
A Multi-Phase Hybrid Metaheuristics Approach

for the Exam Timetabling

Ali Hmer and Malek Mouhoub*

Department of Computer Science

University of Regina

Regina S4S 0A2, Canada
*Malek.Mouhoub@uregina.ca

Received 16 February 2016

Revised 25 October 2016
Accepted 2 November 2016

Published 29 November 2016

We propose a Multi-Phase Hybrid Metaheuristics approach for solving the Exam Timetabling
Problem (ETP). This approach is de¯ned with three phases: pre-processing phase, construction
phase and enhancement phase. The pre-processing phase relies on our variable ordering heu-
ristic as well as a form of transitive closure for discovering implicit constraints. The construction
phase uses a variant of the Tabu Search with con°icts dictionary. The enhancement phase
includes Hill Climbing (HC), Simulated Annealing (SA) and our updated version of the ex-
tended \Great Deluge" algorithm. In order to evaluate the performance of the di®erent phases
of our proposed approach, we conducted several experiments on instances taken from ITC 2007
benchmarking datasets. The results are very promising and competitive with the well known
ETP solvers.

Keywords: Timetabling; constraint optimization; metaheuristics.

1. Introduction

The Examination Timetabling Problem (ETP),1,2 is an annual or semi-annual

problem for educational institutions. Due to its complexity and practicality, it is

extensively studied by researchers in operational research and arti¯cial intelligence.

In this regard, many ETP solving approaches have been proposed and discussed1–13

using one or a combination of some of the following methods: graph-based, sequential

techniques, clustering-based techniques, constraint-based techniques, metaheur-

istics, hyper-heuristics, multi-criteria techniques, and case-based reasoning techni-

ques. In this paper, we propose a Multi-Phase Hybrid Metaheuristics approach

consisting of the following three stages: preprocessing, construction, and enhance-

ment. The preprocessing phase is needed to prepare the work for the remaining two

stages. During this phase, exams are sorted following the most constrained variables

¯rst heuristic14 and implicit constraints are discovered using a form of transitive

*Corresponding author.

International Journal of Computational Intelligence and Applications
Vol. 15, No. 4 (2016) 1650023 (22 pages)

#.c World Scienti¯c Publishing Europe Ltd.

DOI: 10.1142/S1469026816500231

1650023-1

http://dx.doi.org/10.1142/S1469026816500231

closure based on our Dynamic Path Consistency (DPC) algorithm for temporal

constraints.15–17 During the construction stage, a complete feasible solution is found

using a variant of Tabu Search along with con°icts dictionary to reduce cycling. In

the enhancement phase, a chosen metaheuristic is used. Once a solution can no

longer be improved or reaches an idle state, another metaheuristic kicks in and is

used. The following metaheuristics are considered: Hill Climbing (HC),18,19 Simu-

lated Annealing (SA)20 and our updated version of the extended \Great Deluge"

solving algorithm.3 This latter is an improvement of the one proposed in Ref. 3.

In order to evaluate the performance of the di®erent phases of our proposed

approach, we conducted several experiments on instances taken from the ITC 2007

benchmarking datasets.21 The results are very promising and are competitive with

the well-known ETP solvers.

In the next section, we will introduce the problem we are tackling. Section 3

presents our proposed solving approach. Experimental tests evaluating our solving

method are then reported in Sec. 4. Finally, concluding remarks and future works are

listed in Sec. 5.

2. Problem Description

We model the ETP as a constraint optimization problem (COP) including the

variables, hard and soft constraints listed in the following two subsections. Solving

this problem consists in ¯nding a complete assignment of values to all the variables

satisfying all the hard constraints and minimizing the violations of the soft ones.

In other words, this corresponds to ¯nding a schedule that would be fair to all the

students. Minimizing soft constraints is done by minimizing a penalty or cost func-

tion de¯ned as shown in Sec. 2.2.

2.1. Variables and constraints

Following the common formulations to the Examination Timetabling,22,23 variables

and constraints are de¯ned as follows.

. Variable. Each exam is modeled as a problem variable de¯ned over a ¯nite

domain of all possible assignments to that exam. An assignment is composed of a

time period and a room.

. Room Constraint. Exams are constrained by rooms seating capacity.

. Student Constraint. This temporal constraint prevents a student from being

scheduled for more than one exam during a given time period.

. Precedence Constraint. This temporal constraint imposes an ordering (prece-

dence) between two or more exams.

. Same Time Constraint. This temporal constraint restricts two or more exams

to take place during the same time slot. This is the case of exams containing similar

material.

A. Hmer & M. Mouhoub

1650023-2

. Di®erent Time Constraint. This temporal constraint restricts two or more

exams to take place during di®erent time slots.

. Same Room Constraint. This constraint restricts two or more exams to take

place in the same room.

. Di®erent Room Constraint. This constraint restricts two or more exams to

take place in di®erent rooms.

2.2. Soft constraints and penalty functions

The penalty function is a measure to calculate the total cost/value of a given solution.

Each soft constraint involves a single or multiple resources and violating it has its own

penalty value that should be set in the problem description. The total penalty value of

any solution is the sum of penalties of all violated soft constraints in the corresponding

ETP. Penalties correspond to violating soft constraints including the following.

(1) Students taking two exams in a row.

(2) Students taking two exams in the same day.

(3) Mixed durations where two or more exams are taking place in the same room but

have di®erent durations.

(4) Room penalty where using certain rooms implies speci¯c penalty to discourage

scheduling exam to them.

(5) Period penalty where assigning exam to certain periods implies speci¯c penalty.

The goal of the above soft constraints is to maximize students' satisfaction (case

of the ¯rst two soft constraints), to reduce University resources and cost (case of soft

constraints 3 and 4) or both (case of the last soft constraint).

3. Proposed ETP Solving Approach

As described in the introduction section, our proposed solving approach consists of

the following three main phases. A pre-processing phase followed by a construction

and an enhancement phases. The following describes the details of each stage.

3.1. Pre-processing phase

The pre-processing phase consists of two stages described as follows.

3.1.1. Problem collections ordering

In this stage, a process takes place for the di®erent collections that the exam problem

consists of. These collections are exams, rooms, periods, and students. Exams and

students are usually large collections and pre-ordering those leads to a better per-

formance and e±cient results during search. In Refs. 24 and 25, two of the well-

known common techniques have been proposed to describe the ordering of exams

based on di±culty criteria preceding their assignment to time slots. Our approach is

slightly di®erent from these techniques. It depends on a di®erent concept revolving

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-3

around our knowledge that large exam timetabling problems contain students, large

exams, and resources collections, and enhancing the way that we retrieve and lookup

any element in these collections is a key in any e±cient search algorithm. In addition

and following the idea of most constrained variables ¯rst based on con°ict driven

heuristics for weighting constraints,14 exams with most scheduling di±culty are

scheduled ¯rst. The goal here is to prevent later failure earlier which will decrease the

size of the search space. Con°ict driven heuristics are those that gather information

about constraint violations during the search process, in the form of constraint

weights. The heuristics we use for this purpose are respectively based on HC and Ant

Colony Optimization (ACO) techniques.14 More precisely, these two approximation

techniques are run for a speci¯c amount of time or cycles, during which, the con-

straints gain weight every time they are violated. At the end of this process, each

variable gets a weighted degree, which is the sum of the weights of the constraints

that the variable is involved in. Variables are then sorted based on their weights and

those with larger weight get more priority in the ordering. More details about this

process can be found in Ref. 14.

3.1.2. Discovery of implicit hard constraints

In this stage we have developed a technique to discover all hard constraints that were

not explicitly de¯ned in the problem. In any large COP that contains a large collection

of variables, values, and constraints, there is always the possibility of missing some of

the hard constraints that depend on some of the declared ones. Our approach is to

provide a pre-processing stage that discovers these unspeci¯ed constraints and add

them to the problem constraints collection. In fact our goal is to add other constraints

that should be known before assigning a value to a variable which in essence might

eliminate some of the variables domain values and hence preventing a backtracking

process, which would occur later on, if these additional constraints were not speci¯ed.

The pre-processing stage starts by creating a temporal constraint graph where

nodes represent the exams and edges are the hard temporal constraints between

exams. We then apply our DPC algorithm16,17 to discover new temporal constraints

between other exams in the same graph.

Figure 1 lists the pseudo-code of DPC17 we used for discovering new temporal con-

straints. This algorithm is based of Allen's Algebra for representing qualitative temporal

information.15 In this representation, each temporal constraint is expressed as a disjunc-

tion of Allen primitives (possible relations between a pair of temporal intervals). Figure 2

lists all the possible Allen primitives. For instance the following represents the fact

that Exam1 and Exam2 should be scheduled at di®erent times (mutually exclusive

events): Exam1 B _Bi Exam2. Exam1 Bi Exam2 corresponds to Exam2 B Exam1

and the same applies for all the other inverse primitives. For the sake of notation sim-

plicity, a temporal constraint is denoted as a set of Allen primitives rather than a dis-

junction of these basic relations. For instance, the above example will be represented as

Exam1 fB;Big Exam2. We will adopt this notation in the remaining of the paper.

A. Hmer & M. Mouhoub

1650023-4

Our DPC algorithm has the ability to process temporal constraints in an incre-

mental way. In this regard, each new constraint (expressed as a disjunction of some

Allen primitives) between two events (exams) i and j is ¯rst processed by the Rest-

rictði; jÞ function. This latter function will compute the intersection between this

new constraint with the current one (if any). This will update the relation between the

two events (this can be the case where the user is submitting a more restrictive

constraint) or rejects the new constraint (if it con°icts with the current one). Note that

the initial constraints between each pair of events are set to the universal relation

(disjunction of all the Allen primitives) which corresponds to completely unknown

relations. The DPC algorithm is then applied on the list of new constraints in order to

check the consistency of these latter and deduce new temporal constraints. This is

done by enforcing the path consistency (equivalent to 3 consistency) on each subset of

Function Restrict(i, j, new constraint)
Cij : current constraint (disjunction of Allen’s primitives) between events i and j

1. t ← new constraint
⋂

Cij

2. updated list ← {(i, j)}
3. if (t = ∅) then
4. return “Constraint cannot be added”
5. else
6. Cij ← t

7. if ¬DPC(updated list) then
8. return “Constraint cannot be added”

Function DPC(updated list)
Cxk: current constraint (disjunction of Allen’s primitives) between events x and k

INV ERSE(R): returns the disjunction of the inverse of each Allen primitive within R
⊗

: composition operator between two relations using Allen’s composition table

1. L ← updated list

2. while (L �= ∅) do
3. select and delete an (x, y) from L

4. for k ← 1 to n, k �= x and k �= y do
5. t ← Cxk

⋂
Cxy

⊗
Cyk

6. if (t �= Cxk) then
7. if (t = ∅) then return false
8. Cxk ← t

9. Ckx ← INV ERSE(t)
10. L ← L ∪ {(x, k)}
11. updated list ← updated list ∪ {(x, k)}
12. t ← Cky

⋂
Ckx

⊗
Cxy

13. if (t �= Cky) then
14. if (t = ∅) then return false
15. Cyk ← INV ERSE(t)
16. L ← L ∪ {(k, y)}
17. updated list ← updated list ∪ {(y, k)}
18. return true

Fig. 1. Dynamic path consistency algorithm.

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-5

3 events, using both the composition and the intersection operations. The composition

is computed according to Table 1. The INVERSEðtÞ, invoked in DPC procedure,

returns the disjunction of the inverse of each Allen primitive within t. For instance, if

t ¼ fM ;Oi;Dg then INVERSEðtÞ ¼ fMi;O;Dig.

Table 1. Allen's composition table.

E B Bi D Di O Oi M Mi S Si F Fi

E E B Bi D Di O Oi M m S s F Fi

B B B I u B B u B u B B u B

Bi p I Bi vi Bi vi Bi vi Bi vi Bi Bi Bi

D D P Bi D I u vi B Bi D vi D u

Di Di v ui n Di zi yi zi yi zi Di yi Di

O O B ui y v x n B yi O zi y x

Oi Oi v Bi z ui n xi zi Bi z xi Oi yi

M M B ui y B B y B a M M y B

Mi Mi v Bi z Bi z Bi b Bi z Bi Mi Mi

S S P Bi D v x z P Mi S b D x

Si s v Bi z Di zi Oi zi m b s Oi Di

F F P Bi D ui y xi M Bi D xi F a

Fi Fi P ui y Di O yi M yi O Di a Fi

x ¼ fB;O;Mg
y ¼ fD;O;Sg
z ¼ fD;Oi;Fg
a ¼ fE;F ;Fig
b ¼ fE;S;Sig
u ¼ fB;O;M;D;Sg
v ¼ fB;O;M;Di;Fig
n ¼ fE;F ;D;O;S;Fi;Di;Oi;Sig

Fig. 2. Allen primitives.

A. Hmer & M. Mouhoub

1650023-6

Let us see how we can discover a new constraint using DPC. Assume we have 3

exams; Exam1, Exam2, and Exam3, sharing the following two temporal constraints:

C12 ¼ Exam1 fBg Exam2

C23 ¼ Exam2 fDig Exam3

The ¯rst constraint above states that Exam1 should happen before Exam2 while

the second constraint expresses the fact that Exam2 contains Exam3 (Exam3

happens during Exam2).

In order to enforce path consistency on the above three events (and discover the

new constraint between Exam1 and Exam3), we ¯rst have to set the temporal

constraint between Exam1 and Exam3 to the universal relation (disjunction of the

13 Allen primitives) as this constraint is initially unknown:

C13 ¼ Exam1fB;Bi;D;Di;S;Si;F ;Fi;O;Oi;M ;Mi;EgExam3

DPC will then enforce path consistency as follows:

C13 C13

\
C12 � C23

According to the composition table (see Table 1), C12 � C23 will return fBg. C13

will then be set to fBg (the intersection takes the primitives that are common to both

constraints).

We refer the reader to Refs. 17 and 26 for more details on DPC and temporal

constraints.

3.2. Construction phase

In the construction phase a complete feasible solution is found using Tabu Search

metaheuristics. Tabu Search iteratively moves from one potential solution to an

improved one in the neighborhood of the current solution until the stopping criterion

has been satis¯ed. The search is stopped after either a complete feasible solution is

found or maximum time is reached. The overall approach is to avoid cycles by

preventing or penalizing moves which take the solution, in the next iteration, to

points in the solution space previously visited and that is why it is called \Tabu".

Our Tabu Search is used along with con°icts dictionary to reduce cycling. A

Con°icts dictionary essentially is a dictionary data structure consisting of a key and

a value and is used for its performance capability. Each entry in the con°icts dic-

tionary represents a count for the number of con°icts that an assignment causes

during search. In future search iterations, the entry with the highest counts are

avoided and regarded as Tabu. Utilizing Tabu Search metaheuristics with con°icts

dictionary can be further detailed as follows. As the search is only considered by

variable and value selection criteria, the algorithm initially tries to ¯nd those vari-

ables that are most problematic to assign. Usually, a variable is randomly selected

from unassigned variables that have the smallest domain size and less number of

hard constraints. It then attempts to select the best value to assign to the selected

variable using con°icts dictionary. A best value is one where its assignment improves

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-7

the overall value of the solution. In other words, when assigning a value to a given

variable, the algorithm is looking to minimize the number of con°icting variables

that need to be unassigned in order to reach or keep a solution feasible after as-

signment. A value is selected randomly if there is more than one value with such

conditions. Soft constraints violations are totally ignored in this phase as they might

a®ect the algorithm performance when searching for complete feasible solutions.

As known, standard Tabu algorithm prevents cycling by using a Tabu list, which

determines the forbidden moves. This list stores the most recently accepted moves.

The inverses of the moves in the list are forbidden.

Note that the main di®erence between the traditional Tabu algorithm and our

method is that in the former redundant moves are rejected in order to avoid cycling. In

our method however we keep these redundant moves that will help us for our variable

assignment decisions. More precisely, our approach di®ers in that we sum all the accu-

mulated number of con°icts that a move caused rather than just moves which are

considered as forbidden. We also implemented \Iteration Distance" which excludes

entries that are far away from the current iteration based on con¯gured setting for

iteration distance. More precisely, we applied an iteration distance mechanism that

records at which iteration an assignment move along with its number of con°icts oc-

curred. Then, during later search, if the variable is selected again for assignment, the

stored information in con°icts dictionary (accumulated potential con°icts for each

move) helps guiding the decision on which value should be assigned to the variable. In

other words, all moves that involve this variable will be retrieved from Con°icts Dic-

tionary (CD) and a min-con°ict value selection heuristics is applied, which selects the

entry with the least number of accumulated con°icts and the dictionary entry key value

is assigned to that variable. We do not however keep all the past moves but only those

that do not go beyond a given iteration number determined by the Iteration distance.

3.3. Enhancement phase

In the enhancement phase, a combination of three metaheuristics is employed and we

can select just one, two or three out of theses metaheuristics. Whatever a metaheuristic is

used, a local optimum is found. Once a solution can no longer be improved or reaches an

idle state, another metaheuristic technique kicks in and is used. In our algorithm we used

three of the well-known metaheuristics. These are HC,18,19 SA20 and our Modi¯ed Ex-

tended Great Deluge (MEGD). MEGD is altered to allow some alternations of the bound

that is imposed on the overall solution value. The search ends after a predetermined time

limit has been reached. The best solution found within that limit is returned.

Our MEGD is based on the Extended Great Deluge (EGD) solving method3

which in turn is based on the original Great Deluge (GD). GD was introduced by

Dueck27 as a cure to SA requirement to ¯nd a cooling schedule for a particular

instance of a given problem. GD algorithm starts with a \water level" equal to the

initial solution value, and a precon¯gured rate usually named \tolerance rate" to

decrease that water level. The predetermined rate is the only parameter for this

A. Hmer & M. Mouhoub

1650023-8

algorithm and this is one of this algorithm's advantages. GD accepts worsening

solutions if the penalty cost is less than the water level. This latter is decreased by the

pre-determined rate set for every iteration. Due to the advantage of using less

parameters, GD has been used in several other implementations of metaheuristics.

EGD has a construction phase followed by an improvement phase. The con-

struction phase is applied using the existing adaptive ordering heuristic search

method.28 This latter ordering uses a weighted order list of the examinations which is

to be scheduled based on soft constraints as well as the \di±culty to schedule"

constraints. Once an exam is scheduled, its weight is increased based on the localized

penalties it came across. The unscheduled examinations are given a considerably

larger increase, based on a formulation that is based on the maximum general pen-

alty encountered from Ref. 28. The improvement phase starts when feasibility is

achieved in the construction phase and tries to provide an improved solution.

Unlike EGD, our approach is only concerned with the enhancement phase and it

only tries to improve the overall value of the current feasible complete solution. Our

approach is di®erent from EGD as follows.

(1) In the original GD, the tolerance value starts with the initial solution's value and

decreases by a precon¯gured rate. It tries to range within all neighbors of the

current solution in each iteration. However, in our approach, tolerance rate

ranges between values that are percentage of the current solution value; one

above and one below. In our approach, we use two precon¯gured values, namely

tolerance lower bound and tolerance upper bound. Tolerance upper bound is a

precon¯gured value that defaults to ð108%Þiteridle of the initial solution. iteridle is a
counter that starts with 1 and is incremented by 1 each time the tolerance rate is

reset. Tolerance lower bound is also a precon¯gured value that defaults to 92% of

the initial solution. The tolerance decay rate is a predetermined rate that

defaults to 99.99995%. At the beginning, a tolerance rate t is assigned to a value

of the initial solution. It is decreased by tolerance decay rate in each iteration.

Likewise, in every iteration, a new neighbor is selected and tested against the

current t and the best solution value. If it is better than either one of them, the

current solution becomes the best solution and t is decayed by tolerance rate.

(2) The second di®erence occurs at the time of taking the decision to reset the

tolerance value t. Tolerance value t is reset as follows. t reaches the tolerance

lower bound which as we discussed is equal to 92% (or predetermined value) of

the best solution so far. We can as well reset t based on the last n (defaulted to

40) solutions if they happen to be consistent and carry the same value. This

means that we are stuck in a local optimum and there is no need to complete the

full cycle and reach the lower bound. Rather, we decrease the current tolerance

decay rate by half the rate and restart.

Figure 3 presents the pseudo code of our MEGD. Neighborhood selection variation

is by far the most in°uential technique that a®ects rapid local search. Using more than

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-9

one neighborhood within a search provides a very e®ective technique of escaping from

a local optimum. It is notable that if the current solution is in a local optimum in one

neighborhood, it might escape the local optimum, if assigned a di®erent neighborhood

and can consequently be more improved using a good feasible approach. In exam

timetabling, the neighborhoods used in local search techniques largely involve moving

some exams from their current time slot and/or rooms to a new time slot and/or

rooms. Based on that, our implementation (corresponding to the function select-

Neighbour() in Fig. 3) uses the seven neighborhoods listed in Fig. 4.

Procedure Modified Extended Great Deluge (MEGD)
Input: s ← initial feasible solution

termination criteria: # of maximum iterations
f(s): Cost function
t∗ ← Decay Rate (should be < 100%, default=99.99995%)
tupper ← Upper tolerance bound Rate (default=108%)
tlower ← Lower tolerance bound Rate (default=92%)
n ← number of last solutions values (default=40)

Output: an enhanced complete feasible solution
Begin
t ← f(s) (initial tolerance boundary level)
f ← f(s) (initial solution value)
iteridle ← 1 (number of idle iterations)
solarray[n] ← 0 (array of last n solutions)
n ← 0
while (termination criteria not met) do

s∗ ← selectNeighbour(s)
f∗ ← f(s∗) (calculate current solution value)
if (f∗ ≤ f or f∗ ≤ t)

s ← s∗

solarray[n] ← s∗

n ← n + 1
f ← f∗ (current solution value)
endif
t ← t × t∗ (decrease boundary)
if solarray has n values and all are the same (local optimum)

iteridle ← iteridle + 0.5
t ← (tupper)iteridle × s(new Tolerance Boundary Level)
solarray[n] ← 0 (reset last solutions values array)
n ← 0

else
tlevel ← (tlower)iteridle+1 × s (Tolerance Boundary Level)
if (t ≤ tlevel)

iteridle ← iteridle + 1
t ← (tupper)iteridle × s (New Tolerance Boundary Level)

endif
endif

end while
return s

end

Fig. 3. MEGD algorithm.

A. Hmer & M. Mouhoub

1650023-10

4. Experimentation

This section reports the experiments conducted on the well-known timetabling

benchmarking datasets of the International Timetabling Competition (ITC 2007).21,29

This benchmarking datasets consists of 12 basic real world examination timetabling

problems obtained from di®erent anonymous universities around the world.

The detailed properties of the 12 benchmark instances are summarized in Table 2.

The constraint (or con°ict) density value is calculated using the following formula

taken from Ref. 30:

Constraint density ¼
PN�1

i¼1
PN

j¼iþ1ð�ij

N Þ
N

:

Table 2. ITC 2007 exam track benchmarking datasets.

Inst # # of Students # of Exams # of Rooms Hard Cons Cons Density (%) # of Time Slots

1 7891 607 7 12 5.04 54
2 12,743 870 49 14 1.17 40

3 16,439 934 48 184 2.62 36

4 5045 273 1 40 14.94 21

5 9253 1018 3 27 0.87 42
6 7909 242 8 23 6.13 16

7 14,676 1096 15 28 1.93 80

8 7718 598 8 21 4.54 80
9 655 169 3 10 7.79 25

10 1577 214 48 58 4.95 32

11 16,439 934 40 185 2.62 26

12 1653 78 50 16 18.21 12

(1) Exam Duration Move: selects a single exam randomly and move it to a different
feasible time slot randomly.

(2) Exam Duration Swap Move: selects two exams randomly and swaps their as-
signed time slots.

(3) Non Conflicting Assignment Move: selects an exam randomly and assigns it to
a non-conflicting assignment (time slot and room) randomly.

(4) Room Move: selects a single exam randomly and moves it to a different feasible
room randomly.

(5) Room Swap Move: selects two exams randomly and swaps their assigned
rooms.

(6) Exam Swap Move: selects two exams randomly and swaps their assignments
(i.e. time slots and rooms).

(7) Random Move: selects an exam randomly and assigns a new assignment to it
randomly. The assignment consists of a room and time slot and might cause
conflicts.

Fig. 4. List of the seven neighborhoods.

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-11

Table 3 shows the di®erent penalties for violating soft constraints for the 12

datasets. These penalties are de¯ned as follows.

. Two Exams in a Row. This penalty applies to exam assignments occurrences

where two examinations are taken by a student, one straight after another, also

known as back to back exams. It is calculated by totaling the number of students

that violate the constraint and multiplied by the number provided in the two in a

row weighting settings.

. Two Exams in a Day. This penalty applies to exam assignments occurrences

where two examinations are taken by students in the same day but are not directly

back to back. This is obviously conditioned by the fact that there must be three

periods or more in a day. The total number is consequently multiplied by the two

in a day weighting settings.

. Period spread (of examinations). The number of times when students have to

sit more than one exam in a time period speci¯ed by the institution. This is usually

used as an indication of fairness principle to all students taking exams.

. Mixed duration (of examinations within individual periods). The number

of occurrences of exams timetabled in rooms along with other exams of di®ering

time duration.

. Front Load. Most institutions desire that examinations with the largest numbers

of students are scheduled at the beginning of the examination session so that

markers would be under no stress and would take their time in marking exams.

The penalty for this concept, in ITC 2007, is called Front Load and is de¯ned as a

sequence of three parameters n;m; t. The idea behind this penalty is to allow the

institution to try to schedule larger exams earlier in the examination session. The

¯rst parameter de¯nes how the largest exam is de¯ned in terms of the number of

students. If the number is, for example, 200 then any exam that has enrolled

students of 200 or more is considered to be one of the largest exams. The second

parameter is the number of last periods that these larger exams should be avoided

Table 3. ITC 2007 exam timetabling data sets soft constraints violation penalties.

Instance # Two in a Row Two in a Day Period Spread Mixed Durations Front Load

1 7 5 5 10 100, 30, 05

2 15 5 1 25 250, 30, 05

3 15 10 4 20 200, 20, 10

4 9 5 2 10 050, 10, 05
5 40 15 5 0 250, 30, 10

6 20 5 20 25 025, 30, 15

7 25 5 10 15 025, 30, 10
8 150 0 15 25 250, 30, 05

9 25 10 5 25 100, 10, 05

10 50 0 20 25 100, 10, 05

11 10 50 4 35 400, 20, 10
12 35 10 5 5 025, 05, 10

A. Hmer & M. Mouhoub

1650023-12

to be scheduled in. The third parameter is the penalty or weighting that should be

added each time the constraint is violated. For example, if Front Load = (200, 20,

15), it means that any exam with 200 students or more that is scheduled in the last

20 periods will be penalized with 15.

As we will see, our proposed approach is successful in competing with bench-

marking results published in literature so far. We measure the general behavior and

performance of our implementation in the two di®erent phases to solve the exam

timetabling problem; construction phase and enhancement phases. We also compare

our approach to the well-known exam timetabling problem solvers (¯nalists of the

examination track). All the experiments are performed on an PC Intel Core 2-Duo

2.4GHz processor with 8 GB of RAM.

4.1. Discovering constraints in the pre-processing phase

Discovering constraints that were not stated in problem description would be ben-

e¯cial for variables that share one or more constraints as it will reduce the size of the

search space which will improve the search process. Table 4 shows the number of

unspeci¯ed constraints, per instance, revealed during this stage. Dataset 3 and 11

have the most unspeci¯ed constraints while dataset 12 has no undiscovered con-

straints.

4.2. Construction phase testing and analysis

Our construction approach is based on Tabu Search with CD. We set our goal to get

a complete feasible solution as fast as possible so that the enhancement phase can

kick in and improve the overall solution value gradually. In order to measure the

performance of Tabu with CD, we tested it against standard Tabu Search and in

both cases preprocessing phase is done prior to constructing complete solution. For

the purpose of the construction phase testing, we selected dataset 4 as it has a high

Table 4. Unspeci¯ed constraints discovered

during the pre-processing phase.

Instance # Number of Constraints Discovered

Instance 1 2

Instance 2 6
Instance 3 19

Instance 4 0

Instance 5 11

Instance 6 16
Instance 7 6

Instance 8 3

Instance 9 2
Instance 10 13

Instance 11 19

Instance 12 0

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-13

con°ict density (14.94%) along with high number of students and exams which

makes it as one of the toughest problem to solve in our benchmarking datasets.

During the process of building a complete feasible solution, we record solution value

in every iteration along with its time. This testing is only concerned with the con-

struction phase and so we set our testing to run for 10 times for each method of the

selected dataset. Then we select the trial with the best solution value from the 10

trials. We represent each point in the graph with the corresponding penalty cost

monitored after every iteration along with its time. The last penalty cost is the cost of

the ¯rst complete feasible solution and that is where the construction phases stops.

Figure 5 illustrates the full snapshot of the best trial for standard Tabu Search

(TS) on dataset 1 while Fig. 6 shows the same pattern for TS with CD. Among 10

trials, using best run's solution value, although standard TS shows better complete

solution (6041), it took 8.03 s and 1081 iterations to get it while TS with CD with

6803, took 4.21 and 672 iterations. Also, standard TS algorithm shows relatively

higher number of °uctuations between lower penalty cost and higher ones where TS with

CD seems to have gradually been building the complete solution with less °uctuations.

Fig. 5. Dataset 1 construction phase using standard TS.

Fig. 6. Dataset 1 construction phase using TS with CD.

A. Hmer & M. Mouhoub

1650023-14

However, dataset 4 has shown a di®erent pattern. Dataset 4 is one of the most

constrained problems. The top chart of Fig. 7 illustrates the full snapshot of the best

trial for standard TS on dataset 4 while the bottom chart shows the same pattern for

TS with CD. The top chart articulates how standard TS struggled with ¯nding the

less penalty cost solutions in contrary to TS with CD (bottom chart). Standard TS

spent a total of 28.54 s (3281 iterations) to ¯nd a best complete solution, amongst 10

trials, with a penalty cost of 31,133 while TS with CD took only 2.03 s (567 itera-

tions) to ¯nd one with a penalty of 27,633. That is a performance improvement of

around 93% with solution value improvement of 11.2%.

Dataset 5 is the least constrained problem with only 0.87% but with relatively

high number of students and exams (9253 students and 1018 exams) which leads us

to think that it should be one of the easiest problems to solve. We can see that in the

lack of any °uctuations between worse and better solutions in the graphs for the

datasets in Fig. 8. Nonetheless, TS with CD algorithm performs slightly better than

standard TS even though the problem itself tends to be easy to solve. In 10 trials,

Fig. 7. Performance of the construction phase on dataset 4 with Tabu and Tabu together with con°icts
dictionary.

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-15

standard TS obtained 6530, as a best solution value, in 2.58 s (1020 iterations) while

TS with CD achieved 5030, as a best solution value, in 2.21 s (1050 iterations).

4.3. Enhancement phase testing and analysis

We compare 4 methods labeled method 1, method 2, method 3, and method 4,

respectively corresponding to HC+SA, SA, EGD, and our MEGD. All these methods

use Tabu Search with Dictionary Con°icts in the construction phase. In addition,

only methods 2, 3, and 4 have a preprocessing phase.

Figures 9–11, show the enhancement phase best solution distribution history for

four methods against iteration in datasets 1, 6, and 8. From these ¯gures, we can

clearly notice that without preprocessing the ¯rst method tends to improve solutions

values within a relatively short time and keeps improving almost very slowly. An-

other visible notice is that method 1 seems to use less number of iterations which

Fig. 8. Dataset 5 using standard TS (top chart) and TS with CD (bottom chart).

A. Hmer & M. Mouhoub

1650023-16

suggests that it employs these iterations cycles either in backtracking or accessing

none±cient collections. Method 2 which also uses SA starts enhancing a complete

solution very early but then ends with slightly outperforming method 1. On the other

hand, the last two methods, using GD °avors with preprocessing in place, spend

some time to ¯nd the ¯rst improving solution after the ¯rst complete solution which

also tends to be of, relatively, worse value than methods 1 and 2. This is due to the

nature of GD algorithm which only accepts an improving solution. Also, a bad

solution is accepted if its quality is less than (for the case of a minimization problem)

or equal to an upper bound or \level" in which during the search process, the \level"

is iteratively updated by a constant decreasing rate. It also means that, with the

preprocessing phase in place, there will be more features. This means that there are

more e®ort to satisfy more constraints but also gaining better performance when

Fig. 9. Performance on dataset 1 of the enhancement phase.

Fig. 10. Performance on dataset 6 of the enhancement phase.

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-17

looking up the di®erent collections in particular area as well as a more careful

exploration. For the inclusion of preprocessing phase, our proposed search algo-

rithm diversi¯cation of search to gather the whole search space proved the im-

portance of ¯nding the global minimum quickly. We also note that MEGD

performs slightly better than EGD in 8 out of 12 of the datasets. Figure 9 illus-

trates that methods 3 and 4 were close in terms of results in achieving the best

solution. This is also the case for method 1 and 2 although method 2 outperfor-

med to some extent method 1. Method 3 reached a best solution value of 4185.

The same pattern also appears in Figs. 10 and 11 where they show results for

dataset 6 and dataset 8 where method 4 is marginally the winner in ¯nding the

best solution.

Generally, the algorithms might behave di®erently due to the di®erent mea-

surements enforced during the search process. However, the di®erence between SA,

GD, EGD and MEGD algorithms lies in the acceptance criteria functionality that

would make a di®erence on the limited solving time that was imposed on our

benchmarking datasets. This might not be the case if we have relatively longer times

for several hours or days as all these algorithms are based on the stochastic local

search and there will always be the possibility of achieving good results.

4.4. Comparative tests results

On the basis of results obtained by both construction and enhancement phases, we

decided to compare our four methods to the ¯ve well-known ETP solvers. Each of the

datasets used in our testing phase has a previously discovered best known solution

Fig. 11. Performance on dataset 8 of the enhancement phase.

A. Hmer & M. Mouhoub

1650023-18

announced by ITC 2007. The ¯ve known solvers are the following ¯nalists of the

examination track of the competition.

(1) Müller31 implemented a constraint-based solver, which constructs a complete

solution, followed by a HC and a GD approach for improving the solution.

(2) Gogos et al.32,33 used a Greedy Randomized Adaptive Search Procedure, followed

by SA, and integer programming.

(3) Atsuta et al.34 developed a constraint satisfaction solver combined with Tabu

Search and iterated local search.

(4) De Smet35 has his own solver, namely Drools Solver, which is a combination of

Tabu Search and the JBoss Drools rules engine used for the evaluation.

(5) Finally, Pillay36 used a heuristic method that is inspired by cell biology.

During experiment runs, we managed to achieve an outstanding 98% success in

reaching complete feasible solution on all instances in all attempts. The remaining

2% were only in dataset 4 and 12. For each method trials we performed 11 individual

runs on each of the 12 competition instances, using the time limit speci¯ed by the

competition benchmarking program as our stopping criteria, which equated to 362 s.

The same timeout value on each machine is used for all of the 12 datasets. In all

cases, we logged out all best solution values history along with times and iterations

where these best solution values are discovered.

The settings of the algorithms have remained the same throughout the experi-

ment for the purpose of going in line with ITC 2007 rules. One of our objectives in

testing phase is to represent di®erent algorithm variations that are composed of

di®erent algorithms and compare them to the performance of ITC 2007 results. The

expectation was also set for the results to be reasonably comparable if not better than

ITC 2007 exam track results.

Figure 12 reports the comparative results including the best solution value (lowest

penalty cost) and average of best solution values for each variant. When searching

without preprocessing, performance degrades relatively to when using preprocessing

phase. Only the ¯rst method did not use preprocessing and if we look ¯rst at the

performance of its algorithms in comparison to ITC 2007 results we will notice that it

comes in the second place in 10 out of 12. This is the case for all datasets except

datasets 10 and 12. TS with CD + HC+ SA with no preprocessing is the worst

algorithm variant in our testing and it comes in the second place in most datasets in

comparison to ITC 2007 results.

The other three algorithms variants performed better. Only when we used GD

algorithm extensions (EGD and MEGD), we started to see results that overtake ITC

2007 results. Our approach gets 8 out of 12 datasets as best results. These results are

split between EGD and MEGD evenly with 4 best results each.

In order to obtain a fair comparison, it is worth noticing that the performance loss

is on average about 7% between SA with preprocessing and MEGD with pre-

processing, whereas it is about 10% if the preprocessing phase is not implemented

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-19

with SA. Moreover, one can also notice that the gap between the two methods

becomes smaller with higher con°icts density problems, and that the behavior of the

methods with pre-processing phase implemented is more stable with respect to SA

with no preprocessing phase. All in all, EGD and MEGD performed much better

than SA with preprocessing phase not to mention SA with no preprocessing. Finally,

all of our methods performed well in comparison to ITC 2007 results in best solution

values and in best average values.

5. Conclusion and Future Work

We presented our proposed approach to solve the exam timetabling problem using

four di®erent metaheuristics search method. We also introduced a pre-processing

phase to enhance the overall search process. A Tabu metaheuristic search method

with con°ict dictionary is proposed as a construction phase to achieve a partial or

complete initial feasible solution. The tabu list does not contain operators or moves

that are problem speci¯c. It only needs to store the con°icted moves along with the

accumulated number of con°icts it caused. A MEGD heuristic search method is used

during search to eliminate some of the time wasted in local optimum based on certain

conditions. The selected heuristics perform in sequence to produce a good solution for

the current state of the problem. The whole hybrid heuristics approach is con¯gur-

able and able to manage and control its heuristics without having a domain pre-

knowledge of the exam timetabling problem. In the near future we will investigate

advanced variables ordering heuristics14 as well as evolutionary techniques using a

parallel architecture.37,38

Fig. 12. Comparative results.

A. Hmer & M. Mouhoub

1650023-20

References

1. A. Schaerf, A survey of automated timetabling, Artif. Intell. Rev. 13(2) (2009) 86–127.
2. R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot and S. Y. Lee, A survey of search

methodologies and automated system development for examination timetabling, J.
Scheduling 12(1) (2009) 55–90.

3. B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke and S. Abdullah, An extended
great deluge approach to the examination timetabling problem, MISTA 2009, Multidis-
ciplinary International Scheduling Conf. Theory and Applications (2009), pp. 20–69.

4. C. Gogos, P. Alefragis and E. Housos, An improved multi-staged algorithmic process
for the solution of the examination timetabling problem, Ann. Oper. Res. 194(1) (2012)
203–221.

5. S. Abdullah and H. Turabieh, On the use of multi neighbourhood structures within a
tabu-based memetic approach to university timetabling problems, Inform. Sci. 191(0)
(2012) 146–168. Data Mining for Software Trustworthiness.

6. N. R. Sabar, M. Ayob, R. Qu and G. Kendall, A graph coloring constructive hyper-
heuristic for examination timetabling problems, Appl. Intell. 37(1) (2012) 1–11.

7. A. Abuhamdah, M. Ayob, G. Kendall and N. R. Sabar, Population based local search for
university course timetabling problems, Appl. Intell. 40(1) (2014) 44–53.

8. R. Qu, N. Pham, R. Bai and G. Kendall, Hybridising heuristics within an estimation
distribution algorithm for examination timetabling, Appl. Intell. 42(4) (2015) 679.

9. N. Mansour, V. Isahakian and I. Ghalayini, Scatter search technique for exam time-
tabling, Appl. Intell. 34(2) (2011) 299–310.

10. N. R. Sabar, M. Ayob, G. Kendall and R. Qu, Grammatical evolution hyper-heuristic for
combinatorial optimization problems, IEEE Trans. Evol. Comput. 17(6) (2013) 840–861.

11. S. A. Rahman, A. Bargiela, E. K. Burke, E. Özcan, B. McCollum and P. McMullan,
Adaptive linear combination of heuristic orderings in constructing examination time-
tables, Eur. J. Oper. Res. 232(2) (2014) 287–297.

12. S. Abdul-Rahman, E. K. Burke, A. Bargiela, B. McCollum and E. Özcan, A constructive
approach to examination timetabling based on adaptive decomposition and ordering,
Ann. Oper. Res. 218(1) (2014) 3–21.

13. Y. Bykov and S. Petrovic, An initial study of a novel step counting hill climbing heuristic
applied to timetabling problems, in Proc. Multi-disciplinary International Scheduling
Conference: Theory and Applications (MISTA 2013) (2013), pp. 691–693.

14. M. Mouhoub and B. J. Jashmi, Heuristic techniques for variable and value ordering in
csps, in 13th Annual Genetic and Evolutionary Computation Cont., GECCO 2011, Proc.,
pp. 457–464.

15. J. F. Allen, Maintaining knowledge about temporal intervals, CACM 26(11) (1983) 832–843.
16. M. Mouhoub, Dynamic path consistency for interval-based temporal reasoning, 21st

International Conference on Arti¯cial Intelligence and Applications(AIA '2003) (ACTA
Press, 2003), pp. 393–398.

17. M. Mouhoub, Systematic versus non systematic techniques for solving temporal con-
straints in a dynamic environment, AI Commun. 17(4) (2004) 201–211.

18. G. Kendall and N. Mohd Hussin, A tabu search hyper-heuristic approach to the exami-
nation timetabling problem at the mara university of technology, Pract. Theory Autom.
Timetabling 3616 (2005) 270–293.

19. B. D. HughesL. T. G. Merlot, N. Boland and P. J. Stuckey, A hybrid algorithm for the
examination timetabling problem, Pract. Theory Autom. Timetabling 2740 (2003) 207–231.

20. K. A. Dowsland, Simulate annealing, inModern Heuristics Techniques for Combinatorial
Problems, Chapter 2 (1995), pp. 20–69.

A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling

1650023-21

21. B. McCollum and P. McMullan, The second international timetabling competition: Ex-
amination timetabling track, University of Nottingham, Queen's University, Notingham,
Belfast, Technical Report: QUB/IEEE/Tech/ITC2007/Exam/v4.0/17 2007 (2009).

22. J. P. Newall, E. K. Burke and R. F. Weare, A memetic algorithm for university exam
timetabling, Pract. Theory Autom. Timetabling 1153 (1996) 241–250.

23. C. K. Chan, H. B. Gooi and M. H. Lim, Co-evolutionary algorithm approach to a uni-
versity timetable system, in The 2002 Congress on Evolutionary Computation, Vol. 2,
Honolulu (2002), pp. 1946–1951.

24. S. Petrovic, E. K Burke, B. MacCathy and Qu, Knowledge discovery in a hyperheuristic
for course timetabling using case-based reasoning, Pract. Theory Autom. Timetabling
(PATAT'02) (2002).

25. G. Laporte, M. W. Carter and S. Y. Lee, Examination timetabling: Algorithmic strategies
and applications, J. Oper. Res. Soc. 47 (1996) 373–383.

26. M. Mouhoub, Analysis of approximation algorithms for maximal temporal constraint
satisfaction problems, in The 2001 International Conference on Arti¯cial Intelligence
(ICAI-2001) (2001), pp. 165–171.

27. G. Dueck, New optimisation heuristics for the great deluge algorithm and the record-
torecord travel, J. Comput. Phys. 104 (1993) 86–92.

28. E. K. Burke and J. P. Newall, Solving examination timetabling problems through
adaption of heuristic orderings, Ann. Oper. Res. 129(1–4) (2004) 107–134.

29. B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke and R. Qu, A new model for
automated examination timetabling, Ann. Oper. Res. 194(1) (2012) 291–315.

30. M. W. Carter and G. Laporte, Recent developments in practical examination timetabling,
Pract. Theory of Autom. Timetabling 1153 (1996) 3–19.

31. T. Müller, Itc2007 solver description: A hybrid approach, in Proceedings of the 7th
International Conf. on the Practice and Theory of Automated Timetabling (2008).

32. C. Alefragis, E. Gogos and P. Housos, Multi-staged algorithmic process for the solution of
the examination timetabling problem, Pract. Theory Automat. Timetabling (PATAT),
2008 (2008).

33. C. Gogos, G. Goulas, P. Alefragis, V. Kolonias and E. Housos, Distributed scatter search
for the examination timetabling problem, PATAT 2010 (2012), p. 211.

34. M. Nonobe, T. Atsuta and Ibaraki, An approach using a general csp solver, Technical
Report (2008).

35. G. De Smet, ITC2007 examination track: Practice and theory of automated timetabling,
Technical Report (2008).

36. N. Pillay, A developmental approach to the examination timetabling problem, Technical
Report (2008).

37. R. Abbasian and M. Mouhoub, A new parallel ga-based method for constraint satisfaction
problems, Int. J. Comput. Intell. Appl. 15(03) (2016).

38. R. Abbasian and M. Mouhoub, A hierarchical parallel genetic approach for the graph
coloring problem, Appl. Intell. 39(3) (2013) 510–528.

A. Hmer & M. Mouhoub

1650023-22

	A Multi-Phase Hybrid Metaheuristics Approach for the Exam Timetabling
	1. Introduction
	2. Problem Description
	2.1. Variables and constraints
	2.2. Soft constraints and penalty functions

	3. Proposed ETP Solving Approach
	3.1. Pre-processing phase
	3.1.1. Problem collections ordering
	3.1.2. Discovery of implicit hard constraints

	3.2. Construction phase
	3.3. Enhancement phase

	4. Experimentation
	4.1. Discovering constraints in the pre-processing phase
	4.2. Construction phase testing and analysis
	4.3. Enhancement phase testing and analysis
	4.4. Comparative tests results

	5. Conclusion and Future Work
	References

