Appl Intell (2013) 39:510-528
DOI 10.1007/s10489-013-0429-5

A hierarchical parallel genetic approach for the graph coloring

problem

Reza Abbasian - Malek Mouhoub

Published online: 3 March 2013
© Springer Science+Business Media New York 2013

Abstract Graph Coloring Problems (GCPs) are constraint
optimization problems with various applications including
time tabling and frequency allocation. The GCP consists
in finding the minimum number of colors for coloring the
graph vertices such that adjacent vertices have distinct col-
ors. We propose a hierarchical approach based on Parallel
Genetic Algorithms (PGAs) to solve the GCP. We call this
new approach Hierarchical PGAs (HPGAs). In addition, we
have developed a new operator designed to improve PGAs
when solving constraint optimization problems in general
and GCPs in particular. We call this new operator Genetic
Modification (GM). Using the properties of variables and
their relations, GM generates good individuals at each iter-
ation and inserts them into the PGA population in the hope
of reaching the optimal solution sooner. In the case of the
GCP, the GM operator is based on a novel Variable Ordering
Algorithm (VOA) that we propose. Together with the new
crossover and the estimator of the initial solution we have
developed, GM allows our solving approach to converge
towards the optimal solution sooner than the well known
methods for solving the GCP, even for hard instances. This
was indeed clearly demonstrated by the experiments we con-
ducted on the GCP instances taken from the well known DI-
MACS website.

Keywords Parallel genetic algorithms - Graph coloring
problem

R. Abbasian - M. Mouhoub (X))

Department of Computer Science, University of Regina,
Regina S4S 0A2, Canada

e-mail: mouhoubm@cs.uregina.ca

R. Abbasian
e-mail: abbasiar@cs.uregina.ca

@ Springer

1 Introduction

Graph Coloring Problems (GCPs) are very interesting con-
straint optimization problems with many real world applica-
tions such as Frequency Allocation for Mobile Radio and
WLANSs [32], Register Allocation [6], Time Tabling [33]
and Scheduling [21]. A GCP on a given graph G is defined
as finding the graph’s chromatic number denoted by x (G).
x (G) is the minimal number of colors needed to color the
graph vertices such that any two adjacent (neighbouring)
ones have different colors. The GCP is an NP-Hard problem
[15] where optimal solutions can be found for its simple or
medium sized instances [5, 29].

There are generally three approaches to solve the GCP
[25, 28]. The first one consists in directly minimizing the
number of colors by working on the legal colors space of
the problem. In the second approach, the number of colors
is fixed and no conflict is allowed, thus, some vertices might
not be colored. The objective here is to maximize the num-
ber of colored vertices [3, 36]. The third approach consists
of first choosing a number of colors K, and then iteratively
try to minimize the number of conflicts for the candidate K.
Whenever a solution with zero conflicts has been found, K is
decremented by one and the procedure continues until we
reach a K where the number of conflicts cannot be equal to
zero. As aresult, the last legal K will be returned as the best
solution [25].

Since our aim is to develop a parallel approach for solv-
ing the GCP, we focus on the third approach as it is suit-
able for this purpose. This approach suffers from two major
problems. First, we have to solve the GCP assuming that
the graph is K colorable, and if solved via K colors, we re-
duce K by one and solve the problem again and continue
this process until we find the minimum possible K. This
phenomenon causes a waste of time and resources since it

mailto:mouhoubm@cs.uregina.ca
mailto:abbasiar@cs.uregina.ca

A hierarchical parallel genetic approach for the graph coloring problem

511

takes the opportunity to consider other solutions at the same
time. The second problem is that the number of vertices is
used as the initial value of K. This will affect the efficiency
of the solving algorithm especially for large problems in-
stances where there is a big difference between the initial
value of K and the optimal one.

We propose an extension of this approach addressing and
improving its two limitations as follows. We solve the GCP
in a hierarchical and parallel way using a set of collaborating
Parallel Genetic Algorithms (PGAs). We call this new ap-
proach Hierarchical PGA (HPGA). Each PGA in the HPGA
is assigned to work on solving the GCP using a unique num-
ber of colors. Moreover, given the fact that in genetic al-
gorithms, the random crossover operator performs poorly
for combinatorial optimization problems [10, 12], we ex-
tend the PGA with an additional operator that we propose,
namely the Genetic Modification (GM). Using the proper-
ties of variables and their relations, the GM operator gener-
ates good individuals at each iteration and inserts them into
the PGA population in the hope of reaching the optimal solu-
tion sooner. In the case of the GCP, the GM operator is based
on a novel Variable Ordering Algorithm (VOA) that we pro-
pose for the GCP, namely Dependency Variable Ordering
for Graph Coloring Problem (DVOGCP). To overcome the
second drawback, we designed a novel greedy algorithm to
estimate the upper-bound for the graph’s chromatic number.
We then use this estimator to evaluate the initial value of K.

In order to evaluate the performance of our new ap-
proach, we have conducted several experiments on GCP in-
stances taken from the well known DIMACS graphs web-
site. The results of these experiments show that our proposed
approach solves the GCP efficiently and in a timely manner
with a great accuracy in finding the optimal solution.

The rest of the paper discusses our contributions in de-
tail. In Sects. 2 and 3, the design of the proposed HPGA and
the estimator are respectively covered. Section 4 introduces
the different components of the PGA designed specifically
to solve the GCP. Section 5 is dedicated to the experimen-
tation we conducted in order to evaluate the performance
of our proposed approach. Finally, concluding remarks and
possible future works are presented in Sect. 6.

2 The proposed HPGA
2.1 Background: PGAs

Genetic Algorithms (GAs) [16] are evolutionary algorithms
based on the idea of natural selection and evolution. GAs
have been successfully applied to a wide variety of prob-
lems [1, 11, 17, 35, 38]. In GAs, there is a population of
potential solutions called individuals. The GA performs dif-
ferent genetic operations on the population, until the given
stopping criteria are met.

Slave 1 Slave 2 Slave n

Fig. 1 Master—Slave PGA model

Migration
Direction

Fig. 2 Island PGA model

The Parallel Genetic Algorithm (PGA) is an extension of
the GA. The well-known advantage of PGAs is their abil-
ity to facilitate different subpopulations to evolve in diverse
directions simultaneously [23]. It is shown that PGAs speed
up the search process and can produce high quality solutions
on complex problems [9, 24, 34].

There are mainly three different types of PGA [4]. First,
Master-Slave PGA in which, there is only one single pop-
ulation and the population is divided into fractions. Each
fraction is assigned to one slave process on which genetic
operations are performed (see Fig. 1) [23]. Second, Multi-
Population PGA (also called Island PGA) that contains
a number of subpopulations, which can occasionally ex-
change individuals (see Fig. 2). The exchange of individuals
is called migration. Migration is controlled using several pa-
rameters. Multi-population PGAs are also known as Island
PGA, since they resemble the “island model” in population
genetics that considers relatively isolated demes. Finally, the
Fine-Grained PGA which consists of only one single popu-
lation is designed to run on closely linked massively parallel
processing systems [23].

@ Springer

512

R. Abbasian, M. Mouhoub

IPC Technique

N

Shared Shared Shared
Memory Memory Memory
o~ ~

MSPGAs (Islands)

Fig. 3 HPGA architecture

2.2 HPGA architecture

As mentioned in the introduction, our proposed approach
for solving a GCP executes PGAs in parallel using a Hierar-
chical PGA (HPGA) architecture. A HPGA can be obtained
by any combination of the PGA types discussed earlier. Fig-
ure 3 shows the architecture of our proposed HPGA. To de-
sign the HPGA, we use the Island PGA (IPGA) for the top
level and Master-Slave PGA (MSPGA) for the lower level.
Each MSPGA, is actually an island of the IPGA; however,
there is a Coordinator Process (CP) in the IPGA which is
in charge of assigning different GCP problem domains to
each island of the IPGA. The CP can communicate with
each MSPGA using the chosen Inter-Process Communica-
tion (IPC) mechanism. The rest of this section covers the
design of the HPGA in depth.

2.3 Designing the MSPGA for the GCP

Each MSPGA has only one goal: to solve the GCP prob-
lem via a color domain of size N. A MSPGA consists of
one Master Process (MP) and its Slave Processes (SPs) (as
shown in Fig. 3). Each SP performs genetic operations on
a subpopulation assigned to it by the MP. At each step of
the GA, the MP nominates P best individuals gathered from
each SP’s population and distributes them to SPs for the re-
production. For the sake of efficiency, we used Shared Mem-
ory as IPC since the MP and its SPs need to interact a lot in
each generation of the GA.

2.4 Extending the PGA using Genetic Modification (GM)

We define the term Genetic Modification (GM) for generat-
ing good individuals based on the relations between vertices

@ Springer

Fig. 4 Architecture of a
MSPGA with GM operator

Shared
Memory

Algorithm 1 GM algorithm
Begin
modified_list <— { (population of modified individuals)
Wait for a command from MP
while command # STOP do
fori:=1to Py do
Generate a modified individual /
Add I to modified_list
Signal the MP
Wait for a command from MP
End

and constraints in the GCP. This means that the GM oper-
ator would purposefully insert some engineered individuals
into the GA’s population to give them a chance to participate
in reproduction. The process of generating individuals based
on this idea might be time consuming compared to just ran-
domly generate individuals or perform a random crossover.
Thus, to resolve this issue, the GM operator should not inter-
fere with the flow of the PGA and this latter should not wait
for the GM operator results to enter the reproduction. The
idea here is that the GM should concurrently and indepen-
dently operate beside the PGA. Whenever the GM produces
a population of engineered individuals, the PGA keeps them
until the next reproduction. Then, just before the reproduc-
tion, the PGA distributes them between the subpopulations.
Figure 4 shows the architecture of a MSPGA including the
GM operator. In our work, the size of the population pro-
duced by the GM is equal to 20 % of the subpopulation size.

The GM operator generates a modified population of
size Pps. Algorithm 1 presents a general pseudo-code for
the GM operator process. The GM operator should be de-
signed according to the nature of the constraint optimization
problem of interest. A specific GM operator for the GCP is
introduced in Sect. 4.

2.5 Managing MSPGAs using the CP
As shown in Fig. 3, the interaction between a CP and its is-

lands (MSPGAs) can use different mechanisms of the IPC.
For instance, we could choose either Shared Memory or

A hierarchical parallel genetic approach for the graph coloring problem

513

Algorithm 2 IPGA algorithm

Algorithm 3 MSPGA algorithm

Require: All MSPGAs are suspended at the beginning.

1: Assign to each MSPGA, a distinct potential chromatic
number from [N — Mspendea, N) N N.

2: Start suspended MSPGAs. Wait for a MSPGA to find a
solution. If a solution is found go to step 3. Meanwhile,
if the Stopping Criteria are satisfied, stop the algorithm
and return the best result found so far.

3: Update N to the best chromatic number found. Suspend
the MSPGAs that have an equal or greater chromatic
number than N.

4: Assign to each suspended MSPGA, a distinct potential
chromatic number from [N — Myspended, N) NN. Go to
step 2.

Message Passing. If we choose Message Passing, the CP
can be considered as a machine with not necessarily high
capabilities in a network with highly capable machines. On
the other hand, we can use a multi-core super computer and
choose the Shared Memory as IPC mechanism.

The CP is in charge of coordinating M MSPGAs. The
value of M can be evaluated by considering available hard-
ware resources. For example, in a Message Passing strategy,
M would be the maximum number of highly capable ma-
chines available in the network for use. At the beginning
of the algorithm, the CP assigns a distinct coloring domain
from [N — M, N) NN to each MSPGA (N is the estimated
upper-bound for x(G)). The MSPGAs then compete with
each other to find a solution to the GCP with their given
number of colors. Whenever the CP receives a valid solu-
tion from a MSPGA, it suspends the operation of MSPGAs
that are working on color domains greater than the received
solution. The CP then updates N to the current known chro-
matic number and assigns a distinct coloring domain from
[N — Myuspendgea, N — 11 NN to each suspended MSPGA
and resumes them. This process continues until the algo-
rithm finds the minimum possible chromatic number or a
given time is passed.

2.6 Proposed HPGA procedures

Consider M as the total number of PGAS, Mygpendeq as the
number of PGAs in the suspend state, and N as the esti-
mated chromatic number received from our proposed esti-
mator that we will present in the next section. Algorithms 2
and 3 respectively list IPGA and MSPGA procedures for
solving a GCP instance.

1: In Parallel: generate a random population of size P.
Calculate the fitness of each individual.

2: If a solution is found (new chromatic number), signal
the CP and wait for a task from the CP. Else, go to the
next step.

3: Before entering the reproduction, check if the GM pro-
cess has created a modified population. If so, distribute
them amongst subpopulations.

4: In Parallel: perform reproduction, mutation, and fitness
calculation. Go to step 2.

3 A new estimator for the GCP
3.1 Background: sequential graph coloring algorithms

The GCP is a very well known NP-hard problem that
has been extensively reported in the literature for the past
decades. Exact methods for solving the GCP include branch
and bound and other algorithms based on exhaustive search.
In [8], Coudert proposes a branch and bound algorithm that
uses the size of a clique in a graph to get a better lower
bound of the chromatic number. Like any other systematic
search technique, this method suffers from its exponential
time cost especially for large graphs with arbitrary connec-
tivity. In order to overcome this difficulty in practice, several
polynomial time heuristics have been proposed in the liter-
ature. These heuristics can be seen as truncated branch and
bound algorithms and include contraction algorithms as well
as sequential coloring techniques. A survey of these heuris-
tics can be found in [19, 26]. Let G be a graph with a set of
vertices V = {x1, x2, ..., x,}. Every sequential graph col-
oring algorithm is based on the order in which vertices are
selected and has, in general, the following model.

1. The vertices x1, x2, ..
ity rule.

2. Each vertex in the ordered list is colored with the mini-
mum possible color number.

., X, are ordered based on a prior-

In practice, the order of processing the vertices is very
important as if can greatly impact the running time of the
solving method. Vertices ordering can be static or dynamic.
An example of a simple static ordering priority rule is
the one proposed in [37] for the case of scheduling and
timetabling problems represented as GCPs. In this rule we
simply create a decreasing ordered list of vertices based on
their degrees. We then attempt to color the graph. Dynamic
ordering includes DSATUR [2] and Recursive Largest First
(RLF) [20] heuristics where vertices are ordered based on
their degree in addition to the colors used by their adjacent
nodes (neighbors). In [7] an evolutionary technique based
on the RLF heuristic is proposed. Note also the new al-
gorithm proposed in [18] based on several techniques and

@ Springer

514

R. Abbasian, M. Mouhoub

Algorithm 4 DSATUR algorithm

Algorithm 5 GCP estimator algorithm

1: Arrange the vertices by decreasing order of degrees.

2: Color a vertex of maximal degree with color O.

3: Choose a vertex with a maximal saturation degree. If
there is an equality, choose any vertex of maximal de-
gree in the uncolored subgraph.

4: Color the chosen vertex with the least possible (lowest
numbered) color.

5: If all the vertices are colored, stop. Otherwise, return to
step 3.

heuristics including the least-constraining and most con-
strained heuristics, divide and conquer and global proba-
bilistic search.

Based on the Saturation degree of vertices, DSATUR al-
gorithm is defined as follows. Let G be a simple graph and
C a partial coloring of G vertices. We define the saturation
degree of a vertex as the number of different colors to which
it is adjacent (colored vertices). Algorithm 4 illustrates the
description of DSATUR [2].

Our proposed estimator is a sequential graph coloring al-
gorithm where the priority rule is defined as follows. First,
like the WP rule, a vertex x; with the maximal degree is se-
lected and colored. Then, the next vertices to be selected are
the neighbors of x; which are selected based on their de-
grees. In some sense, our proposed algorithm selects a sub-
graph containing the most constrained vertex together with
its neighbors and colors them. It then goes to the next sub-
graph and continues until all the vertices are colored.

In the next subsection we present the details of our pro-
posed estimator.

3.2 The proposed estimator

The Estimator algorithm receives an uncolored graph G at
input and returns the minimum number of colors needed to
color G. For that, it uses a working graph A (initially empty)
that corresponds, at each step of the algorithm, to the colored
sub graph of G. The details of the algorithm are shown in
Algorithm 5.

The idea behind our estimator is to first identify, in G,
the sub-graph that corresponds to the most constrained ver-
tex and its adjacent vertices. This sub-graph is then solved
according to the constraints that we have so far in the par-
tially constructed graph A. Once a sub-graph is solved, the
algorithm moves to the next unsolved sub-graph with similar
properties. This process continues until the whole problem
is solved and there is no other uncolored vertex left. The
algorithm uses a greedy method for choosing a color for a
vertex, since it always seeks the minimum available color.

Figure 5 shows the steps of the algorithm for a sample
graph. For the sake of simplicity, we suppose that colors are

@ Springer

1: Start with the uncolored graph G where all vertices are
not marked, and the empty graph A.
2: Create a list L of all the vertices of G sorted in decreas-
ing order of their degree.
3: while there exists a vertex in G that is not marked do
Pick the first non marked vertex g; from L, add it to
A and name it a;.
5: Add the edges between a; and the rest of vertices
in A, according to their correspondence in G.
6: Solve the new sub-GCP by choosing the minimum
possible color number for a;.
mark g; as colored.
while there exists an adjacent vertex adj,, to g; in
G that is not marked do

9: Pick the first non marked vertex adjg,_ from L,
add it to A and name it adj,, .
10: Add the edges between adj,, and the rest of ver-
tices in A, according to their correspondence in G.
11: Solve the new sub-GCP by choosing the mini-
mum possible color number for adj,, .
12: mark adj, as colored.

13: end while
14: end while
15: Return the total number of colors used.

G A G A
Initial Step Step 1
Step 2
Step 4

N

Fig. 5 Steps of estimator algorithm for a sample graph

enumerated starting with zero. In each step of the algorithm,
we add one vertex to the partial graph A. As a result, we
just need to check the adjacency matrix for the newly added
vertex and choose a color with the minimum possible num-
ber for the added vertex. The algorithm discussed above is

A hierarchical parallel genetic approach for the graph coloring problem

515

(2]of2[3[3]4]0]1]
VO VI V2 V3 V4 V5 V6 V7

Fig. 6 Individual representation of an eight-vertex graph

rather conceptual as we can implement it without actually
using the partial graph A. We only need to keep track of
the colored vertices (every colored vertex is in A). The al-
gorithm can be implemented to run in O(| V|?) where |V| is
the number of vertices.

4 PGA components
4.1 Representation of individuals

Each individual in the population is represented with an in-
teger array, which has a length equal to the number of graph
vertices. The value of each array entry is a color number
within the color domain. Figure 6 illustrates an example of
an individual for an eight-vertex graph with a color domain
of size 5, and its correspondence in the graph.

4.2 Fitness function

The fitness function of an individual is the number of con-
flicts between adjacent vertices. This corresponds to the
number of adjacent vertices with the same color. In order
to compute this value, we simply find adjacent vertices from
the graph adjacency matrix and check their color number in
the integer array of the individual. When the fitness func-
tion is equal to zero, a solution is found. The fitness of an
individual, f7, is defined as follows:

fi=>Y"Y" conflict(i, j)
i€V jeadj;

where Vi is the set of all vertices of the graph and adj; is
the set of all vertices adjacent to vertex i.
The conflict function is defined as follows:

NP 1 ifi and j have the same color
conflict(i, j) = {0 ({therwisje

4.3 Parental success crossover

Reproduction takes place amongst a number of fittest indi-
viduals in each subpopulation. The chosen individuals are

[4f2fo]of2] [1]1]2[4]3]

Fig.7 A one point crossover of a five-vertex graph

then passed to crossover as parents of new individuals. We
first adopted the k-point crossover where the value of k is
generated randomly at the time of the crossover. Figure 7
shows an example of a 1-point crossover on two individuals
of a five-vertex graph coloring problem.

However, as discussed in [10] and verified by our prelim-
inary experimentations, a completely random crossover per-
forms poorly for constraint optimization problems. Indeed,
in these problems the k-point crossover may eliminate some
useful individuals, since when applied to two good individ-
uals it does not necessarily generate a good or a better one.
The main reason for such a phenomenon is that in constraint
optimization problems in general, and GCPs in particular,
changing the value of a variable can have direct effects on
other variables that are in constraint relation with the chang-
ing variable and indirect effect on other variables. As a re-
sult, performing a random crossover often reduces the qual-
ity of the solution. This has been a motivation to propose the
following new crossing method. Based on this method, each
individual in the population maintains two records; the to-
tal number of times it has participated in reproduction (N),
and the number of times the offspring it produced was fitter.
We refer to the latter as Parental Success Number and de-
note it by Ps. The parental success ratio, denoted by S, can
then be calculated as follows:

Note that the parental success ratio of each individual is
initially equal to zero. Furthermore, we define the term Fit-
ness Around Variable (FAV) as the number of conflicts be-
tween a given variable (corresponding to a vertex) and its
neighbors in the constraint graph. Each individual keeps a
record of the fitness around all of its variables.

Using these new parameters, we create a Crossover
Mask. The offspring is then produced according to the
crossover mask. Let p; and p, be two parents chosen for
the crossover. The crossover mask specifies which allele
in the new chromosome should inherit from which parent.
Since the crossover is performed here using two parents, the
crossover mask consists of binary digits. Given two parent
p1 and pp, 1 corresponds to choosing the allele from p;
while O corresponds to choosing it from p». To create the
mask, we compare each allele in p; with its correspondence
in py. If the FAV of the allele in p; is less than the one
in py, we put a 1 in the mask. If the FAV of the allele in py
is less than the one in pq, we put a 0 in the mask. In case of

@ Springer

516

R. Abbasian, M. Mouhoub

VO V1 V2 V3 V4 V5§ V6 V7
parent 1 21012 (313141011
FAV 0101]1]0(f1]0

VO V1 V2 V3 V4 V5 V6 V7

parent2 [1 |1 |2 (2]|3]|3]|1]3
FAV t{2]1[1]ofo]1]o
crossover * * L L
mask LAl t[t]ofofifo]1]

VO V1 V2 V3 V4 V5 V6 V7
offspring [2 [o |23 [3[4] 1] 1]

* chosen randomly

Fig. 8 Example of the parental success crossover on an eight vertex
graph

equality, we use the following probabilities for choosing the
allele:

P (choosing from p1) =1/2+4(Sp, — Sp,) x 1/2
P (choosing from p3) =1/2+ (S, — §p,) x 1/2

Where, §,, and §), are the parental success ratios of p;
and py, respectively. An example is illustrated in Fig. 8. The
Parental Success Crossover (PSC) in fact favours the parent
that has a higher parental success ratio and a lower FAV for
each allele. A parent with a higher success ratio tends to be
a more well-instantiated CSP solution. As a result, choosing
the crossing values for the new offspring from this parent
is more promising. PSC tends to preserve the structure of
a good parent while generating a new, different offspring
based on that.

Figure 9 illustrates an example of using PSC on a GCP
and compares it with the case of using a One Point Crossover
(OPC). In this figure, patterned colors are used to color each
vertex of the graph. As it can be clearly seen, when we apply
the PSC to the two candidate parents, the produced offspring
could be much better than the parents (in this case it is actu-
ally a solution). On the other hand, when a OPC is applied
two the same parents, the produced offspring could be much
worse than the parents. Algorithm 6 shows the function for
generating PSC Mask.

4.4 Mutation
We propose two different methods for the mutation. The
first method that is called mutation to minimize the num-

ber of conflicts is used to locally improve the solution while
performing the mutation. On the other hand, the second

@ Springer

Parent 2

Parent 1 PSC
0

* chosen randomly based on parental success ratio

Parent 1 OPC Parent 2

Fig. 9 Comparison of PSC and OPC in Producing an Offspring in GA
for GCP

method, stochastic color change, performs a complete ran-
dom mutation. Since mutation to minimize the number of
conflicts has a greedy strategy to modify the individuals, us-
ing stochastic color change is necessary to preserve the di-
versity of the population.

4.4.1 Mutation to minimize the number of conflicts

In this type of mutation, N,uarion random vertices of the
individual are selected and the numbers of color conflicts
around the chosen vertices and their adjacent vertices are
minimized. Say vertex A is randomly chosen for the muta-
tion, then, according to the adjacency matrix of the graph,
for every vertex B that is adjacent to A, if their colors are
the same, B will take a new random color that is not equal
to A’s color (see Algorithm 7).

Each time we perform a mutation, Npysarion takes a ran-
dom value between 1 and Npguy. Npar is computed as fol-
lows using another parameter that we introduce called Al-
lele Mutation Percentage. Suppose we have an individual of

A hierarchical parallel genetic approach for the graph coloring problem

517

Algorithm 6 Generating PSC mask

Algorithm 8 Stochastic color change

function PSC-MASK(FAV ,,, FAV), as Arrays and S,,,
Sp, as Doubles)
Define: mask as Array
Define: P, as Double
from p;
Pp, =05+ (Sp, —Sp,) x0.5
for i =0 to individualLength do
if FAV), [i] <FAV), [i] then

> probability of choosing

mask[i] =1
else if FAV), [i] >FAV ,,[i] then
mask[i]=0
else
if U(0,1) < P,, then > U is uniform random
function
mask[i] =1 > choose from p;
else
mask[i] =0 > choose from p;
end if
end if
end for

return mask
end function

Algorithm 7 Mutation to minimize the number of conflicts
function MUTATE 1 (indiv as Array of Integers)
Define: A as Integer > a vertex index of individual
for i =0 to N,uzation do
A<« aunique, randomly chosen vertex index.
for all B adjacent to A do
if indiv[A] == indiv[B] then
indiv[B] <— random color not equal to A’s

color
end if
end for
end for
end function

size 100 and an allele mutation percentage of 20 %, then
Nptax =20 % x 100 = 20.

4.4.2 Stochastic color change

This mutation method randomly chooses Nyyzarion Vertices
and assigns a random color to each (see Algorithm 8).

4.5 Genetic Modification (GM) operator
We implemented the GM using a Variable Ordering Algo-

rithm (VOA) that we propose for solving the GCP. At the
beginning of the GM process, a variable ordering of the GCP

function MUTATE2(indiv as Array of Integers)
Define: A as Integer > a vertex index of individual
for i =0 to N,uzation do
A< aunique, randomly chosen vertex index.
indiv[A] < random color
end for
end function

Fig. 10 The graph representation of the dependency relation A — B

is calculated using the proposed VOA. This variable order-
ing is considered as the best order for vertices to be colored
in turn. Each variable in this ordering has an initial color do-
main of size N. Whenever the GM needs to create a new
individual, it starts from the first variable in the ordering and
generates a random value for each variable in turn. Follow-
ing a look ahead principle, when a variable (vertex) is as-
signed a value, the GM propagates this change by removing
that value (color) from the color domain of its neighbors.
This way, it is guaranteed that at each time, the chosen value
for a variable (vertex) will not cause a conflict. However, at
the end of initializing variables, we might end up with some
variables that have empty color domains. In this case, the
GM randomly chooses a color for them.

4.5.1 Dependency variable ordering for GCP

In Dependency Variable Ordering for GCP (DVOGCP), the
dependency level of a vertex means the coloring of a vertex
A depends on the color of the k adjacent vertices that are in
a dependency relation with A. For instance, to color a vertex
A with dependency level 2, we first have to color the two
adjacent vertices involved in a dependency relation with A.
A dependency relation between two vertices A and B is de-
noted by A — B and is interpreted as the color of vertex
B depends on the color of vertex A. Figure 10 illustrates
A — B in a graph.
We propose the following preceding rules in DVOGCP.

— A vertex with a lower dependency level always precedes
the one with higher dependency.

— If two vertices have the same dependency, the one with
the higher degree precedes the other.

— There is no ordering between two vertices with the same
degree and dependency level.

Before creating the dependency relations, the graph ver-
tices are sorted in a descending order of their degree. The
first vertex in the sorted list, that is the vertex with maximum
degree is the starting point in the algorithm. This vertex has a

@ Springer

518

R. Abbasian, M. Mouhoub

Db Ui

Sorted List by Degree: VO,V3,V2,V1,V4,V5,V6,V7
Variable Ordering Result with Dependency Level (DL):
V0,V4,V6,V7,V1,V5,V3,V2
DL=0 DL=2 DL=3

Fig. 11 Creating dependency relations of a GCP

dependency level of zero. Dependency relations are created
according to the following rule:

— Considering two vertices A and B, A — B holds if and
only if A has a higher or equal degree and a lower or equal
dependency level in comparison to B. Otherwise, B — A
holds.

Creating relations starts from the first vertex in the sorted
list and continues for the rest of vertices in the list. At each
iteration of the algorithm, we create dependency relations
between the chosen vertex from the list and its adjacent ver-
tices. Note that, the dependency relations are updated only
when the algorithm is done creating them for the current
vertex. The algorithm continues until we create all depen-
dency relations for the vertices in the list. Then, the variable
ordering is generated by creating a list of vertices with the
following properties.

— First, the list is created by sorting vertices according to
their dependency level in an ascending order.

— Second, each subsequence of vertices with the same de-
pendency level in the list will be sorted according to their
degree in a descending order.

Figure 11 shows a GCP instance and its DVOGCP.
4.6 Stopping criteria
The algorithm stops if a given timeout T is reached or a
maximum number of generations is exceeded without find-
ing a solution to the GCP.
5 Experimentation
Our proposed algorithm has been implemented using Java

language (JDK 1.6) and has been applied to a variety of
graph coloring instances. The GCP instances used in this

@ Springer

section are from a benchmarking website formally named
DIMACS graphs. !

Table 1 shows the results (in CPU time) of solving se-
lected GCP instances with our proposed approach. The
problem instances are taken from a range of small to large
DIMACS problems where their chromatic number is re-
ported. In this experiment, we used Shared Memory as the
IPC mechanism between the CP and the MSPGAs. We de-
fined 5 processes as the MPs for the 5 islands and a vari-
able number of processes for SPs operating under each MP
in MSPGAs (this number is reported in Table 1, “SPs per
Island” column). The test machine is a Ciaratech FUSION
SMP with 72 CPU cores. For each experiment we conduct
20 runs, each with a different random number generator
seed, and take the average, min and max CPU time needed
to return the solution.

In the experiments, the top 30 % of each subpopulation
plus a number of randomly selected individuals are chosen
for the crossover. In addition, in order to maintain a diverse
population, every ten iterations we perform a crossover be-
tween randomly chosen parents. More precisely and follow-
ing the idea of migration probability, every 10 iterations a
totally random crossover is performed by choosing random
parents amongst sub populations of each island. This is to
control elitism in GA and maintain a diverse population on
each island.

The mutation probability is set to 0.2. The probability to
choose mutation to minimize the number of conflicts is 0.8
and the probability to choose the Stochastic color change
mutation is 0.2. The allele mutation percentage is 20 % (see
Sect. 4.4 for the definition of the above parameters).

Note that for all problems reported in Table 1, our es-
timator reaches the same upper bound (x) as DSATUR of
Brelaz [2] but in a much better running time. This is justified
by the fact that, in theory, the complexity of our estimator is
O (V%) while it is O(]V|?) for DSATUR [19].

Next, we have compared our algorithm with the Parallel
Genetic-Tabu Algorithm (PGTA) designed to solve GCPs
[25]. In terms of the resulting chromatic number, both al-
gorithms return the same results, except for the problem
instance queen7_7.col, that the PGTA returns 7 while our
HPGA returns 8. Figure 12 shows the comparative results
of our proposed algorithm and PGTA with 24 processors in
terms of runtime.

According to the figure, the results of our proposed al-
gorithm are much better in all cases. The reason for such a
significant improvement is that our Estimator finds a very
good upper-bound for the chromatic number, causing the al-
gorithm to start from a point near the optimal solution. This
way, if the algorithm reaches the optimal solution, consid-
ering the fact that determining whether or not a solution

Thttp://mat.gsia.cmu.edu/COLORO3/.

http://mat.gsia.cmu.edu/COLOR03/

A hierarchical parallel genetic approach for the graph coloring problem

519

Table 1 CPU time needed by our proposed algorithm for solving se-
lected DIMACS GCP instances. V and E are respectively the number
of nodes and edges of the graph. x and Res are respectively the optimal
solution and the solution returned by our method. Avg Time, Max Time

and Min Time are respectively the Average, Maximum and Minimum
running times in seconds needed by our method to return the solution.
SPs per Isld and PopSize per slv are respectively the number of Slave
Processes per Island and the population size per slave

Problem instances

Proposed algorithm results

Instance Vv E X Res Avg Time Max Time Min Time SPs per PopSize per
(sec) (sec) (sec) Isld slv
fpsol2.i.1.col 496 11654 65 65 46.1436 49.856 38.427 10 200
fpsol2.i.2.col 451 8691 30 30 31.3506 43.762 20.315 10 200
fpsol2.i.3.col 425 8688 30 30 32.9034 44.025 22.33 10 200
inithx.i.1.col 864 18707 54 54 99.639 131.633 82.748 20 200
inithx.i.2.col 645 13979 31 31 40.4542 54.401 31.1 10 200
inithx.i.3.col 621 13969 31 31 41.8646 58.643 32.206 10 200
mulsol.i.1.col 197 3925 49 49 8.7354 16.023 6.245 20 50
mulsol.i.2.col 188 3885 31 31 7.4734 12.948 5.703 20 50
mulsol.i.3.col 184 3916 31 31 7.1652 10.894 5.36 20 50
mulsol.i.4.col 185 3946 31 31 7.5034 13.184 4.339 20 50
mulsol.i.5.col 186 3973 31 31 8.0924 13.073 6.038 20 50
zeroin.i.1.col 211 4100 49 49 7.9662 13.407 6.095 20 50
zeroin.i.2.col 211 3541 30 30 9.0712 15.196 6.706 20 50
zeroin.i.3.col 206 3540 30 30 8.616 13.185 6.804 20 50
anna.col 138 493 11 11 2.9016 7.067 1.531 4 50
david.col 87 406 11 11 2.5522 5.538 1.288 50
homer.col 561 1629 13 13 9.7898 15.435 7.603 20 50
huck.col 74 301 11 11 4.6278 9.219 2.891 10 50
jean.col 80 254 10 10 4.398 8.644 2.69 10 50
games120.col 120 638 9 9 5.0038 9.299 3.1 10 50
miles1000.col 128 3216 43 43 6.425 12.049 4.546 10 100
miles1500.col 128 5198 73 73 10.1062 15.47 7.808 20 100
miles250.col 128 387 8 8 5.8828 11.476 3.244 10 100
miles500.col 128 1170 20 20 6.0624 11.356 4.253 10 100
miles750.col 128 2113 31 31 6.4144 9.927 4.928 10 100
queen5_5.col 25 160 5 5 2.3716 5.93 1.057 10 100
queen6_6.col 36 290 7 8 2.5062 5.067 1.221 10 100
queen?_7.col 49 476 7 8 2.8361 4.775 1.296 10 100
queen8_8§.col 64 728 9 10 3.809 4.917 2.988 10 100
myciel3.col 11 20 4 4 0.753 0.836 0.648 50
myciel4.col 23 71 5 5 0.865 0.931 0.805 50
myciel5.col 47 236 6 6 1.7608 3.94 0.358 50
myciel6.col 95 755 7 7 1.479 3.239 0.47 50
myciel7.col 191 2360 8 8 5.3352 11.731 3.004 10 50
mug88_1.col 88 146 4 4 2.173 5.377 0.17 10 50
mug88_25.col 88 146 4 4 1.8002 3.92 0.182 10 50
mug100_1.col 100 166 4 4 2.016 4.951 0.182 10 50
mug100_25.col 100 166 4 4 2.5286 5.52 1.085 10 50
1-Insertions_4.col 67 232 4 5 2.4476 6.382 2.025 10 100
2-Insertions_3.col 37 72 4 4 1.8964 3.549 1.623 10 100
2-Insertions_4.col 149 541 4 5 6.4666 10.335 3.29 10 100
3-Insertions_3.col 56 110 4 4 3.347 5.247 0.983 10 100
qg.order30.col 900 26100 30 30 59.887 65.43 47.371 10 200

@ Springer

520

R. Abbasian, M. Mouhoub

Fig. 12 CPU time comparison
of the proposed algorithm and

EPGTA (24 Processors)

OProposed Algorithm (HPGAGCP)

PGTA with 24 processors
21.97
19.1

<
E
=
= 5.44 5 5.88
=4

266237 29325 309283 38 ﬂ

= =l
queens_5 queen6_6 queen7_7 queen8_8 games120 miles250

is optimal is not possible for the algorithm, the maximum
number of permitted generations without any solution is ex-
ecuted more quickly.

The Estimator also incredibly reduces the size of the
search space. Then, the GM operator plays its role by in-
serting interesting individuals in the population. This will
increase the chance of moving towards the optimal solution
faster. In the end, since the GA is running in parallel, the
runtime is significantly reduced. This phenomenon suggests
that using our estimator and utilizing the idea of the GM
operator by DVOGCP, together with the parental success
crossover and a set of collaborating PGAs, we can signifi-
cantly facilitate the conventional design of the genetic algo-
rithms for solving a GCP.

To demonstrate the effectiveness of parallelism, we com-
pared our proposed parallel algorithm to its sequential ver-
sion. Figure 13 reports the CPU time in seconds needed by
each version to reach the optimal solution with the speedup
chart (number of times the parallel method is faster) shown
in Fig. 14. As we can easily see the parallel version is much
faster than the sequential one. Note that for some instances
such as myciel7.col there is almost no difference be-
tween the running times of the parallel and sequential ver-
sions. This is due to the fact that for these particular in-
stances the chromatic number given by our estimator to the
solving method is actually equal to the optimal solution.
The GA-based solving method does not do much in this
case.

In order to assess the effect of the GM and the parental
success crossover on the convergence of our proposed ap-
proach, we have experimentally compared three variants
of our method on four problem instances. In the first one
called One Point Crossover + Mutation only the one point
crossover is used. In the second and third variants the
parental success crossover is used without and with the
GM respectively. These two methods are respectively called
Parental Success Crossover + Mutation and Parental Suc-
cess Crossover + GM + Mutation. Moreover we have im-
plemented the most known and efficient hybrid evolution-
ary heuristic for solving the GCP [13, 14] and run it on the
same four problem instances. This latter is a genetic local

@ Springer

search method that combines local search with genetic algo-
rithms.

Figures 15, 16, 17 and 18 show the number of itera-
tions (generations of individuals) needed by each of the
three variants and the hybrid evolutionary heuristic (de-
noted by HEA+LS) [13, 14] to return the solution with a
corresponding fitness for each of the four selected prob-
lems. As we can easily see from the four figures, our
2 methods (Parental Success Crossover + Mutation and
Parental Success Crossover + GM + Mutation) are defi-
nitely superior to the HEA+LS and One Point Crossover +
Mutation techniques. In particular the Parental Success
Crossover + GM + Mutation is the only method that finds
the optimal solution for all the problem instances.

As we can easily see, the first variant fails to reach the op-
timal solution for all the four instances. On the other hand,
the third variant is the only variant that converges towards
the optimal solution in all four problems. Moreover, it is
easy to see that for each problem the third variant converges
sooner (with less iterations) than the second variant. This
definitely demonstrates that our new crossover is always bet-
ter than the one point crossover. In addition, the GM always
helps when added to the new crossover. Finally the results
shown in the figures demonstrate the superiority of our ap-
proach over the hybrid evolutionary heuristic on all the four
problem instances.

6 Conclusion and future work

In this paper, we first discussed the limitations for solving
the GCP using evolutionary algorithms. To address those
issues, we proposed a number of algorithms including the
HPGA to solve the GCP with different color domains simul-
taneously and to search in diverse directions of the search
space. We also proposed a novel estimator to find an upper-
bound for the graph’s chromatic number.

Furthermore, we proposed an extension to the genetic al-
gorithms, namely the Genetic Modification (GM) and the
parental success crossover operators, specifically designed
for solving discrete optimization problems.

A hierarchical parallel genetic approach for the graph coloring problem

521

fpsol2.i.1.col
fpsol2.i.2.col
fpsol2.i.3.col
inithx.i.1.col
inithx.i.2.col
inithx.i.3.col
mulsol.i.1.col
mulsol.i.2.col
mulsol.i.3.col
mulsol.i.4.col
mulsol.i.5.col
zeroin.i.1.col
zeroin.i.2.col
zeroin.i.3.col
anna.col
david.col
homer.col
huck.col
jean.col
games120.col
miles1000.col
miles1500.col
miles250.col
miles500.col
miles750.col
queen5_5.col
queen6_6.col
queen7_7.col
queen8_8.col
myciel3.col
myciel4.col
myciel5.col
myciel6.col
myciel7.col
mug88_1.col
mug88_25.col
mugl00_1.col
mugl00_25.col
1-Insertions_4.col
2-Insertions_3.col
2-Insertions_4.col
3-Insertions_3.col

qg.order30.col

1170.394
3.347 (9 imes faster

S = 1169.132
6 (9 times faster

Ee ; 1157.42

8964 (10 times fastes

2.4476 (10 times faster)
1226075

1209.268
127.602
1138.276
1125.365

1 135.437
1131.856

124,871

3 111.703

19,0712

4 123.321
8616

5 1103.479
0016

183.215
- 1180.512
9.7898

F 192.658
46278

]1103.862

S 1102.842
5.0038
1115.179
6.425
) 1143.86
0.106
=1 101.368
5.8828

T 1134218

== 151428
.
556
12332
25062
B 6.741
8361
115195
805
0283

0.753
0.425
0.896
1780
{135
1.479
982
5.3352
N 11.752
A
811235

1.8002

= 8.526
2016

120816
5286
I 23.533
11941

1.8964

= 155.724
6.4666

S 30.452

[59.887

313.107

B Sequential Time (s)
M Parallel Time (s)

1384.577

0 50 100 150 200 250

Fig. 13 CPU time comparison of the proposed parallel algorithm to its sequential version

300 350 400

450

@ Springer

R. Abbasian, M. Mouhoub

522
Fig. 14 Speedup chart (number fpsol2.i.1.col
of times thej parallel rrtnethod is fpsol2.i.2.col
faster than its sequential :
ion) fpsol2.i.3.col
version inithx.i.1.col
inithx.i.2.col
inithx.i.3.col
mulsol.i.1.col

mulsol.i.2.col
mulsol.i.3.col
mulsol.i.4.col
mulsol.i.5.col
zeroin.i.l.col
zeroin.i.2.col
zeroin.i.3.col
anna.col
david.col
homer.col
huck.col

B Speedugp

jean.col
games120.col
miles1000.col
miles1500.col
miles250.col
miles500.col
miles750.col
queen5_5.col
queenb_6.col
queen?_7.col
queen8_8.col
myciel3.col
mycield.col
mycielS.col
myciel6.col
myciel7.col
mug8g_1.col
mug88_25.col
mugl00_1.col
mugl00_2S.col
1-Insertions_4.col
2-Insertions_3.col
2-Insertions_4.col
3-Insertions_3.col
qg.order30.col

In the experimentations that we conducted on various
GCP instances, we showed that our proposed approach is
very accurate and fast for solving the GCP. Apart from the
efficiency provided by using a Hierarchical PGA, our pro-
posed estimator together with the GM and crossover op-
erators play an important role respectively in reducing the
search space and generating near optimal solutions.

In the near future, efforts will be made to conduct more
tests on other problem instances in order to further study
the possible relations between our HPGA method and the
structural features of the GCPs (such as the number of color
classes) as well as to see how does our method scale up with
the hardness of the problem. While the DIMACS suite is the

@ Springer

30 40

common known library used for evaluating and comparing
heuristic-based methods, it does not answer our needs for
these new experiments. Instead, we will use the generator
described in [12]. This latter has the ability to generate dif-
ferent types of k-colorable graphs as well as instances near
the phase transition (transition between solvable and unsolv-
able instances) as hard instances are known to be concen-
trated near this region.

We also plan to generalize the whole proposed system to
solve a variety of structured constraint optimization prob-
lems [22, 27, 33], including those in a dynamic environment
[1, 30, 31]. This can be done by developing a generalized es-
timator for discrete optimization problems based on the idea

A hierarchical parallel genetic approach for the graph coloring problem

523

Fig. 15 Comparative test 30 david.col
results for the david.col oy
. 11-colorability problem
problem instance 25
20
2
o
£15
h -
10 sm==HEA+LS (no Mutation)
5
0
R S == o s T = I = U o o I - =T T o e =T g T = B O B = = B e T i T = = AT ol LT g T = = e T o e =]
——-——Nmmmmmwrwrwxrmmm\o\oornrwrurnmmmoo\og
Iterations
25 david.col
11-colorability problem
20
@« 15
o
=
=
= 10 s===()ne Point Crossover
+Mutation
5
0
Lo i == s T = = R o B I Bt A = ot T = = L s LT T T B o == R s T = = T ol BT T = T e I =]
-'-'--'--”NNN!“‘}MMTrvﬂ'?ﬂmﬂ\ﬂ\ﬂohhhhmwmc\ﬂ\a\g
Iterations
25 david.col
11-colorability problem
20
@ 15
=¥
=
=
=10 s===Parental Success Crossover
+Mutation
5
0
Lol o e =T o BT = = S o BT e o i O I ot S = = W o L T -+ T e N == s LY = T = A o T - o R T o e =]
————NPIN"")W‘!MH‘*H“I‘WWW&D\D‘DT‘“FFFWMD@U\U‘U\.E
Iterations
25 david.col
11-colorability problem
20
@ 15
g
=
=
=10 sm==Parental Success Crossover
+GM+Mutation
5
0
i S =T s T =T = B o BT - R B W = o T = = R o B T+ B Y == o T = = T o LT T - I T o e =]
-—'-—'v—'-—'Nr\lN!"‘al")rﬁWVWVWWH\D\D\OHFFFMOODOOU‘O\E
Iterations

@ Springer

524

R. Abbasian, M. Mouhoub

Fig. 16 Comparative test
results for the anna.col
problem instance

@ Springer

Fitness

Fitness

Fitness

Fitness

30

25

20

30

25

20

30

25

20

anna.col
11-colorability problem

-_—
sm==HEA+LS (no
Mutation)
Lan i s =T o T =T = O o BT o T - T T o e =T g T = B Y o LT T = = I e S S ot B =T = O LY T~ o T T N s =]
— e e I oA S ST SN N D OO~ 0000 000NN
Iterations
anna.col
11-colorability problem
s===()ne Point Crossover
+Mutation

- I~ O L = R O o T o T T T o T o Y = O o T T~ I T o = o o T = O = R o BT W = T T o s =1
— e = =l ST T TNNN O OO~ 0000 00NN O
Iterations
anna.col

11-colorability problem

e===Parental Success Crossover
+Mutation

et T = = O o B = = T e B o =T g L = T = o’ IR - B T o
Lar B o T e A e L AL T e T = == I e e e B = = = =)

100

Iterations

anna.col
11-colorability problem

====Parental Success Crossover
+GM+Mutation

Lo S o =T s = = Tt L e = B Bl S o Ol 00 = = I~ 0O OOV =D
—— =l I A e T TNV N D O~ 0000 00Oy O

Iterations

A hierarchical parallel genetic approach for the graph coloring problem

525

Fig. 17 Comparative test 300 myciel7.col
results for the myciel7.col e
problem instance 250 (== 8-colorability problem
200
2
o
-E 150
E .
100 s===HEA+LS (no Mutation)
50
0
HTBQM\DG\(\IV}M'—'VI‘HOM\DU\NV}DOﬂ%I‘*SM\DO‘NU‘!OO—*ﬂ‘(‘HO
i N B o B o B o o T T S T - - S e B P R PR o] O M~~~ M~c00000 oD
Iterations
230 myciel7.col
8-colorability problem
200
@ 150
)
E
= 100 s===()ne Point Crossover
+Mutation
50
0
—_— -0 MO AN O =000 = OO MNOANNE -
'——'—'—(“I(“INmmmﬂ‘EPTPTPU\V‘)V‘)\D\D\DI‘“I“-I“'-I“‘OOOOOOO\G\Q\E
Iterations
29 myciel7.col
8-colorability problem
200
w 150
g
E
= 100 e===Parental Success Crossover
+Mutation
50
0
TR EZZREE R AR EYIT N R C T RN RERBRISSE
Iterations
300 myciel7.col
250 8-colorability problem
200
2
o
E 150
= e===Parental Success Crossover
100 +GM+Mutation
50
0
LT =T o Y - O ot BT - - T B = T T = e O o B T = T T~ B B = T = SO ol T I R T o]
-—‘-—‘-—‘-—‘NNN!"‘:MMV?VVWWWO\D\OI"-I“-I"-["-OOOOOOG\QG\E
Iterations

@ Springer

526 R. Abbasian, M. Mouhoub

Fig. 18 Comparative test 255 fpsol2.i.3.col
results for the £psol . col 250 30-colorability problem
problem instance
245
w 240
]
£ 235
= 230 b \
225 e===HEA+LS (no Mutation)
220
215
Lol N a T T = T R o BT I i R e =T o T = T = O ol B T+ Rl Y =T g B = = AU ol LY O R e o e =]
'—'—-'—'—N(\lf\ll‘ﬁt"\t’\ﬂ‘ﬂ‘ﬂ‘ﬂ‘U‘!V‘!V‘i\D\D‘Ol“‘-(‘*I“*I‘*OODOOOU‘Q‘Q\E
Iterations
300 fpsol2.i.3.col
250 30-colorability problem
200
g
E 150
= s===()ne Point Crossover
100 +Mutation
50
e Sn=rNREFIRSUSINRACILRARREEESIEE
Iterations
a0 fpsol2.i.3.col
250 30-colorability problem
200
w
b
£ 150
B e===Parental Success Crossover
100 +Mutation
50
0 '—‘ﬂ‘I‘*QM\DO‘\(\IV}C}O-—‘VI‘“OM\DO\NV‘:C}O-—gl‘HOMOO\NIﬂOO-—'V[‘“O
— e N NN T NN N D \ararar-r-wwwooog
Iterations
230 fpsol2.i.3.col
30-colorability problem
200
@ 150
A
E
= 100 s===Parental Success Crossover
+GM-+Mutation
50
0 ol S =T o T = T o T T e B Y e T g L O O o L T = B B Y =T LT = O L Y ! L T = e B N =]
-——--—Nmmmmmﬂ-crwrvmmm\co\ohr«hrﬁmmmooog

Iterations

@ Springer

A hierarchical parallel genetic approach for the graph coloring problem

527

of our proposed Estimator. Moreover, different algorithms
can be embedded into the GM operator and the Dependency
Variable Ordering (DVO) can be generalized to operate on a
wide range of problems.

References

11.

13.

14.

15.

16.

17.

18.

19.

20.

. Ayvaz D, Topcuoglu HR, Giirgen FS (2012) Performance eval-

uation of evolutionary heuristics in dynamic environments. Appl
Intell 37(1):130-144

Brélaz D (1979) New methods to color the vertices of a graph.
Commun ACM 22:251-256

Briggs P, Cooper KD, Torczon L (1994) Improvements to graph
coloring register allocation. ACM Trans Program Lang Syst
16(3):428-455

Cantu-Paz E (2000) Efficient and accurate parallel genetic algo-
rithms. Kluwer Academic, Norwell

Caramia M, Dell’Olmo P (2001) Iterative coloring extension of a
maximum clique. Nav Res Logist 48(6):518-550

Chaitin G (2004) Register allocation and spilling via graph color-
ing. SIGPLAN Not 39(4):66-74

Costa D, Hertz A, Dubuis O (1995) Embedding of a sequential
algorithm within an evolutionary algorithm for coloring problems
in graphs. J Heuristics 1:105-128

Coudert O (1997) Exact coloring of real-life graphs is easy. In:
34th design automation conference, pp 121-126

Cui J, Fogarty TC, Gammack JG (1993) Searching databases us-
ing parallel genetic algorithms on a transputer computing surface.
Future Gener Comput Syst 9(1):33—40

Cutello V, Nicosia G, Pavone M (2003) A hybrid immune algo-
rithm with information gain for the graph coloring problem. In:
Proceedings of the 2003 international conference on genetic and
evolutionary computation: Part I (GECCO’03). Springer, Berlin,
pp 171-182

da Silva FJM, Perez JMS, Pulido JAG, Rodriguez MAV (2010)
AlineaGA—a genetic algorithm with local search optimization for
multiple sequence alignment. Appl Intell 32:164-172

Fister I, Mernik M, Filipi¢ B (2012) Graph 3-coloring with a hy-
brid self-adaptive evolutionary algorithm. Comput Optim Appl.
doi:10.1007/s10589-012-9496-5

Galinier P, Hao JK (1999) Hybrid evolutionary algorithms for
graph coloring. J Comb Optim 3(4):379-397

Galinier P, Hertz A, Zufferey N (2008) An adaptive memory algo-
rithm for the k-coloring problem. Discrete Appl Math 156(2):267—
279

Garey MR, Johnson DS (1990) Computers and intractability;
A guide to the theory of NP-completeness. Freeman, New York
Goldberg DE (1989) Genetic algorithms in search, optimization
and machine learning. Addison-Wesley, Reading

Kang MH, Choi HR, Kim HS, Park BJ (2012) Development of a
maritime transportation planning support system for car carriers
based on genetic algorithm. Appl Intell 36(3):585-604

Kirovski D, Potknojak M (1997) Exact coloring of many real-life
graphs is difficult, but heuristic coloring is almost always effective.
Technical report

Klotz W (2002) Graph coloring algorithms. In: Mathematics Re-
port, pp 1-9. Technical University Clausthal

Leighton F (1997) A graph coloring algorithm for large scheduling
algorithms. J Res Natl Bur Stand 84:489-506

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

. Leighton FT (1979) A graph coloring algorithm for large schedul-

ing problems. J Res Natl Bur Stand 84(6):489-506

Li J, Burke EK, Qu R (2010) A pattern recognition based intel-
ligent search method and two assignment problem case studies.
Appl Intell. doi:10.1007/510489-010-0270-z

Lim D, Ong YS, Jin Y, Sendhoff B, Lee BS (2007) Efficient hier-
archical parallel genetic algorithms using grid computing. Future
Gener Comput Syst 23(4):658-670

Liu Z, Liu A, Wang C, Niu Z (2004) Evolving neural network
using real coded genetic algorithm (ga) for multispectral image
classification. Future Gener Comput Syst 20(7):1119-1129
Mabrouk BB, Hasni H, Mahjoub Z (2009) On a parallel genetic-
tabu search based algorithm for solving the graph colouring
proble. Eur J Oper Res 197(3):1192-1201

Malaguti E, Toth P (2010) A survey on vertex coloring problems.
Int Trans Oper Res 17(1):1-34

Mansour N, Isahakian V, Ghalayini I (2011) Scatter search tech-
nique for exam timetabling. Appl Intell 34(2):299-310

Marx D (2004) Graph coloring with local and global constraints.
PhD thesis, Budapest University of Technology and Economics
Mehrotra A, Trick MA (1995) A column generation approach for
graph coloring. INFORMS J Comput 8:344-354

Miguel I, Shen Q (2000) Dynamic flexible constraint satisfaction.
Appl Intell 13(3):231-245

Mouhoub M, Sukpan A (2012) Conditional and composite tempo-
ral CSPs. Appl Intell 36(1):90-107

Riihijarvi J, Petrova M, Mahonen P (2005) Frequency allocation
for wlans using graph colouring techniques. In: Proceedings of the
second annual conference on wireless on-demand network sys-
tems and services. IEEE Comput Soc, Los Alamitos, pp 216-222
Sabar NR, Ayob M, Qu R, Kendall G (2011)A graph coloring con-
structive hyper-heuristic for examination timetabling problems.
Appl Intell. doi:10.1007/s10489-011-0309-9

Sena GA, Megherbi D, Isern G (2001) Implementation of a paral-
lel genetic algorithm on a cluster of workstations: traveling sales-
man problem, a case study. Future Gener Comput Syst 17(4):477—
488

Shi K, Li L (2012) High performance genetic algorithm based text
clustering using parts of speech and outlier elimination. Appl In-
tell. doi:10.1007/s10489-012-0382-8

Svenson P, Nordahl MG (1999) Relaxation in graph coloring and
satisfiability problems. Phys Rev E 59(4):3983-3999

Welsh D, Powell M (1967) An upper bound for the chromatic
number of a graph and its application to timetabling problems.
Comput J 10:85

Xing H, QuR (2012) A compact genetic algorithm for the network
coding based resource minimization problem. Appl Intell 36:809—
823

Reza Abbasian obtained his M.Sc.
degree in Computer Science from
the University of Regina in Canada.
His research interests are in the area
of Constraint Solving and Evolu-
tionary Computation.

@ Springer

http://dx.doi.org/10.1007/s10589-012-9496-5
http://dx.doi.org/10.1007/s10489-010-0270-z
http://dx.doi.org/10.1007/s10489-011-0309-9
http://dx.doi.org/10.1007/s10489-012-0382-8

528

R. Abbasian, M. Mouhoub

@ Springer

Malek Mouhoub obtained his M.Sc.

and Ph.D. in Computer Science
from the University of Nancy in
France. He is currently Professor of
Computer Science at the University
of Regina in Canada. His research
interests are in Artificial Intelligence
and include Temporal Reasoning,
Constraint Solving and Program-
ming, Scheduling and Planning. Dr.
Mouhoub’s research is supported
by the Natural Sciences and Engi-
neering Research Council of Canada
(NSERC) federal grant in addition
to several provincial and University
funds and awards.

	A hierarchical parallel genetic approach for the graph coloring problem
	Abstract
	Introduction
	The proposed HPGA
	Background: PGAs
	HPGA architecture
	Designing the MSPGA for the GCP
	Extending the PGA using Genetic Modification (GM)
	Managing MSPGAs using the CP
	Proposed HPGA procedures

	A new estimator for the GCP
	Background: sequential graph coloring algorithms
	The proposed estimator

	PGA components
	Representation of individuals
	Fitness function
	Parental success crossover
	Mutation
	Mutation to minimize the number of conflicts
	Stochastic color change

	Genetic Modification (GM) operator
	Dependency variable ordering for GCP

	Stopping criteria

	Experimentation
	Conclusion and future work
	References

