks involv-
ing numeric and symbolic information, in a dynamic
environment.

2Note that this name and the corresponding acronym was used
in [4]. The TCSP, as defined by Dechter et al. is a quantitative tem-
poral network used to represent only numeric temporal information.
Nodes represent time points while arcs are labeled by a set of dis-
joint intervals denoting a disjunction of bounded differences between
each pair of time points.

The rest of the paper is organized as follows. In the
next section, we will present through an example, the
different components of our model TemPro. The three
methods for maintaining the consistency of TCSPs in
a dynamic environment are then presented respectively
in Sections 3, 4 and 5. Section 6 is dedicated to the
experimental evaluation, of the methods we propose,
on randomly generated dynamic TCSPs. Concluding
remarks and possible perspectives of our work are then
presented in Section 7.

2. CSP-based representation of numeric and
symbolic temporal constraints: the model
TemPro

TemPro [1,2] transforms any problem under qual-
itative and quantitative constraints into a binary CSP
where constraints are disjunctions of Allen primi-
tives [3] (see Table 1 for the definition of the Allen
primitives) and variables, representing temporal events,
are defined on domains of time intervals. We call
this later a Temporal Constraint Satisfaction Problem
(TCSP). Each event domain (called also temporal win-
dow) contains the Set of Possible Occurrences (SOPO)
of numeric intervals the corresponding event can take.
The SOPO is the numeric constraint of the event. It is
expressed by the fourfold: [earliest_start, latest_end,
duration, step] where: earliest_start is the earliest start
time of the event, latest_end is the latest end time of the
event, duration is the duration of the event and step is
the discretization step corresponding to the number of
time units between the start time of two adjacent inter-
vals belonging to the event domain. The discretization

Table 1

Allen primitives

Relation Symbol Inverse Meaning

X before Y B Bi X Y

X equals Y E E X
Y

X meets Y M Mi X Y

X overlaps Y O Oi X Y

X during Y D Di X Y

X starts Y S Si X Y

X finishes Y F Fi Y X
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step is a parameter provided by the user. For some ap-
plications, the consistency of the problem can depend
on the discretization step. In this particular case, if the
solution is not found, the user can decrease the value
of the step and run again the solving algorithm. De-
creasing the discretization step will however increase
the complexity of the problem. Indeed, the total num-
ber of combinations (potential solutions) of a TCSP
is DN where N is the number of variables and D their
domain size.

D = Max1�i�N

(
supi − infi − di

si

)
,

where supi, infi, di and si are respectively the latest
end time, earliest start time, duration and step of a
given event Evti. As we can easily see, decreasing the
value of si will increase the domain size d which in-
creases the total number of possibilities of the search
space. Note that begintime, endtime, duration and step
can be constant values or variables taking values from a
discrete and finite domain. We can also use constraints,
in the form of equations or inequalities, in order to re-
strict the values these variables can take. To illustrate
the different components of the model TemPro, let us
consider the following scheduling problem.3

Example 1. The production of five items A, B, C, D
and E requires three mono processor machines M1,
M2 and M3. Each item can be produced using two dif-
ferent ways depending on the order in which the ma-
chines are used. The process time of each machine is
variable and depends on the task to be processed. The
following lists the different ways to produce each of
the five items (the process time for each machine is
mentioned in brackets):

item A: M2(3), M1(3), M3(6) or
M2(3), M3(6), M1(3)

item B: M2(2), M1(5), M2(2), M3(7) or
M2(2), M3(7), M2(2), M1(5)

item C: M1(7), M3(5), M2(3) or
M3(5), M1(7), M2(3)

item D: M2(4), M3(6), M1(7), M2(4) or
M2(4), M3(6), M2(4), M1(7)

item E: M2(6), M3(2) or
M3(2), M2(6).

The goal here is to find a possible schedule of the
different machines to produce the five items and re-

3This problem is taken from [7].

Fig. 1. TCSP corresponding to a subset of the problem presented in
Example 1.

specting all the constraints of the problem. In the fol-
lowing, we will describe how is the above problem
transformed into a TCSP using our model TemPro.
Figure 1 illustrates the graph representation of the
TCSP corresponding the constraints needed to pro-
duce items A and B. We assume that items A and B
should be produced within 25 and 30 units of time re-
spectively. A temporal event corresponds here to the
contribution of a given machine to produce a certain
item. For example, AM1 corresponds to the use of ma-
chine M1 to produce the item A, . . ., etc. In the partic-
ular case of item B, machine M2 is used twice. Thus
there are two corresponding events: BM21 and BM22.
16 events are needed in total to produce the five items.
Most of the qualitative information can easily be rep-
resented by the disjunction of Allen primitives. For ex-
ample, the constraint (disjunction of two sequences)
needed to produce item A is represented by the follow-
ing three relations:

AM2 B ∨ M AM1
AM2 B ∨ M AM3
AM1 B ∨ M ∨ Bi ∨ Mi AM3

However the translation to Allen relations of the
disjunction of the two sequences required to produce
item B needs a 3-ary relation involving BM1, BM22
and BM3. This relation states that BM22 should occur
between BM1 and BM3. Since our temporal network
handles only binary relations, the way we use to rep-
resent this kind of 3-ary relation is as follows: we cre-
ate an additional event (Evt1) and represent the con-
straints for producing item B as shown in Fig. 1. The
duration X of Evt1 is greater (or equal) than the sum
of the durations of BM1, BM22 and BM3. Figure 2
illustrates the solution to the above problem provided
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Fig. 2. Optimal solution provided by the constraint propagation
based method.

by the constraint propagation based method we have
described in introduction. Note that this solution is op-
timal4 but not unique.

3. Dynamic maintenance of the consistency using
constraint propagation techniques

Before we present the solution method for maintain-
ing the consistency of temporal constraints in a dy-
namic environment, let us introduce the notion of dy-
namic temporal constraint satisfaction.

3.1. Dynamic temporal constraint satisfaction
problem (DTCSP)

A dynamic temporal constraint satisfaction problem
(DTCSP) is a sequence of static TCSPs: TCSP0, . . . ,
TCSPi, TCSPi+1, . . . , TCSPn each resulting from
a change in the preceding one imposed by the “outside
world”. This change corresponds to a constraint re-
striction or relaxation. In this paper we will focus only
on constraint restrictions. More precisely, TCSPi+1 is
obtained by performing a restriction on TCSPi. We
consider that TCSP0 (initial TCSP) has an empty set
of constraints. A restriction can be obtained by remov-
ing one or more Allen primitives from a given con-
straint. A particular case is when the initial constraint
is equal to the disjunction of the 13 primitives (we call
it the universal relation I) which means that the con-
straint does not exist (there is no information about the
relation between the two involved events). In this par-
ticular case, removing one or more Allen primitives
from the universal relation is equivalent to adding a
new constraint.

4The total processing time of all machines needed to produce the
five items, 26 seconds, is minimal.

3.2. The solution method

The pseudo-code of the solution method is presented
in Fig. 3. Given that we start from a consistent TCSP,
the goal of the method we present here consists of
maintaining the consistency (existence of a solution)
anytime a new constraint is added. The method works
as follows. We first compute the intersection of the new
constraint with the corresponding constraint in the con-
sistent graph. We call updated constraint the result of
the intersection. If updated constraint is an empty rela-
tion then the new constraint cannot be added (as it will
violate in this case the consistency of the constraint
graph) otherwise we replace the current constraint of
the graph by updated constraint. If updated constraint
is inconsistent with the current solution obtained for
the problem then we perform the following steps.

1. Numeric → symbolic conversion: check the
compatibility of the updated constraint and the
numeric domains of the two variables involved
by the constraint. This is accomplished by per-
forming the numeric → symbolic conversion on
the updated constraint. If the updated constraint
becomes empty then it cannot be added. This pro-
cedure works as follows: from the domains of
the two variables involved by the constraint, we
can extract the corresponding symbolic relation.
An intersection of this relation with the updated
constraint will reduce the size of the latter which
simplifies the size of the original problem. We
can get the symbolic relation between two events
by extracting Allen primitives from all possible
pairs of intervals belonging to the Cartesian prod-
uct of the domains of both events. This, however,
requires

O

(
Max1�i�N

(
supi − infi − di

si

)2)

in time where N is the number of events and

Max1�i�N

(
supi − infi − di

si

)

is the size of the largest domain. This method
can be very expensive for large size domains of
events. Alternately, we have defined an incom-
plete method that extracts most of the primitives
within a relation between each pair of events in
constant time reducing the complexity to O(C)
where C is the total number of constraints. The
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Function Restrict(i,j)
1. t ← new_constraint

⋂
Cij , updated_list ← {(i, j)}

2. if (t = ∅) then
3. return “Constraint cannot be added”
4. else
5. Cij ← t

6. if ¬ConsistentWithCurrentSol(updated_list) then
7. if ¬NumSymb(updated_list) then
8. return “Constraint cannot be added”
9. if ¬DPC(updated_list) then
10. return “Constraint cannot be added”
11. if ¬DAC(updated_list) then
12. return “Constraint cannot be added”
13. if ¬DSearch(updated_list) then
14. return “Constraint cannot be added”

Function DAC(updated_list)
1. Q ← updated_list
2. AC ← true
3. (list initialized to the constraints updated after PC)
4. While Q �= Nil Do
5. Q ← Q − {(x, y)}
6. if Revise(x, y) then
7. if Dom(x) �= ∅ then
8. Q ← Q � {(k, x) | (k, x) ∈ R ∧ k �= y}
9. else
10. return AC ← false
8. End-While

Function Revise(x, y)
1. REV ISE ← false
2. For each interval a ∈ SOPOx Do
3. If ¬compatible(a, b) for each interval b ∈ SOPOy Then
4. remove a from SOPOx

5. Revise ← true
6. End-If
7. End-For

Function DPC(updated_list)
1. PC ← false
2. L ← updated_list
3. while (L �= ∅) do
4. select and delete an (x, y) from L
5. for k ← 1 to n, k �= x and k �= y do
6. t ← Cxk

⋂
Cxy .Cyk

7. if (t �= Cxk) then
8. Cxk ← t
9. Ckx ← INV ERSE(t)
10. L ← L ∪ {(x, k)}
11. updated_list ← updated_list ∪ {(x, k)}
12. t ← Cky

⋂
Ckx.Cxy

13. if (t �= Cky ) then
14. Cyk ← INV ERSE(t)
15. L ← L ∪ {(k, y)}
16. updated_list ← updated_list ∪ {(y, k)}

Fig. 3. Dynamic consistency algorithm.

method consists of using the information con-
cerning the lower bound, upper bound and du-
ration of the event temporal window instead of
its occurrences. Let us consider ei and ej two
events, rij the symbolic relation between them
(initially set to the disjunction of the 13 Allen
primitives), and infi, infj , supi, supj , di and dj

respectively the earliest start time of ei, earliest
start time of ej , latest end time of ei, latest end
time of ej , duration of ei and duration of ej . Our
method, denoted NumSymb in Fig. 3, is defined
by the following rules:

1. if infi > supj then rij ← Bi,
2. if supi < infj then rij ← B,
3. if di < dj then remove { E, Si, Fi, Di }

from rij ,
4. if di > dj then remove { E, S, F, D } from

rij ,
5. if di = dj then remove { D, Di, S, Si, F, Fi }

from rij ,
6. if infi + di > supj − dj then remove { M,

B } from rij ,
7. if supi − di < infj + dj then remove { Mi,

Bi } from rij ,
8. if infi > supj − dj then remove { E, B, M,

S, Si, O, Di } from rij ,
9. if infi + di > supj then remove { E, B, M,

F, Fi, D } from rij ,
10. if supi < infj + dj then remove { F, Fi }

from rij ,
11. if supi − di < infj then remove { S, Si, E }

from rij .

2. Dynamic path consistency: perform dynamic
path consistency (DPC) in order to propagate
the update of the constraint to the rest of the
graph. If the resulting graph is not path consistent
then the new constraint cannot be added.

3. Dynamic arc consistency: perform dynamic arc
consistency (DAC) starting with the updated
constraints. If the new graph is not arc consistent
then the new constraint cannot be added.

4. Incremental backtracking: perform the back-
track search algorithm in order to look for a new
solution to the problem. The backtrack search
will start here from the point (resume point) it
stopped in the previous search when it succeeded
to find a complete assignment satisfying all the
constraints. This way the part of the search space
already explored in the previous searches will be
avoided. The search will explore the rest of the
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Fig. 4. Dynamic backtracking after adding a new constraint.

search space. If a solution is found then the point
where the backtrack search stopped is saved as
new resume point and the new solution is re-
turned. Otherwise the graph is inconsistent (when
adding the new constraint). The new constraint
cannot be added. Note that when the backtrack
start from the resume point, it first processes the
source of conflict and proceed further using the
dynamic backtracking method [8] as follows. Let
us consider the example illustrated in Fig. 4. Here
we have the first 5 events of the search space and
we assume that we are adding a new constraint
between events 3 and 5. We also assume that this
constraint is violating the assignment given to
both events. The backtrack search algorithm will
start first by assigning a new value to event 5 that
is consistent with the values assigned to events 3
and 1. If such value is found we proceed further
to event 6 otherwise we backtrack (“backjump”)
to event 3, assign a new value to this event and
proceed forward. Note that, before backtracking
to event 3, event 4 will be moved above event 3
as both events do not share a constraint. This will
avoid any superfluous work.

DPC it the path consistency algorithm PC-2 [9] we
have adapted to handle constraint additions in an incre-
mental way [10]. A similar dynamic path consistency
algorithm has been proposed [11]. DAC is the new arc
consistency algorithm AC-3 [12,13] we have adapted
for temporal constraints in a dynamic environment.
A detailed description of DAC can be found in [14].
The intersection binary operator [3], denoted by

⋂
in

the Restrict and DPC functions of Fig. 3, is the ordi-
nary set intersection of the Allen primitives composing
each symbolic constraint. In other words, the intersec-
tion of two symbolic relations such as P ∨D∨M ∨O
and D ∨ M ∨ S is simply the Allen primitives shared
by both, namely D∨M . The composition of two sym-
bolic relations Ri and Rj , denoted by Ri. Rj as shown

in Fig. 3, is computed using the distributive law and the
composition table of Allen primitives [3] as follows.
Let us assume Ri = Mi ∨ Oi and Rj = B ∨ M .

(Mi ∨ Oi) . (B ∨ M )

= (Mi.B) ∨ (Mi.M ) ∨ (Oi.B) ∨ (Oi.M )

= E ∨ B ∨ M ∨ S ∨ Si ∨ O ∨ Di ∨ Fi

(Mi.B), (Mi.M ), (Oi.B) and (Oi.M ) are com-
puted using the composition table of the 13 Allen prim-
itives [3].

4. Dynamic maintenance of the consistency using
stochastic local search

In this section we present the way to solve dynamic
TCSPs using a stochastic local search method. This
technique is based on a common idea known under the
notion of local search. In local search, an initial config-
uration (potential solution) is generated randomly and
the algorithm moves from the current configuration to
a neighborhood configurations until a complete solu-
tion (solution satisfying all the constraints) has been
found or a maximum number of iterations is reached.

In the case of a dynamic environment, anytime a
new constraint is added, the stochastic local search al-
gorithm works as follows:

1. If the new constraint does not conflict with the
solution obtained so far, return “problem consis-
tent when adding the new constraint”.

2. Restart the search from the configuration corre-
sponding to the last solution obtained, and iter-
ates until a new solution respecting the old con-
straints and the new one is found, or the maxi-
mum number of iterations is reached (in which
case the new constraint is rejected).

The pseudo-code in Fig. 5 illustrates the local search
strategy using the Min-Conflict-Random-Walk tech-
nique (MCRW). Anytime a new constraint is added,
this technique restarts the search by choosing ran-
domly a conflicting event in the configuration, i.e., the
event that is involved in any unsatisfied constraint. In
this particular case, the choice is done among the two
events involved by the new constraint. The method
will then pick a value (numeric interval) which min-
imizes the number of violated constraints (break ties
randomly). If no such value exists, it picks randomly
one value that does not increase the number of vi-
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procedure DYN_MCRW(Max_Moves,p)
Begin

while there is a new constraint to be processed do
// sol is the current solution
// (set of pairs <event,interval>)
if the new constraint does not conflict with sol then

return sol
endif
nb_moves ← 0;
while eval(sol) > 0 & nb_moves < Max_Moves do

if probability p verified then
choose randomly an event evt in conflict;
choose randomly an interval intv for evt;

else
choose randomly an event evt in conflict;
choose an interval intv that minimizes
the number of conflicts for evt;

endif
if intv �= current value of evt then

assign intv to evt;
nb_moves ← nb_moves+1;

endif
endwhile

return sol
endwhile

End

Fig. 5. Pseudo-code of the MCRW method.

olated constraints (the current value of the event is
picked only if all the other values increase the number
of violated constraints). In order to go beyond a local
optimum, we use a random-walk strategy as follows:
for a given conflicting event, this strategy picks ran-
domly a value with probability p, and apply the Min
Conflict heuristic with probability 1 − p. In the worst
case, the time cost required in each move corresponds
to the time needed to determine the value that min-
imizes the number of violated constraints. To do so,
we have to compute the number of conflicts for each
value and take the value having the minimum num-
ber of conflicts. Computing the number of conflicts for
a given value is done by checking the consistency of
the value with all the other event values. This costs
O(N ) in the worst case where N is the total number of
variables. Thus, the total cost for computing the num-
ber of conflicts for all the values is O(ND) where D

the size of the largest event domain. Since the number
of moves, denoted by Max_Moves in 5, is a constant
number given in input then the total complexity in time
of MCRW is also O(ND). In our case,

D = Max1�i�N

(
supi − infi − di

si

)
,

where supi, infi, di and si are respectively the latest
end time, earliest start time, duration and step of a
given event Evti. The evaluation function of a com-
plete assignment (or potential solution), denoted by
eval(sol) where sol is the potential solution, corre-
sponds to the quality of the solution and is defined by
the number of violated constraints.

5. Dynamic maintenance of the consistency using
genetic algorithms

Genetic algorithms (GAs) perform multi-directional
searches by maintaining potential solutions or scenar-
ios (called also population of individuals) and encour-
aging information formation and exchange between
these directions. It is an iterative procedure that main-
tains a constant size population of candidate solutions.
Each iteration is called a generation and it undergoes
some changes. Crossover and mutation are the two pri-
mary genetic operators that generate or exchange infor-
mation in GAs. Under each generation, good solutions
are expected to be produced and bad solutions die. It is
the role of the objective (evaluation or fitness) function
to distinguish the goodness of the solution. In the case
of TCSPs, we define the following concepts.

Individual (potential solution): one possible assign-
ment of numeric intervals to all events i.e set of
couples (evi, occj), where evi is an event and
occj is a possible interval belonging to the do-
main of evi. In other words, the individual repre-
sents a potential solution to the problem.

Population: a set of individuals (potential solutions).
Mutation: unary operator that returns a new individ-

ual (child) by assigning a new value (numeric in-
tervals) to an event of a given individual (parent).

Crossover: n-ary operator that takes as arguments two
individuals and returns a two new individuals
with assignments belonging to parent individu-
als.

Fitness (evaluation) function: returns a measure of
an individual. The measure corresponds here to
the quality of the solution. The quality is defined
by the number of satisfied constraints.

To illustrate the above concepts let us consider the
following example.

1. John, Mary and Wendy separately rode to the
soccer game.

2. It takes John 30 minutes, Mary 20 minutes and
Wendy 50 minutes to get to the soccer game.
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3. John either started or arrived just as Mary
started.

4. John left home between 7:00 and 7:10.
5. Mary arrived at work between 7:55 and 8:00.
6. Wendy left home between 7:00 and 7:10.
7. John’s trip overlapped the soccer game.
8. Mary’s trip took place during the game or else

the game took place during her trip.
9. The soccer game starts at 7:30 and lasts 105 mi-

nutes.
10. John either started or arrived just as Wendy

started.
11. Mary and Wendy arrived together but started at

different times.

Figure 6 shows an arc and path consistent graph cor-
responding to the above problem. A possible individ-
ual is presented here with the value of fitness equal
to 3. Examples of mutation and crossover operators are
respectively presented in Figs 7 and 8.

The pseudo code of the GA based method for dy-
namic TCSPs is illustrated in Fig. 9. Anytime a new
constraint is added, this method starts from the popula-
tion in which the solution of the TCSP (before adding
the new constraint) has been found. The method will

Fig. 6. GA representation of a TCSP.

Fig. 7. Mutation operator.

then iterate until the termination condition is satisfied.
At each iteration, the method maintains a population
of n individuals, P (1) = {ind1

1, . . . , ind1
n} for iter-

ation 1, . . . P (t) = {indt
1, . . . , indt

n} for iteration t,
. . ., etc. Each individual (potential solution) indt

i is
evaluated using the fitness function. A new popula-
tion at iteration t + 1 is then formed by selecting the
individuals with a better fitness value (select step in
line 12) from the population of iteration t. Some of the
selected individuals will be transformed (alter step in
line 13) by the mutation and crossover operators. The
algorithm is executed until it is running out of time or a
solution with the best quality (quality = total number
of satisfied constraints) is found.

The complexity in time of the GA method presented
in Fig. 9 corresponds to the time cost needed at each
iteration (since the number of iterations is constant).
Each iteration involves the procedures select, alter and
evaluate respectively in lines 12, 13 and 14. The proce-
dure select consists of selecting a new population from
the old one using the fitness value of the individuals.

Fig. 8. Crossover operator.

1. begin
2. t ← 1
3. while there is a new constraint to process do
4. // P (t) denotes the population containing

// the current solution
5. if new constraint does not conflict with

the solution in P(t) then
6. return P(t)
7. endif
8. eval ← evaluate P (t)
9. // the evaluation is performed when adding

// the new constraint
10. while termination condition is not satisfied do
11. t ← t + 1
12. select P (t) from P (t − 1)
13. alter P (t)
14. evaluate P (t)
15. endwhile
16. if solution found then
17. return P(t)
18. endwhile
19. end

Fig. 9. Genetic algorithm for dynamic constraints.
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This requires a constant time cost (since the size of the
population is a constant number). The procedure alter
consists of applying a constant number of mutations
and crossover on the individuals. The mutation opera-
tor changes the value of an individual event with a new
one minimizing the fitness function. This new value is
chosen in the same way as for the MCRW method and
thus requires O(ND) time cost where N is the num-
ber of variables and D their domain size. Similarly the
crossover operator requires also O(ND) time cost in
order to select the good genes (events) from both in-
dividuals. The evaluate function costs O(N2) in the
worst case (case of a complete graph where the num-
ber of constraints is equal to [N (N − 1)]/2). The total
cost of the GA procedure is thus O(ND + N2).

6. Experimentation

In order to evaluate and compare the performance
of the three methods we propose, we have performed
experimental tests on randomly generated consistent
DTCSPs. The criteria used to evaluate the three dif-
ferent methods is the running time needed to main-
tain the consistency of the DTCSP and the percentage
of success of each of the three methods. The experi-
ments are performed on a SUN SPARC Ultra 5 sta-
tion. All the procedures are coded in C/C++. A con-
sistent TCSP of size N (N is the number of variables)
has at least one complete numeric solution (set of N
numeric intervals satisfying all the constraints of the
problem). Thus, to generate a consistent TCSP we first
randomly generate a numeric solution and then ran-
domly add other numeric and symbolic information to
it. More precisely, the generation is performed by the
following three steps.

Step 1. Generation of the numeric solution
Randomly pick N pairs (x, y) of integers such that

x < y and x, y ∈ [0, . . . , Horizon]. This set of N
pairs forms the initial solution where each pair corre-
sponds to a time interval. Horizon is the time value be-
fore which all the events are processed.

Step 2. Generation of numeric constraints
For each interval (x, y) randomly pick an interval

contained within [0..Horizon] and containing the in-
terval (x, y). This newly generated interval defines the
temporal window of the corresponding variable. From
this temporal window, we generate the domain of the
corresponding event.

Step 3. Generation of symbolic constraints
Compute the basic Allen primitives that hold be-

tween each interval pair of the initial solution. Add to
each relation a random number belonging to the inter-
val [0, Nr] (1 � Nr � 13) of chosen Allen primitives.

Example. Let us assume we want to generate a con-
sistent TCSP with N = 3 and Horizon = 10.

1. First a numeric solution is generated:
S = {(14), (28), (57)}.

2. Numeric constraints (domains of the three events)
are then randomly generated from the numeric
solution.

Interval SOPO Domain
(1 4) → [0,9] → {(0 3) . . . (6 9)}
(2 8) → [2,10] → {(2 8) . . . (4 10)}
(5 7) → [3,8] → {(3 5) . . . (6 8)}

3. Allen primitives are then computed from the
pairs of intervals of the numeric solution:

(1 4) and (2 8) → O
(1 4) and (5 7) → B
(2 8) and (5 7) → Di

and finally other Allen primitives are randomly
chosen from the list of the 13 basic relations and
added to the above primitives.

O + BM → BOM
B + DDiEO → DiEOB
Di + DEFSP → FSDDiBE

After generating the TCSP, the solving algorithm
will process the list of temporal relations in an incre-
mental way (in order to simulate a dynamic TCSP).
More precisely, we start with a DTCSP having N vari-
ables and 0 constraints. Constraints are then added one
by one, in an arbitrary order, from the randomly gener-
ated TCSP to the DTCSP until a given number of con-
straints, C, is reached. After adding each constraint,
the solving algorithm will check the consistency of the
new DTCSP.

Table 2 presents the results of tests performed on
DTCSP instances defined by the number of variables
N , the domain size D and the number of constraints C.
For each method, the time parameter corresponds to
the total running time in seconds needed to process
all the constraints in an incremental manner. For each
test, the three methods are executed on 100 instances
and the average running time is taken. For each prob-
lem instance, the approximation methods are allocated
a maximum time of 1000 seconds to find the solution.
For large problems, these methods fail sometimes to
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Table 2

Comparative tests on randomly generated DTCSPs

Problem Dynamic CSPs MCRW GAs

N C D Time Time % of success Unsolv cons Time % of success Unsolv cons

20 95 50 0.10 0.12 100% 0 0.27 100% 0

40 390 50 0.27 0.24 100% 0 0.34 100% 0

60 885 50 0.65 0.82 100% 0 0.95 100% 0

80 1580 50 1.52 1.45 100% 0 1.32 100% 0

100 2475 50 1.89 1.57 98% 3 1.73 98% 3

200 9950 100 7.14 3.12 92% 17 3.16 94% 15

300 22425 100 43.46 7.18 88% 22 6.44 90% 18

400 39900 100 215.34 11.4 83% 35 10.36 87% 34

provide a solution satisfying all the constraints. This
is expressed by the percentage of success which is the
number of times the method succeeded to solve the
problem. Note that, when an approximation method
fails to solve a given instance, the corresponding run-
ning time is not considered to compute the average
time. The column “Unsolv cons” contains the average
number of non solved constraints reported in the case
where the approximation method fails to return a com-
plete solution.

The running times of the three methods are compa-
rable for small and medium size problems (N � 100).
This makes the exact method the technique of choice in
this case since the incomplete methods fail sometimes
(98% success for N = 100 in the case of both approx-
imation methods) to solve the problem. For large prob-
lems the CSP-based method becomes very slow, com-
paring to the approximation methods. This is due to the
exponential running time of the exact method (com-
paring to the polynomial time cost of the approxima-
tion methods). However, the percentage of success of
the approximation methods decreases when the size of
the problem increases. In this case, if the running time
is not an issue, the exact method can be used. Indeed,
the approximation methods fail to find a complete so-
lution even when given 1000 seconds to solve the prob-
lem which exceeds the total running time required by
the exact method to solve any problem tested. If, how-
ever, the running time is important, then the approx-
imation methods are the methods of choice. This is,
for example, the case of solving constraint problems in
real time, where a solution (even incomplete) needs to
be returned within a given deadline. Indeed, in the case
of approximation methods, the running time is propor-
tional to the quality of the solution returned (number
of violated constraints) as we can see in Fig. 10. The
figure illustrates here the execution times, in seconds,
obtained by MCRW versus the corresponding quality

Fig. 10. Running time of MCRW versus quality of the returned so-
lution for a 100-variable DTCSP.

of the solution returned. As we can see, on the figure,
if we interrupt the program at anytime before 1.2 sec-
onds (total time needed to solve the problem com-
pletely) we will obtain a solution with a given quality.
For this particular problem instance, it took the exact
method 1.54 seconds to solve the problem. Also, the
exact method does not have the ability to return a solu-
tion with a quality proportional to the execution time.

The performance of the stochastic local search
method and the genetic algorithms are comparable for
both small size and large size problems. This suggests
further study of the search space in order to see when
to expect genetic algorithms to outperform stochastic
local search and vise versa.

7. Conclusion and future work

In this paper we have presented three different meth-
ods for maintaining the consistency of a temporal con-
straint satisfaction problem in an incremental way. The
methods are of interest for any application where qual-
itative and numeric temporal information should be
managed in an evolutive environment. This can be
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the case of real world applications such as reactive
scheduling and planning where any new information
corresponding to a constraint restriction should be han-
dled in an efficient way.

One perspective of our work is to handle the relax-
ation of constraints during the resolution process. For
example, suppose that during the search, a given con-
straint is removed. Would it be worthwhile to find those
values removed previously because of this constraint
and to put them back in the search space or would it be
more costly than just continuing on with search.

Another perspective is to use the dynamic methods
we propose for solving conditional TCSPs [15]. Con-
ditional TCSPs are TCSPs containing temporal vari-
ables whose existence depends on the values chosen
for other temporal variables. In this case we will have
to maintain the consistency of the TCSP any time new
temporal variables are added.
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