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We propose a Multi-Phase Hybrid Metaheuristics approach for solving the Exam Timetabling
Problem (ETP). This approach is defined with three phases: pre-processing phase, construction
phase and enhancement phase. The pre-processing phase relies on our variable ordering heu-
ristic as well as a form of transitive closure for discovering implicit constraints. The construction
phase uses a variant of the Tabu Search with conflicts dictionary. The enhancement phase
includes Hill Climbing (HC), Simulated Annealing (SA) and our updated version of the ex-
tended “Great Deluge” algorithm. In order to evaluate the performance of the different phases
of our proposed approach, we conducted several experiments on instances taken from ITC 2007
benchmarking datasets. The results are very promising and competitive with the well known
ETP solvers.
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1. Introduction

The Examination Timetabling Problem (ETP),” is an annual or semi-annual
problem for educational institutions. Due to its complexity and practicality, it is
extensively studied by researchers in operational research and artificial intelligence.
In this regard, many ETP solving approaches have been proposed and discussed' *
using one or a combination of some of the following methods: graph-based, sequential
techniques, clustering-based techniques, constraint-based techniques, metaheur-
istics, hyper-heuristics, multi-criteria techniques, and case-based reasoning techni-
ques. In this paper, we propose a Multi-Phase Hybrid Metaheuristics approach
consisting of the following three stages: preprocessing, construction, and enhance-
ment. The preprocessing phase is needed to prepare the work for the remaining two
stages. During this phase, exams are sorted following the most constrained variables
first heuristic'* and implicit constraints are discovered using a form of transitive
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closure based on our Dynamic Path Consistency (DPC) algorithm for temporal
constraints.'” " During the construction stage, a complete feasible solution is found
using a variant of Tabu Search along with conflicts dictionary to reduce cycling. In
the enhancement phase, a chosen metaheuristic is used. Once a solution can no
longer be improved or reaches an idle state, another metaheuristic kicks in and is
used. The following metaheuristics are considered: Hill Climbing (HC),'®'? Simu-
lated Annealing (SA)?° and our updated version of the extended “Great Deluge”
solving algorithm.® This latter is an improvement of the one proposed in Ref. 3.

In order to evaluate the performance of the different phases of our proposed
approach, we conducted several experiments on instances taken from the ITC 2007
benchmarking datasets.?* The results are very promising and are competitive with
the well-known ETP solvers.

In the next section, we will introduce the problem we are tackling. Section 3
presents our proposed solving approach. Experimental tests evaluating our solving
method are then reported in Sec. 4. Finally, concluding remarks and future works are
listed in Sec. 5.

2. Problem Description

We model the ETP as a constraint optimization problem (COP) including the
variables, hard and soft constraints listed in the following two subsections. Solving
this problem consists in finding a complete assignment of values to all the variables
satisfying all the hard constraints and minimizing the violations of the soft ones.
In other words, this corresponds to finding a schedule that would be fair to all the
students. Minimizing soft constraints is done by minimizing a penalty or cost func-
tion defined as shown in Sec. 2.2.

2.1. Variables and constraints

Following the common formulations to the Examination Timetabling,?*** variables
and constraints are defined as follows.

e Variable. Each exam is modeled as a problem variable defined over a finite
domain of all possible assignments to that exam. An assignment is composed of a
time period and a room.

e Room Constraint. Exams are constrained by rooms seating capacity.

e Student Constraint. This temporal constraint prevents a student from being
scheduled for more than one exam during a given time period.

e Precedence Constraint. This temporal constraint imposes an ordering (prece-
dence) between two or more exams.

e Same Time Constraint. This temporal constraint restricts two or more exams
to take place during the same time slot. This is the case of exams containing similar
material.
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e Different Time Constraint. This temporal constraint restricts two or more
exams to take place during different time slots.

e Same Room Constraint. This constraint restricts two or more exams to take
place in the same room.

o Different Room Constraint. This constraint restricts two or more exams to
take place in different rooms.

2.2. Soft constraints and penalty functions

The penalty function is a measure to calculate the total cost/value of a given solution.
Each soft constraint involves a single or multiple resources and violating it has its own
penalty value that should be set in the problem description. The total penalty value of
any solution is the sum of penalties of all violated soft constraints in the corresponding
ETP. Penalties correspond to violating soft constraints including the following.

(1) Students taking two exams in a row.

(2) Students taking two exams in the same day.

(3) Mixed durations where two or more exams are taking place in the same room but
have different durations.

(4) Room penalty where using certain rooms implies specific penalty to discourage
scheduling exam to them.

(5) Period penalty where assigning exam to certain periods implies specific penalty.

The goal of the above soft constraints is to maximize students’ satisfaction (case
of the first two soft constraints), to reduce University resources and cost (case of soft
constraints 3 and 4) or both (case of the last soft constraint).

3. Proposed ETP Solving Approach

As described in the introduction section, our proposed solving approach consists of
the following three main phases. A pre-processing phase followed by a construction
and an enhancement phases. The following describes the details of each stage.

3.1. Pre-processing phase

The pre-processing phase consists of two stages described as follows.

3.1.1. Problem collections ordering

In this stage, a process takes place for the different collections that the exam problem
consists of. These collections are exams, rooms, periods, and students. Exams and
students are usually large collections and pre-ordering those leads to a better per-
formance and efficient results during search. In Refs. 24 and 25, two of the well-
known common techniques have been proposed to describe the ordering of exams
based on difficulty criteria preceding their assignment to time slots. Our approach is
slightly different from these techniques. It depends on a different concept revolving
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around our knowledge that large exam timetabling problems contain students, large
exams, and resources collections, and enhancing the way that we retrieve and lookup
any element in these collections is a key in any efficient search algorithm. In addition
and following the idea of most constrained variables first based on conflict driven
heuristics for weighting constraints,'* exams with most scheduling difficulty are
scheduled first. The goal here is to prevent later failure earlier which will decrease the
size of the search space. Conflict driven heuristics are those that gather information
about constraint violations during the search process, in the form of constraint
weights. The heuristics we use for this purpose are respectively based on HC and Ant
Colony Optimization (ACO) techniques.'* More precisely, these two approximation
techniques are run for a specific amount of time or cycles, during which, the con-
straints gain weight every time they are violated. At the end of this process, each
variable gets a weighted degree, which is the sum of the weights of the constraints
that the variable is involved in. Variables are then sorted based on their weights and
those with larger weight get more priority in the ordering. More details about this
process can be found in Ref. 14.

3.1.2. Discovery of implicit hard constraints

In this stage we have developed a technique to discover all hard constraints that were
not explicitly defined in the problem. In any large COP that contains a large collection
of variables, values, and constraints, there is always the possibility of missing some of
the hard constraints that depend on some of the declared ones. Our approach is to
provide a pre-processing stage that discovers these unspecified constraints and add
them to the problem constraints collection. In fact our goal is to add other constraints
that should be known before assigning a value to a variable which in essence might
eliminate some of the variables domain values and hence preventing a backtracking
process, which would occur later on, if these additional constraints were not specified.

The pre-processing stage starts by creating a temporal constraint graph where
nodes represent the exams and edges are the hard temporal constraints between
exams. We then apply our DPC algorithm'%'7 to discover new temporal constraints
between other exams in the same graph.

Figure 1 lists the pseudo-code of DPC'” we used for discovering new temporal con-
straints. This algorithm is based of Allen’s Algebra for representing qualitative temporal
information.'® In this representation, each temporal constraint is expressed as a disjunc-
tion of Allen primitives (possible relations between a pair of temporal intervals). Figure 2
lists all the possible Allen primitives. For instance the following represents the fact
that Fram, and Fzxam, should be scheduled at different times (mutually exclusive
events): Exam, BV Bi Exam,. Exam, Bi Exam, corresponds to Exam, B Exam,
and the same applies for all the other inverse primitives. For the sake of notation sim-
plicity, a temporal constraint is denoted as a set of Allen primitives rather than a dis-
junction of these basic relations. For instance, the above example will be represented as
Exam, {B, Bi} Exam,. We will adopt this notation in the remaining of the paper.
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Function Restrict(i, j, new_constraint)
C;j: current constraint (disjunction of Allen’s primitives) between events i and j

t < new_constraint () Cyj
updated_list < {(i,7)}
if (¢ = () then

return “Constraint cannot be added”
else

Cij —t
if “DPC(updated_list) then
return “Constraint cannot be added”

PN O

Function DPC(updated_list)

Cy: current constraint (disjunction of Allen’s primitives) between events x and k

INV ERSE(R): returns the disjunction of the inverse of each Allen primitive within R
®: composition operator between two relations using Allen’s composition table

1. L < updated_list

2. while (L # () do

3. select and delete an (,y) from L

4. fork < 1ton, k # xand k # y do

5. t <« ka m Cmy ®Cyk

6. if (t # Cyy) then

7. if (¢ = () then return false

8. ka —

9, Cio < INVERSE(t)

10. L+ LU{(z,k)}

11. updated_list < updated_list U {(z, k)}
12. t <+ Cky ﬂ Chz ® Czy

13. if (t # Cjy) then

14. if (¢ = 0) then return false

15. Cyx  INVERSE(t)

16. L+ LU{(k,y)}

17. updated_list < updated_list U {(y, k)}

18. return true

Fig. 1. Dynamic path consistency algorithm.

Our DPC algorithm has the ability to process temporal constraints in an incre-
mental way. In this regard, each new constraint (expressed as a disjunction of some
Allen primitives) between two events (exams) ¢ and j is first processed by the Rest-
rict(i,j) function. This latter function will compute the intersection between this
new constraint with the current one (if any). This will update the relation between the
two events (this can be the case where the user is submitting a more restrictive
constraint) or rejects the new constraint (if it conflicts with the current one). Note that
the initial constraints between each pair of events are set to the universal relation
(disjunction of all the Allen primitives) which corresponds to completely unknown
relations. The DPC algorithm is then applied on the list of new constraints in order to
check the consistency of these latter and deduce new temporal constraints. This is
done by enforcing the path consistency (equivalent to 3 consistency) on each subset of
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Relation Symbol| Inverse Meaning
X Y
X before Y B Bi
X
Xequals Y E E
Y
X meets Y M Mi Y
X overlaps Y (¢} Oi X Y
X during Y D Di X Y
X starts Y S Si X %
X finishes Y F Fi v
Fig. 2. Allen primitives.

3 events, using both the composition and the intersection operations. The composition
is computed according to Table 1. The INVERSE(t), invoked in DPC procedure,
returns the disjunction of the inverse of each Allen primitive within ¢. For instance, if
t = {M,Oi, D} then INVERSE(t) = {Mi, O, Di}.

Table 1. Allen’s composition table.

E B Bi D Di O Oi M M S Si Fi
E E B Bi D Di O Oi M m S s F Fi
B B B 1 U B B U B [ B B U B
Bi P I Bi wi Bi wi Bi wi Bi wi Bi Bi Bi
D D P Bi D 1 u vl B Bi D w D u
Di Di v wi n Di zi oy zi yi zi  Di oy Di
O 0] B wi y v x n B yi 0] zl y x
Oi Oi v Bi =z wi n x zi Bi z zi Ot yi
M M B wi oy B B y B a M M y B
Mi Mi v Bi z DBi =z Bi b Bi z Bi  Mi Mi
S S P Bi D v x z P M S b D x
Si S v Bi z Di zi Oi zi m b s Oi  Di
F F P Bi D w Y zi M B D i F a
Fi Fi P w y Di O wyi M wy O Di a Fi
z={B,0,M}
y= {D 0,8 }
z={D,0i, F}
a={E,F,Fi}
b={E,S,Si}

uw={B,0,M,D,S}
v={B,0,M,Di, Fi}
n={E,F,D,O,S,Fi,Di,0i,Si}
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Let us see how we can discover a new constraint using DPC. Assume we have 3
exams; Fxam,, Exam,, and Frams, sharing the following two temporal constraints:

Ciy = Exam, {B} Exam,
Cys = Examy {Di} Exams

The first constraint above states that Fxam; should happen before Exam, while
the second constraint expresses the fact that Fxam, contains Fzxams (Fxams
happens during Ezam,).

In order to enforce path consistency on the above three events (and discover the
new constraint between Exam,; and Fzams), we first have to set the temporal
constraint between Exam, and Exams to the universal relation (disjunction of the
13 Allen primitives) as this constraint is initially unknown:

Ci3 = Exam{B, Bi,D, Di, S, Si, F, Fi,O,Oi, M, Mi, E} Examg
DPC will then enforce path consistency as follows:
Ci3 — Ci3 m C1y @ O3

According to the composition table (see Table 1), Cjy ® Coz will return {B}. C'3
will then be set to { B} (the intersection takes the primitives that are common to both
constraints).

We refer the reader to Refs. 17 and 26 for more details on DPC and temporal
constraints.

3.2. Construction phase

In the construction phase a complete feasible solution is found using Tabu Search
metaheuristics. Tabu Search iteratively moves from one potential solution to an
improved one in the neighborhood of the current solution until the stopping criterion
has been satisfied. The search is stopped after either a complete feasible solution is
found or maximum time is reached. The overall approach is to avoid cycles by
preventing or penalizing moves which take the solution, in the next iteration, to
points in the solution space previously visited and that is why it is called “Tabu”.
Our Tabu Search is used along with conflicts dictionary to reduce cycling. A
Conflicts dictionary essentially is a dictionary data structure consisting of a key and
a value and is used for its performance capability. Each entry in the conflicts dic-
tionary represents a count for the number of conflicts that an assignment causes
during search. In future search iterations, the entry with the highest counts are
avoided and regarded as Tabu. Utilizing Tabu Search metaheuristics with conflicts
dictionary can be further detailed as follows. As the search is only considered by
variable and value selection criteria, the algorithm initially tries to find those vari-
ables that are most problematic to assign. Usually, a variable is randomly selected
from unassigned variables that have the smallest domain size and less number of
hard constraints. It then attempts to select the best value to assign to the selected
variable using conflicts dictionary. A best value is one where its assignment improves
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the overall value of the solution. In other words, when assigning a value to a given
variable, the algorithm is looking to minimize the number of conflicting variables
that need to be unassigned in order to reach or keep a solution feasible after as-
signment. A value is selected randomly if there is more than one value with such
conditions. Soft constraints violations are totally ignored in this phase as they might
affect the algorithm performance when searching for complete feasible solutions.

As known, standard Tabu algorithm prevents cycling by using a Tabu list, which
determines the forbidden moves. This list stores the most recently accepted moves.
The inverses of the moves in the list are forbidden.

Note that the main difference between the traditional Tabu algorithm and our
method is that in the former redundant moves are rejected in order to avoid cycling. In
our method however we keep these redundant moves that will help us for our variable
assignment decisions. More precisely, our approach differs in that we sum all the accu-
mulated number of conflicts that a move caused rather than just moves which are
considered as forbidden. We also implemented “Iteration Distance” which excludes
entries that are far away from the current iteration based on configured setting for
iteration distance. More precisely, we applied an iteration distance mechanism that
records at which iteration an assignment move along with its number of conflicts oc-
curred. Then, during later search, if the variable is selected again for assignment, the
stored information in conflicts dictionary (accumulated potential conflicts for each
move) helps guiding the decision on which value should be assigned to the variable. In
other words, all moves that involve this variable will be retrieved from Conflicts Dic-
tionary (CD) and a min-conflict value selection heuristics is applied, which selects the
entry with the least number of accumulated conflicts and the dictionary entry key value
is assigned to that variable. We do not however keep all the past moves but only those
that do not go beyond a given iteration number determined by the Iteration distance.

3.3. Enhancement phase

In the enhancement phase, a combination of three metaheuristics is employed and we
can select just one, two or three out of theses metaheuristics. Whatever a metaheuristic is
used, a local optimum is found. Once a solution can no longer be improved or reaches an
idle state, another metaheuristic technique kicks in and is used. In our algorithm we used
three of the well-known metaheuristics. These are HC,'*'Y SA?Y and our Modified Ex-
tended Great Deluge (MEGD). MEGD is altered to allow some alternations of the bound
that is imposed on the overall solution value. The search ends after a predetermined time
limit has been reached. The best solution found within that limit is returned.

Our MEGD is based on the Extended Great Deluge (EGD) solving method®
which in turn is based on the original Great Deluge (GD). GD was introduced by
Dueck?” as a cure to SA requirement to find a cooling schedule for a particular
instance of a given problem. GD algorithm starts with a “water level” equal to the
initial solution value, and a preconfigured rate usually named “tolerance rate” to
decrease that water level. The predetermined rate is the only parameter for this
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algorithm and this is one of this algorithm’s advantages. GD accepts worsening
solutions if the penalty cost is less than the water level. This latter is decreased by the
pre-determined rate set for every iteration. Due to the advantage of using less
parameters, GD has been used in several other implementations of metaheuristics.

EGD has a construction phase followed by an improvement phase. The con-
struction phase is applied using the existing adaptive ordering heuristic search
method.?® This latter ordering uses a weighted order list of the examinations which is
to be scheduled based on soft constraints as well as the “difficulty to schedule”
constraints. Once an exam is scheduled, its weight is increased based on the localized
penalties it came across. The unscheduled examinations are given a considerably
larger increase, based on a formulation that is based on the maximum general pen-
alty encountered from Ref. 28. The improvement phase starts when feasibility is
achieved in the construction phase and tries to provide an improved solution.

Unlike EGD, our approach is only concerned with the enhancement phase and it
only tries to improve the overall value of the current feasible complete solution. Our
approach is different from EGD as follows.

(1) In the original GD, the tolerance value starts with the initial solution’s value and
decreases by a preconfigured rate. It tries to range within all neighbors of the
current solution in each iteration. However, in our approach, tolerance rate
ranges between values that are percentage of the current solution value; one
above and one below. In our approach, we use two preconfigured values, namely
tolerance lower bound and tolerance upper bound. Tolerance upper bound is a
preconfigured value that defaults to (108% )it of the initial solution. iterq, is a
counter that starts with 1 and is incremented by 1 each time the tolerance rate is
reset. Tolerance lower bound is also a preconfigured value that defaults to 92% of
the initial solution. The tolerance decay rate is a predetermined rate that
defaults to 99.99995%. At the beginning, a tolerance rate ¢ is assigned to a value
of the initial solution. It is decreased by tolerance decay rate in each iteration.
Likewise, in every iteration, a new neighbor is selected and tested against the
current ¢ and the best solution value. If it is better than either one of them, the
current solution becomes the best solution and ¢ is decayed by tolerance rate.

(2) The second difference occurs at the time of taking the decision to reset the
tolerance value t. Tolerance value t is reset as follows. ¢ reaches the tolerance
lower bound which as we discussed is equal to 92% (or predetermined value) of
the best solution so far. We can as well reset ¢ based on the last n (defaulted to
40) solutions if they happen to be consistent and carry the same value. This
means that we are stuck in a local optimum and there is no need to complete the
full cycle and reach the lower bound. Rather, we decrease the current tolerance
decay rate by half the rate and restart.

Figure 3 presents the pseudo code of our MEGD. Neighborhood selection variation
is by far the most influential technique that affects rapid local search. Using more than
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Procedure Modified Extended Great Deluge (MEGD)
Input: s < initial feasible solution
termination criteria: # of maximum iterations
f(s): Cost function
t* < Decay Rate (should be < 100%, default=99.99995%)
tupper <— Upper tolerance bound Rate (default=108%)
Liower < Lower tolerance bound Rate (default=92%)
7 number of last solutions values (default=40)
Output: an enhanced complete feasible solution
Begin
t < f(s) (initial tolerance boundary level)
f <+ f(s) (initial solution value)
iteriqe < 1 (number of idle iterations)
50lgrray[M] < 0 (array of last 7 solutions )
n<+0
while (termination criteria not met) do
s* < select Neighbour(s)
f* « f(s*) (calculate current solution value)
i (f* < for f* <1)
§ 4+ s*
s0lgrray[n]  s*
n<—n+1
f < [* (current solution value)
endif
t <t x t* (decrease boundary)
if solqrray has @ values and all are the same (local optimum)
iter;qie < iteriqe + 0.5
t < (tupper)'midte x s(new Tolerance Boundary Level)
50lgrray[M] < 0 (reset last solutions values array)
n<+0
else
tievel < (tiower ) temi4¢T1 x s (Tolerance Boundary Level)
if (t < tieper)
iter;qie < iterige + 1
t < (tupper)emidc x s (New Tolerance Boundary Level)
endif
endif
end while
return s
end

Fig. 3. MEGD algorithm.

one neighborhood within a search provides a very effective technique of escaping from
a local optimum. It is notable that if the current solution is in a local optimum in one
neighborhood, it might escape the local optimum, if assigned a different neighborhood
and can consequently be more improved using a good feasible approach. In exam
timetabling, the neighborhoods used in local search techniques largely involve moving
some exams from their current time slot and/or rooms to a new time slot and/or
rooms. Based on that, our implementation (corresponding to the function select-
Neighbour() in Fig. 3) uses the seven neighborhoods listed in Fig. 4.
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(1) Exam Duration Move: selects a single exam randomly and move it to a different
feasible time slot randomly.

(2) Exam Duration Swap Move: selects two exams randomly and swaps their as-
signed time slots.

(3) Non Conflicting Assignment Move: selects an exam randomly and assigns it to
a non-conflicting assignment (time slot and room) randomly.

(4) Room Move: selects a single exam randomly and moves it to a different feasible
room randomly.

(5) Room Swap Move: selects two exams randomly and swaps their assigned
rooms.

(6) Exam Swap Move: selects two exams randomly and swaps their assignments
(i.e. time slots and rooms).

(7) Random Move: selects an exam randomly and assigns a new assignment to it
randomly. The assignment consists of a room and time slot and might cause
conflicts.

Fig. 4. List of the seven neighborhoods.

4. Experimentation

This section reports the experiments conducted on the well-known timetabling
benchmarking datasets of the International Timetabling Competition (ITC 2007)."%"
This benchmarking datasets consists of 12 basic real world examination timetabling
problems obtained from different anonymous universities around the world.

The detailed properties of the 12 benchmark instances are summarized in Table 2.
The constraint (or conflict) density value is calculated using the following formula
taken from Ref. 30:

NNl
Constraint density = 2ot Z]\J;ZH(” ) )

Table 2. ITC 2007 exam track benchmarking datasets.

Inst # +# of Students +# of Exams # of Rooms Hard Cons Cons Density (%) # of Time Slots

1 7891 607 7 12 5.04 54
2 12,743 870 49 14 1.17 40
3 16,439 934 48 184 2.62 36
4 5045 273 1 40 14.94 21
5 9253 1018 3 27 0.87 42
6 7909 242 8 23 6.13 16
7 14,676 1096 15 28 1.93 80
8 7718 598 8 21 4.54 80
9 655 169 3 10 7.79 25
10 1577 214 48 58 4.95 32
11 16,439 934 40 185 2.62 26
12 1653 78 50 16 18.21 12
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Table 3. ITC 2007 exam timetabling data sets soft constraints violation penalties.

Instance # Twoina Row Two in a Day  Period Spread  Mixed Durations  Front Load

1 7 5 5 10 100, 30, 05
2 15 5 1 25 250, 30, 05
3 15 10 4 20 200, 20, 10
4 9 5 2 10 050, 10, 05
5 40 15 5 0 250, 30, 10
6 20 5 20 25 025, 30, 15
7 25 5 10 15 025, 30, 10
8 150 0 15 25 250, 30, 05
9 25 10 5 25 100, 10, 05
10 50 0 20 25 100, 10, 05
11 10 50 4 35 400, 20, 10
12 35 10 5 5 025, 05, 10

Table 3 shows the different penalties for violating soft constraints for the 12
datasets. These penalties are defined as follows.

e Two Exams in a Row. This penalty applies to exam assignments occurrences
where two examinations are taken by a student, one straight after another, also
known as back to back exams. It is calculated by totaling the number of students
that violate the constraint and multiplied by the number provided in the two in a
row weighting settings.

e Two Exams in a Day. This penalty applies to exam assignments occurrences
where two examinations are taken by students in the same day but are not directly
back to back. This is obviously conditioned by the fact that there must be three
periods or more in a day. The total number is consequently multiplied by the two
in a day weighting settings.

o Period spread (of examinations). The number of times when students have to
sit more than one exam in a time period specified by the institution. This is usually
used as an indication of fairness principle to all students taking exams.

e Mixed duration (of examinations within individual periods). The number
of occurrences of exams timetabled in rooms along with other exams of differing
time duration.

e Front Load. Most institutions desire that examinations with the largest numbers
of students are scheduled at the beginning of the examination session so that
markers would be under no stress and would take their time in marking exams.
The penalty for this concept, in ITC 2007, is called Front Load and is defined as a
sequence of three parameters n,m,t. The idea behind this penalty is to allow the
institution to try to schedule larger exams earlier in the examination session. The
first parameter defines how the largest exam is defined in terms of the number of
students. If the number is, for example, 200 then any exam that has enrolled
students of 200 or more is considered to be one of the largest exams. The second
parameter is the number of last periods that these larger exams should be avoided
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to be scheduled in. The third parameter is the penalty or weighting that should be
added each time the constraint is violated. For example, if Front Load = (200, 20,
15), it means that any exam with 200 students or more that is scheduled in the last
20 periods will be penalized with 15.

As we will see, our proposed approach is successful in competing with bench-
marking results published in literature so far. We measure the general behavior and
performance of our implementation in the two different phases to solve the exam
timetabling problem; construction phase and enhancement phases. We also compare
our approach to the well-known exam timetabling problem solvers (finalists of the
examination track). All the experiments are performed on an PC Intel Core 2-Duo
2.4 GHz processor with 8 GB of RAM.

4.1. Discovering constraints in the pre-processing phase

Discovering constraints that were not stated in problem description would be ben-
eficial for variables that share one or more constraints as it will reduce the size of the
search space which will improve the search process. Table 4 shows the number of
unspecified constraints, per instance, revealed during this stage. Dataset 3 and 11
have the most unspecified constraints while dataset 12 has no undiscovered con-
straints.

4.2. Construction phase testing and analysis

Our construction approach is based on Tabu Search with CD. We set our goal to get
a complete feasible solution as fast as possible so that the enhancement phase can
kick in and improve the overall solution value gradually. In order to measure the
performance of Tabu with CD, we tested it against standard Tabu Search and in
both cases preprocessing phase is done prior to constructing complete solution. For
the purpose of the construction phase testing, we selected dataset 4 as it has a high

Table 4. Unspecified -constraints discovered
during the pre-processing phase.

Instance #  Number of Constraints Discovered

Instance 1 2
Instance 2 6
Instance 3 19
Instance 4

Instance 5 11
Instance 6 16
Instance 7

Instance 8 3
Instance 9

Instance 10 13
Instance 11 19

Instance 12
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Fig. 5. Dataset 1 construction phase using standard T'S.

conflict density (14.94%) along with high number of students and exams which
makes it as one of the toughest problem to solve in our benchmarking datasets.
During the process of building a complete feasible solution, we record solution value
in every iteration along with its time. This testing is only concerned with the con-
struction phase and so we set our testing to run for 10 times for each method of the
selected dataset. Then we select the trial with the best solution value from the 10
trials. We represent each point in the graph with the corresponding penalty cost
monitored after every iteration along with its time. The last penalty cost is the cost of
the first complete feasible solution and that is where the construction phases stops.
Figure 5 illustrates the full snapshot of the best trial for standard Tabu Search
(TS) on dataset 1 while Fig. 6 shows the same pattern for TS with CD. Among 10
trials, using best run’s solution value, although standard TS shows better complete
solution (6041), it took 8.03s and 1081 iterations to get it while TS with CD with
6803, took 4.21 and 672 iterations. Also, standard TS algorithm shows relatively
higher number of fluctuations between lower penalty cost and higher ones where TS with
CD seems to have gradually been building the complete solution with less fluctuations.
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Fig. 6. Dataset 1 construction phase using TS with CD.
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Fig. 7. Performance of the construction phase on dataset 4 with Tabu and Tabu together with conflicts
dictionary.

However, dataset 4 has shown a different pattern. Dataset 4 is one of the most
constrained problems. The top chart of Fig. 7 illustrates the full snapshot of the best
trial for standard TS on dataset 4 while the bottom chart shows the same pattern for
TS with CD. The top chart articulates how standard TS struggled with finding the
less penalty cost solutions in contrary to TS with CD (bottom chart). Standard T'S
spent a total of 28.54 s (3281 iterations) to find a best complete solution, amongst 10
trials, with a penalty cost of 31,133 while TS with CD took only 2.03s (567 itera-
tions) to find one with a penalty of 27,633. That is a performance improvement of
around 93% with solution value improvement of 11.2%.

Dataset 5 is the least constrained problem with only 0.87% but with relatively
high number of students and exams (9253 students and 1018 exams) which leads us
to think that it should be one of the easiest problems to solve. We can see that in the
lack of any fluctuations between worse and better solutions in the graphs for the
datasets in Fig. 8. Nonetheless, T'S with CD algorithm performs slightly better than
standard TS even though the problem itself tends to be easy to solve. In 10 trials,
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Fig. 8. Dataset 5 using standard TS (top chart) and TS with CD (bottom chart).

standard TS obtained 6530, as a best solution value, in 2.58 s (1020 iterations) while
TS with CD achieved 5030, as a best solution value, in 2.21s (1050 iterations).

4.3. Enhancement phase testing and analysis

We compare 4 methods labeled method 1, method 2, method 3, and method 4,
respectively corresponding to HC+SA, SA, EGD, and our MEGD. All these methods
use Tabu Search with Dictionary Conflicts in the construction phase. In addition,
only methods 2, 3, and 4 have a preprocessing phase.

Figures 9-11, show the enhancement phase best solution distribution history for
four methods against iteration in datasets 1, 6, and 8. From these figures, we can
clearly notice that without preprocessing the first method tends to improve solutions
values within a relatively short time and keeps improving almost very slowly. An-
other visible notice is that method 1 seems to use less number of iterations which
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Fig. 10. Performance on dataset 6 of the enhancement phase.

suggests that it employs these iterations cycles either in backtracking or accessing
nonefficient collections. Method 2 which also uses SA starts enhancing a complete
solution very early but then ends with slightly outperforming method 1. On the other
hand, the last two methods, using GD flavors with preprocessing in place, spend
some time to find the first improving solution after the first complete solution which
also tends to be of, relatively, worse value than methods 1 and 2. This is due to the
nature of GD algorithm which only accepts an improving solution. Also, a bad
solution is accepted if its quality is less than (for the case of a minimization problem)
or equal to an upper bound or “level” in which during the search process, the “level”
is iteratively updated by a constant decreasing rate. It also means that, with the
preprocessing phase in place, there will be more features. This means that there are
more effort to satisfy more constraints but also gaining better performance when
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looking up the different collections in particular area as well as a more careful
exploration. For the inclusion of preprocessing phase, our proposed search algo-
rithm diversification of search to gather the whole search space proved the im-
portance of finding the global minimum quickly. We also note that MEGD
performs slightly better than EGD in 8 out of 12 of the datasets. Figure 9 illus-
trates that methods 3 and 4 were close in terms of results in achieving the best
solution. This is also the case for method 1 and 2 although method 2 outperfor-
med to some extent method 1. Method 3 reached a best solution value of 4185.
The same pattern also appears in Figs. 10 and 11 where they show results for
dataset 6 and dataset 8 where method 4 is marginally the winner in finding the
best solution.

Generally, the algorithms might behave differently due to the different mea-
surements enforced during the search process. However, the difference between SA,
GD, EGD and MEGD algorithms lies in the acceptance criteria functionality that
would make a difference on the limited solving time that was imposed on our
benchmarking datasets. This might not be the case if we have relatively longer times
for several hours or days as all these algorithms are based on the stochastic local
search and there will always be the possibility of achieving good results.

4.4. Comparative tests results

On the basis of results obtained by both construction and enhancement phases, we
decided to compare our four methods to the five well-known ETP solvers. Each of the
datasets used in our testing phase has a previously discovered best known solution
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announced by ITC 2007. The five known solvers are the following finalists of the
examination track of the competition.

(1) Miiller*! implemented a constraint-based solver, which constructs a complete
solution, followed by a HC and a GD approach for improving the solution.

(2) Gogos et al.**** used a Greedy Randomized Adaptive Search Procedure, followed
by SA, and integer programming.

(3) Atsuta et al.** developed a constraint satisfaction solver combined with Tabu
Search and iterated local search.

(4) De Smet*® has his own solver, namely Drools Solver, which is a combination of
Tabu Search and the JBoss Drools rules engine used for the evaluation.

(5) Finally, Pillay®° used a heuristic method that is inspired by cell biology.

During experiment runs, we managed to achieve an outstanding 98% success in
reaching complete feasible solution on all instances in all attempts. The remaining
2% were only in dataset 4 and 12. For each method trials we performed 11 individual
runs on each of the 12 competition instances, using the time limit specified by the
competition benchmarking program as our stopping criteria, which equated to 362 s.
The same timeout value on each machine is used for all of the 12 datasets. In all
cases, we logged out all best solution values history along with times and iterations
where these best solution values are discovered.

The settings of the algorithms have remained the same throughout the experi-
ment for the purpose of going in line with ITC 2007 rules. One of our objectives in
testing phase is to represent different algorithm variations that are composed of
different algorithms and compare them to the performance of ITC 2007 results. The
expectation was also set for the results to be reasonably comparable if not better than
ITC 2007 exam track results.

Figure 12 reports the comparative results including the best solution value (lowest
penalty cost) and average of best solution values for each variant. When searching
without preprocessing, performance degrades relatively to when using preprocessing
phase. Only the first method did not use preprocessing and if we look first at the
performance of its algorithms in comparison to ITC 2007 results we will notice that it
comes in the second place in 10 out of 12. This is the case for all datasets except
datasets 10 and 12. TS with CD + HC+ SA with no preprocessing is the worst
algorithm variant in our testing and it comes in the second place in most datasets in
comparison to ITC 2007 results.

The other three algorithms variants performed better. Only when we used GD
algorithm extensions (EGD and MEGD), we started to see results that overtake ITC
2007 results. Our approach gets 8 out of 12 datasets as best results. These results are
split between EGD and MEGD evenly with 4 best results each.

In order to obtain a fair comparison, it is worth noticing that the performance loss
is on average about 7% between SA with preprocessing and MEGD with pre-
processing, whereas it is about 10% if the preprocessing phase is not implemented
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Fig. 12. Comparative results.

with SA. Moreover, one can also notice that the gap between the two methods
becomes smaller with higher conflicts density problems, and that the behavior of the
methods with pre-processing phase implemented is more stable with respect to SA
with no preprocessing phase. All in ally, EGD and MEGD performed much better
than SA with preprocessing phase not to mention SA with no preprocessing. Finally,
all of our methods performed well in comparison to ITC 2007 results in best solution
values and in best average values.

5. Conclusion and Future Work

We presented our proposed approach to solve the exam timetabling problem using
four different metaheuristics search method. We also introduced a pre-processing
phase to enhance the overall search process. A Tabu metaheuristic search method
with conflict dictionary is proposed as a construction phase to achieve a partial or
complete initial feasible solution. The tabu list does not contain operators or moves
that are problem specific. It only needs to store the conflicted moves along with the
accumulated number of conflicts it caused. A MEGD heuristic search method is used
during search to eliminate some of the time wasted in local optimum based on certain
conditions. The selected heuristics perform in sequence to produce a good solution for
the current state of the problem. The whole hybrid heuristics approach is configur-
able and able to manage and control its heuristics without having a domain pre-
knowledge of the exam timetabling problem. In the near future we will investigate
advanced variables ordering heuristics'? as well as evolutionary techniques using a
parallel architecture.®”>
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