‘a Constraints: An International Journal, 2, 151-164 (1998)
‘ © 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Experimental Analysis of Numeric and Symbolic
Constraint Satisfaction Techniques for Temporal
Reasoning

MALEK MOUHOUB mouhoub@loria.fr
LORIA, BP 239, 54506 VandceuvesiNancy, France

FRANCOIS CHARPILLET charp@loria.fr
LORIA, BP 239, 54506 VandceuvessiNancy, France

JEAN PAUL HATON jph@loria.fr
LORIA, BP 239, 54506 VandceuvesiNancy, France

Abstract. Many temporal applications like planning and scheduling can be viewed as special cases of the numeric
and symbolic temporal constraint satisfaction problem. Thus we have developed a temporal model, TemPro,
based on the interval Algebra, to express such applications in term of qualitative and quantitative temporal
constraints. TemPro extends the interval algebra relations of Allen to handle numeric information. To solve
a constraint satisfaction problem, different approaches have been developed. These approaches generally use
constraint propagation to simplify the original problem and backtracking to directly search for possible solutions.
The constraint propagation can also be used during the backtracking to improve the performance of the search.
The objective of this paper is to assess different policies for finding if a TemPro network is consistent. The main
question we want to answer here is “how much constraint propagation is useful” for finding a single solution
for a TemPro constraint graph. For this purpose, we have experimented by randomly generating large consistent
networks for which either arc and/or path consistency algorithms (AC-3, AC-7 and PC-2) were applied. The
main result of this study is an optimal policy combining these algorithms either at the symbolic (Allen relation
propagation) or at the numerical level.

Keywords: temporal reasoning, constraint satisfaction, arc consistency, path consistency

1. Introduction

Time plays an important role in various applications such as planning, scheduling, process
control, etc. This has led researchers to propose numerous approaches for representing and
reasoning on time. One of the most attractive work in A.l. is Allen’s interval algebra. A
significant amount of work has been devoted to this approach, e.g. [10], [21], [22], [23],
[24], [25], [26] and so on. Most work has been devoted to the complexity analysis and to the
definition of sub-classes of the interval algebra that admit complete polynomial algorithms
for constraints maintenance [4]. Some generalisation were also studied [12], [11], mostly
at the representation level. The expressiveness of representation used in interval algebra
is more general than those relying on point based representation such as the numerical
representation used in the Dean’s TMM [6], Meiri’s approach [13] or in IXTeT [7]. As a
drawback it is more complex and remains costly. Furthermore it does not take into account
numerical constraints unless restrictions are accepted [10], [17].

In order to address these two drawbacks of interval algebra, we have defined in our

152 M. MOUHOUB, F. CHARPILLET, AND J. P. HATON

model TemPro a representation and algorithms that extends the interval algebra approachin
order to take into account efficiently numerical constraints. In addition to interval algebra
relations, TemPro model handles different kinds of entities such as windows, durations
for intervals and dates defined over window’s bounds (that can be defined in form of
mathematical equations). The algorithmic approach is that of constraint satisfaction over
discrete domains.

Since solving constraint satisfaction problems is a NP-hard problem, filtering techniques,
such as arc and path consistency which simplify the task by eliminating some local incon-
sistencies, are particularly studied. We present in this paper the use of these techniques
to solve constraint satisfaction temporal problems. The main question we want to answer
is how much constraint propagation is useful for finding a single solution for a constraint
satisfaction temporal problem. For this purpose, we have compared different policies where
arc and/or path consistency algorithms were applied for finding if a constraint satisfaction
temporal problem is consistent. The main result of this study is an optimal policy combining
these algorithms either at the symbolic or at the numerical level.

This paper is organised as follows. In sections two and three, we present our model and
propagation algorithms. In the fourth section, our model is compared to other approaches.
Sections five and six present the experimental results.

2. Knowledge Representation
2.1. Events

In TemPro, temporal objects are called events. Events have a uniform reified representation
made up of a proposition and its temporal qualificati&nt = OCCURp, |) defined by

Allen [1] and denoting the fact that the propositipnoccurred over the intervdl. For

the sake of notation simplicity, an event is used to denote its temporal qualification in this
article.

2.2. Qualitative Constraints

Qualitative constraints specify the relative temporal position of an event with respect to other
events. The qualitative constraint between two evenisandev, can take the following
forms : ev; = OCCURMDp, |1), evo = OCCURD, I2); I1 r1 r2... ry |2, where each of
theri’s is one of the thirteen Allen primitivesPrecedesduring, overlaps meets starts
finishemoted respectively?, D, O, M, S and F; their converse®~,D~, 0", M~,S~
andF—; and the equality relatiok.

2.3. Quantitative Constraints

Additional information about an event can be stated, thus restricting its temporal qualifica-
tion to belong to a given SOPO i.e. the Sets Of Possible Occurrences where the given event

EXPERIMENTAL ANALYSIS OF CONSTRAINT SATISFACTION 153

’I]‘ime ligne

}_'_H ,,,,,,,,, | | | | I A W s O N
TSV N N R It Y T N N N N BN

Figure 1. The SOPO of a given event.

can take place. In our case, a SOPO is restricted to be a finite set of intervals with con-
stant duration. We represent a SOPO by the fourfoltjintime endtime duration, steg
wherebegintimeand endtimeare respectively the earliest begin time and the latest end
time of the corresponding everduration is the duration of the event arslepdefines

the distance between the starting time of two adjacent intervals within the SOPO, e.g,
eventi = (P, 1) Al €[12, 88 4,4]. Thus, ifg is an event numerically constrained by
the following SOPOQipf,, sup, di, pi], then the set of possible occurrenceab defined

as:

I = {ocq | beginocg) = inf; + k* p;, endocg) = begin(ocg)
—inf.
+d; = p, endocg) <=sup, ke [O, SuR — I —di} NN},
i
beginandendare functions on intervals and return the begin and the end points of a given
interval, respectively (cf. figure 1).

2.4. Related Work

Some research work addressing the problem of handling both metric and symbolic con-
straints has already been reported. Meiri [13] has proposed a model based on a single
network (time map) managing both constraints: metric constraints that restrict the distance
between time points, and symbolic constraints that specify the relative position between
temporal objects (either points or intervals). Kautz and Ladkin [9] have proposed a model
allowing the representation and processing of metric temporal information in the form of
a system of simple linear inequalities to encode metric relations between time points, and
systems of binary constraints in Allen’s qualitative temporal calculus to encode qualitative
relations between time points. In the Kautz and Ladkin approach, both kind of constraints
are independently processed in separate networks. At the representation level, our ap-
proach is close to that of Kautz and Ladkin, but it differs in the way metric constraints are
defined. Indeed, quantitative constraints are represented by linear inequalities in the Kautz
and Ladkin approach while they are modeled by SOPOs in our representation. Thus we
have a uniform language at the numerical and symbolic level. In the approach of Kautz and
Ladkin the propagation is performed separately in both metric and qualitative networks.
Translation procedures are then used to update the metric constraints from the new Allen
constraints and vise versa. This process is repeated until no new statements can be derived.

154 M. MOUHOUB, F. CHARPILLET, AND J. P. HATON

As we will see in the next sections, in our approach, the process to compute minimal Allen
and metric constraints network is performed in one pass. A backtracking algorithm is then
used to search for a possible numeric solution.

3. Solving Qualitative and Metric Constraint Temporal Problems
3.1. Constraint Satisfaction Problems

Let N be the set of variables, each defined on a discrete doman, ..., an} andRaset

of constraining relations on a subset of these variables. A constraint satisfaction problem
(CSP) consists of finding all sets of valu@gj1, ..., aajn} for (x4, ..., Xn} satisfying all
relations belonging tdR. The networkG = (N, R) characterising the CSP is usually a
graph in which the vertices represent variables, and edges represent relations. Since CSP is
a NP-complete problem, algorithms assuming only local consistency have been developed.
Such algorithms transform the network of constraints G into an equivalent and simpler
networkG’ by removing from the domain of each variable some values that cannot belong

to any global solution. A k-consistency algorithm removes all inconsistencies involving all
subsets ok variables belonging tbl. Fork = 2 andk = 3, the solutions are called arc and

path consistent respectively. The k-consistency problem is polynomial ifQim®, where

n is the cardinal oN. A k-consistency algorithm does not solve the constraint satisfaction
problem, but simplifies it. Due to the incompleteness of constraint propagation, in the
general case, search is necessary to solve a CSP problem, even to check if a single solution
exists.

3.2. TemPro based Temporal Constraint Satisfaction

In the previous section, we have demonstrated how both qualitative and metric constraints
could be mapped into a network-based representation. The network involves: a set of
variables{EV4, ..., EV,}, each defined on a discrete dom#&n standing for the set of
possible occurrences in which the corresponding event can hold, and a set of binary con-
straints, each representing a qualitative disjunctive relation between a pair of events. An
example of such a constraint network is shown in figure 2. The example illustrates the
problem of scheduling a set of non preemptive tasks over a single processor. We are given
the following information. Three taskg, T, andT; are processed by a mono processor
machine. A taski, must be processed befofg andT,. Each task is characterised by a
processing time, an earliest begin time and a latest end time (which are respectively 3, 10
and 15 forTy).

Before giving the consistency checking algorithms and their experimental evaluation, let
us present the notions of arc-consistency and path-consistency in TemPro.

EXPERIMENTAL ANALYSIS OF CONSTRAINT SATISFACTION 155

[20,24,1,31={(20 23),(21 24)} [7,12,1,4]={(7 11),(8 12)}
PvP-

[10,15,1,3]={(10 13),(11 14),(12 15)} [9,11,1,1]={(9 10),(10 1 1)}

1 : The universal relation(disjunction of the 13 basic Allen relations).
P : Precedes, P- : precedes inverse.

Figure 2. TemPro representation of a scheduling problem.

{(()10)(711)(812) (6/1/)(711)(8]2)
Applying an arc

/ \ consistency algorlthm / \

{a 6)(27)(? 8} (711)(8I2)(9H) {a 6)(27)(*87} 5 ° (o0 {(711)(812)«7/%);
A qualitative and metric An equivalent arc-consistent
constraint network form

Figure 3. Arc-consistency in TemPro.

3.3. Arc-Consistency of a TemPro Network

A TemPro network is arc-consistent if all its arcs are arc consistent. A afgis arc
consistent if and only if, for any valuecg belonging toD;, there exists a valuecg
belonging toD; such that the qualitative disjunctive relatiéty of the pair of variables
(EM, EV,)) is satisfied. We say then thatg belonging toD; is said to be supported by
ocg belonging toD;. The network can be converted into an equivalent arc-consistent form
by applying an arc-consistency algorithm (cf. figure 3).

Arc consistency techniques have been widely studied. In a previous work [19], we have
applied AC-4 [15] for metric constraint propagation in TemPro. But its space complexity
and average time complexity suggest returning to AC-3, since the latter has been reported
[27] to be more efficient than AC-4, despite its non-optimal time complexity. To improve
the average time complexity of AC-4 while keeping its worst case complexity, 8eq&[
proposed AC-6. AC-6 eliminates the problem of space complexity of AC-4 (AC-6 space
complexity isO(ed) while it is O(ed?) for AC-4) and checks just enough amount of con-
straints to compute the arc-consistent domain. More recently, &esaind its co-authors
[3] proposed an enhancement of AC-6 called AC-7. AC-7 uses a meta-level knowledge to
infer support in order to reduce constraint checking traditionally used by the other arc con-

156 M. MOUHOUB, F. CHARPILLET, AND J. P. HATON

1 Applying a path consistency

\/a@m/\

0
PvOVM
A qualitative constraint An equlvalent path -consistent
Network form

Figure 4. Path consistency.

sistency algorithms to establish support. In fact, using a general property of constraints, i.e
bidirectionality, AC-7 eliminates constraint checking that other arc consistency algorithms
perform (AC-3, AC-4 and AC-6). In this paper, we will focus on the assessment of AC-3
and AC-7 when applied and customized to TemPro networks.

To improve the efficiency of AC-3 and AC-7, we have modified these algorithms by
considering specific properties of TemPro networks :

e the lists of all pairs to be checked are maintained in a decreasing order during the
process. Thus, the time requirement to check whether the pair of nodes to be tested
already exists in the list, is reduced.

e Asthe occurrences (intervals) of the domains of each variable are ordered in increasing
order (see the definition of a SOPO in subsection 2.2.3), we use the following property
for improving the efficiency of the arc consistency algorithm AC-3P[e Rj A
ocGk P~ ocg] = vYm > k ocgm P~ ocg, whereocgk, ocGm € D;j andocg, € D;.
When the AC-3 process is applied to the edigg), the above property enables us to
avoid checking all occurrencesg, € D; if a certain occurrencecgy € D; (where
m > K) is supported bycg, € D; (within the relationP~).

3.4. Symbolic Path-Consistency of a TemPro Network

The network is symbolic path consistent if all its paths are consistent. When the path length
is 2, path consistency is called 3-consistency. The network is symbolic 3-consistent if
for each triplet(i, j, k) (r € Rk = r € Rj o Rk) wherer is a basic Allen relation,

Rj, Rk andRj are qualitative disjunctive relations, amj; o Rjx is calculated using

the relation composition table for the interval algebra defined by Allen. Montanari [16]
showed that 3-consistency implies general path consistency. A TemPro network can be
converted into an equivalent path consistent form by applying a path consistency algorithm
to the qualitative disjunctive relations of the underlying qualitative network (cf. figure 4).
We could as well apply path consistency reduction at the numerical level, but preliminary
experiments led us to give up this approach because the additional cost of path consistency
compared to arc-consistency is not out weighted by the speed up of the search phase.

EXPERIMENTAL ANALYSIS OF CONSTRAINT SATISFACTION 157

Among path consistency algorithms, we will focus on the assessment of PC-2 when
applied to TemPro networks. The compositigf o R« is calculated and then intersected
with Ry to form the new potentially smaller relatidRy N (R;j o Rjx). We call this a
triangle operation. A triangle operation is stabilised if the new relaRem (R;; o Rijk)
is identical toRk. A qualitative network is 3-consistent (and therefore path consistent) if
every triangle operation stabilises. This is the principle of PC-1 [11].

In fact, only the triangle of edges/;; entries) whose labels have changed in the previous
iteration need to be recomputed. Thus, we use (as proposed by Mackworth [14] and Allen
[1]) a queue data structure for maintaining the triangles that must be recomputed. The
computation simply proceeds until the queue is empty. This is the principle of PC-2 that we
have implemented in the same way as reported by van Beek and Manchak [25]. To improve
the efficiency of the algorithm PC-2, we changed as reported by [5] the way composition-
intersection of relations are achieved during the path consistency process (following the
idea “one support is sufficient”).

4. Finding a Single Solution

Given a TemPro constraint-based network, one of the interesting reasoning tasks is to deter-
mine its consistency and therefore to find a solution of the network. Deciding consistency
is in this case NP-hard. In order to find how much constraint propagation is useful for find-
ing a single solution to a TemPro constraint graph we have defined a TemPro Consistency
Algorithm (TCA), given in table 1, based on the two following steps:

1. Perform some consistency inferences in a single preprocessing pass. Let Cl1 be this
algorithm.

2. Choose a node and instantiate the corresponding variable to an occurrence belonging
to its domain. Discard from its domain the remaining values and run some consistency
algorithm in order to restore consistency. Let CI2 be this algorithm. If the network
succeeds, fixan occurrence on another variable and run CI2 again until each occurrence
is fixed on the domain of each variable of the network. We then obtain a solution
corresponding to the set of the occurrences fixed on the domain of each variable. If the
network does not succeed at some point, backtrack and choose another occurrence on
the domain of the last variable selected.

TCA is equivalent to the algorithm proposed by Ladkin and Reinefeld [11] for networks
in Allen temporal calculus if ClI1 and CI2 are set to the path-consistency algorithm PC-1.
TCA is equivalent to MAC [18] if both CI1 and CI2 are set to AC-4. Arc (AC-3, AC-7) and
symbolic path (PC-2) consistency algorithms defined in the previous section can be applied
both at pre-processing and search phases.

The next section reports experimental results obtained by randomly generating large
consistent networks for which either arc or path consistency algorithms (AC-3, AC-7 and
PC-2) were applied.

158 M. MOUHOUB, F. CHARPILLET, AND J. P. HATON

Table 1.TemPro Consistency Algorithm (TCA).

1. Main
2. Begin
3. if PC() then
4. if AC(nr_ac, etig_nodé then
5. for eache € etig.nodd1] do
6. If SearchAC(nr_ac, etig_.node 1, €) then
7. return “Consistent”
8. end
9. end
10. return “Path and Arc consistent but not Consistent”
11. else
12. return “Path Consistent but not Arc Consistent”
13. end
14. else
15. return “Not Path Consistent”
16. end
17. End
1. Function SearchAC (nr_ac, etig_-node i, €)
2. [* nr_ac: number of the AC algorithm to apply, index of the current node
3. etig-node array containing the domain of the variablesan interval */
4. Begin
5. etig.nodesave <« etig_.node [* saveetig_node*/
6. if length(etig_noddi] = 1) or AC (nr_ac, etig_.nodé@ then
7. if i =nthen
8. resultnuni] < e
9. return “true”
10. end
11. else
12. for eache; € etig-noddi + 1] do
13. if SearchAC(nr_ac, etig_nodgi + 1, g) then
14. resultnunii] < e
15. return “true”
16. end
17. end
18. end
19. etig_.node <« etig-nodesave [* restoreetig_node*/
20. return “false”
21. End

EXPERIMENTAL ANALYSIS OF CONSTRAINT SATISFACTION 159

5. Experimental Design

Our experiments concern problems randomly generated as folRarsdomly pick n (n is

the number of variables of the problem to generate) pairs/) of integers such that x y

and x y € [0, ..., Horizon (Horizon is the parameter before which all the tasks must be
processed). This set of n pairs forms the initial solution where each pair corresponds to a
time interval

Metric constraints are generated as follows:

For each interval(x, y) randomly pick an interval contained with{®..Horizon and
containing the intervalx, y). These newly generated intervals define the SOPO of the
corresponding variable.

Quialitative constraints are obtained as follows:

Compute the basic Interval-Interval relations that can hold between each interval pair
of the initial solution. Add to each relation a random number in the intef@aNr], of
chosen basic Interval-Interval relations.

CSP problems can be characterised by their tightness, which could be measured, as shown
in [18], using the following definition:

The tightness of a CSP problem is the fraction of all possible pairs of values from
the domain of two variables that are not allowed by the constraint.

The tightness of a problem is proportional to the number of calls of the arc consistency
algorithm during the backtrack search phase of the TCA algorithm. Indeed, for the problems
having large values of tightness, calligghter problemd20], the search space is reduced
to the numerical solution only after a few calls of the arc consistency algorithm. For the
problems having small values of tightness, caltsser problemgsthe solution is reached
after many calls of the arc consistency algorithm.

All the tests presented in figures 5 and 6 have been performed on a Sun SparcStation 20
with 32 MBytes of Memory. We generated for each experiment 1000 complete graphs. The
tests presented in figure 5a and 5d are executed on consistent problems randomly generated
as shown before. The average value of the tightness characterising the problem generated
is obtained, for each experiment, given a fixed valuélofizon stepand the numbeNr.

The tests presented in figure 5¢ are carried out on inconsistent problems generated as shown
before but omitting the first step. Figure 5a and 5¢ show the average time in seconds required
respectively to obtain a single solution and to detect inconsistencies of networks of size 100
and 200, respectively. Figure 5b presents the variance corresponding to the tests presented
in figure 5a. The tests shown in figure 5d present the average time needed to obtain a single
solution by each of the following algorithms: backtracking (BT), forward checking (FL),

full lookahead (FL) and really full lookahead (RFL). These algorithms differ in the degrees

of the arc consistency algorithm AC-3 performed at the nodes of the temporal constraint
graph in the second phase of the TCA algorithm.

160

100 7

— - -PC2+AC3
~=—-AC3+AC3
e ACT+ACT
——ACT+AC3

10 +

‘ — - - PC2+AC3
_ _ —— AC3+AC3
1 b1 —— ACT+ACT
£ £
= =

M. MOUHOUB, F. CHARPILLET, AND J. P. HATON

ACT+AC3

0.11

i — 0.01" .
1
0 01 02 03 04 05 06 07] 0.1 02 0..3 04 05 06 07
Tightness Tightness
a) b)
100
—-- AC3-RFL
10 --= AC3-FL
—— AC3-FC |
o1 { —— AC3-BT i
_ B |
@ % -
Fl 23
gl g
& . E
e o1
_______ s
0,1 pormrmmrm =
0,01
0,01 0,001 ' !
20 40 60 . 80 i 100 0 0,1 0,2 03 04 0,5 0.6
Number of values/Domain of variables Tightness
<) d)
0,5
1107
100+ —=- 10 et%q ! 0.45]
—-o— 30 etiq 04 B ‘
90 —— 50etiq g ,_;- AC-3 5
80 o 035 L AC-7 | /'l
70 5 03 e
v 60- F 025
E 50 s £ 4 s’
= coFoe2 A
40 0.15] S
3 0,1 A
20 o o
101 . 0,05 S AR
; (Emmmsrsme T
0 5, 6 7 8, 9 10, 11, 12, 13, 14, 15,
0 80 100 120 140 160 180 200 10 15 20 30 40 60 70 100
Number of variables Number of tasks, Horizon
e) £)

Figure 5. Experimental tests on numeric and symbolic temporal problems.

6. Discussion

While the path consistency technique is effective in reducing the number of atoms (basic
relations) per qualitative constraint in the preprocessing phase of the algorithm, this tech-

EXPERIMENTAL ANALYSIS OF CONSTRAINT SATISFACTION 161

190 |
180 |
170 1
160 |
150 1
140
130 | !
120 | 1
110 7 /
100 7
90 | v

80 o

70 ‘/"

60

—= - Path Consistency /
—-=-1st symbolic solution /

Time(Sec)

40
30 7

20 --
10 : ’

0 10 20 30 40 50 60 70 80 90 100

Number of variables

Figure 6. Experimental tests on symbolic temporal problems.

nigue does not improve the global time needed to find a solution. The time performance of
the (PC-2 + AC-3) + AC-3 method (see figure 5a) is affected by path consistency calcula-
tions, and, therefore, this method presents the worst results (in general) when compared to
methods using only an arc consistency algorithm, on quantitative constraints in the prepro-
cessing phase. However, the path consistency technique is useful to detect inconsistencies.
The time performance of the algorithm PC-2 to detect inconsistencies (see figure 5c) are
better than for the arc consistency algorithms AC-3 and AC-7 for large number of values
per domain of variable.

When comparing the methods AC-7 + AC-3 and AC-3 + AC-3 (fig 5a), we conclude that
AC-7 is better than AC-3 in the preprocessing phase of the algorithm (except for looser
problems where a method which uses a problem reduction algorithm like AC-7 before search
is likely to spend effort unnecessarily in attempting to reduce the problem. Indeed, for looser
problems many leaves of the search space represent solutions). However, while AC-7 is
better than AC-3 in the preprocessing phase (taking advantage of the bidirectionality), time
performance of the method using AC-7 in the backtrack search phase, namely AC-7 + AC-7,
decreases for looser problems. We observe that methods using AC-3, namely AC-7 + AC-3
and AC-3 + AC-3, present better performance in this case. Indeed, for looser problems, the
solution is obtained after many calls of the arc consistency algorithm in the backtrack search
phase, and the overhead of memory during the backtrack search is a disadvantage of AC-7.

In figure 5d, the strategy FC presents the best performance when compared to the other
strategies. We conclude, as reported by [8], that it is better to apply constraint propagation
only in a limited form.

162 M. MOUHOUB, F. CHARPILLET, AND J. P. HATON

Figure 5e shows the performance of the TCA algorithm using the optimal method (AC-

7 in preprocessing and AC-3 in the search phase with the forward-check strategie) to
solve temporal constraints problems randomly generated. The results demonstrate the
applicability of the TCA algorithm to problems with a number of variables less then 200.

The figure 5f concerns experiments on randomly generated problems of scheduling a set of
non pre-emptive tasks over a single processor. For every problem, each task is characterised
by a processing time, an earliest begin time (the time before which the task cannot start)
and a latest end time (the time before which the task must complete). As shown before (see
3.2), this kind of problems can be easily translated into TemPro networks. Indeed, the tasks
are represented by the nodes of the constraint network, qualitative constraints are then the
disjunctive relations:P v P~ v M v M~ while quantitative constraints are the SOPOs
representing the characteristics of each task. The figure presents the time needed by each
of the two methods AC7 + AC3 and AC3 + AC3 to obtain a single solution (consistent
scheduling). As shown in the figure, AC3 is better than AC7. This is because of the
property we have defined in subsection 3.3 to improve the efficiency of the algorithm AC3
and which permit the reduction of the number of consistency check when the Allen primitive
P is present.

Figure 6 presents the CPU time needed to obtain the path consistency and the first symbolic
solution on randomly generated symbolic constraint temporal problems. As we remark, the
time required to get the first solution is much greater than the time needed to perform the
path consistency. This is in contrast to the numeric solution search where the time needed in
the backtracking phase is smaller than the time required to perform the local consistency in
the first phase of the algorithm. This is because in the case of symbolic solution search, we
fix in each step of the search an atom on each arc of the graph while in the case of numeric
solution search an interval is fixed on each node of the graph. It should be noted that the
number of arcs in a complete graph (after applying path consistency, the graph becomes
complete) of nodes ié’%‘l, which is evidently much large than the number of nodes.

7. Conclusion

We have presented our model TemPro designed for handling a representation and algorithms
that extend the interval algebra approach in order to efficiently take into account numerical
constraints. The expressiveness of representation used in TemPro is more general than those
relying on point based representation such as the numerical representation used inthe Dean’s
TMM, Meiri’'s approach or in IXTeT. The additional expressiveness of TemPro enables us
to deal with application problems that can be addressed by point based approaches. As a
drawback, our algorithmic approach belongs to a class of problem that is more complex in
term of computation.

Our approach is based on constraint satisfaction over discrete domains. Since solving
constraint satisfaction problems is a NP-hard problem, we have defined an optimal policy
on average for finding a single solution in a TemPro network. This policy is a combination

EXPERIMENTAL ANALYSIS OF CONSTRAINT SATISFACTION 163

of filtering and search algorithms running at the symbolic and/or at the numerical level:

e path consistency is very expensive to find a single numeric solution but is useful to
detect inconsistencies of TemPro networks,

e arc consistency, in a limited form (following the principle of the forward-check) during
the numeric solution search, outperforms other approaches,

e AC-3and AC-7 have complementary application domain depending on the complexity
of the problem.

under constrained middle and over scheduling
problems constrained problems problems
AC-3 preprocessing and backtrack search preprocessing and
backtrack search phase backtrack search
AC-7 — preprocessing phase —

TemPro is currently used in our Group to address applications such as situation interpre-
tation in the domain of robotics and scheduling.
References

1. J. F. Allen. (1983). Maintaining knowledge about temporal inten@#CM 26: 832—-843.
C. Besgre. (1994). Arc-consistency and arc-consistency adatificial Intelligence65: 179-190.

n

3. C. Bessre, E. Freuder, & J. C. Regin. (1995). Using inference to reduce arc consistency computation.
IJCAI'95, Montréal, Canada, pages 592—-598.

4. C. Bessire, A. Isli, & G. Ligozat. (1996). Global consistency in interval algebra networks: Tractable
subclasse€CAI'96, Budapest, Hongrie.

5. C. Besstre. (1996). A simple way to improve path consistency processing in interval algebra networks,
AAAI'96, Portland, 375-380.

6. T.L.Dean & D. V. McDermott. (1987). Temporal database managerAeificial Intelligence32: 1-55.

. M. Ghallab & A. Mounir-Alaoui. (1989). Managing efficiently temporal relations through indexed spanning
trees.Proc. IJCAI'89 Menlo Park, Calif, USA, pages 1297-1303.

8. R.M. Haralick & G. L. Elliott. (1980). Increasing tree search efficiency for constraint satisfaction problems.
Artificial Intelligencel4: 263-313.

9. H. A Kautz & P. B. Ladkin. (1991). Integrating metric and qualitative temporal reasofAwl-91, Ana-
heim, CA, pages 241-246.

10. A. Koomen. (1987). The timelogic temporal reasoning system in common lisp. Technical Report TR231,
Universit de Rochester, pages 241-246.

11. P.B.Ladkin & A. Reinefeld. (1992). Effective solution of qualitative interval constraint problértigcial
Intelligence57: 105-124.

12. G. Ligozat. (1991). On generalized interval calcthAl9], Anaheim, CA, pages 234-240.

13. I. Meiri. (1996). Combining qualitative and quantitative constraints in temporal reasdétifgial Intel-
ligence87: 343-385.

164

14.
15.
16.

17.
18.
19.

20.
21.

22.
23.

24.
25.

26.

27.

M. MOUHOUB, F. CHARPILLET, AND J. P. HATON

A. K. Mackworth. (1977). Consistency in networks of relatiohgificial Intelligence8: 99-118.
Mohr & Henderson. (1986). Arc and path consistency revishetficial Intelligence28: 225-233.

U. Montanari. (1974). Fundamental properties and applications to picture procésgingation Sciences
7:95-132.

J. F. Rit. (1988). Modlisation et propagation de contraintes temporelles pour la planificatfése de
Doctorata I'INPG.

D. Sabin & E. C. Freuder. (1994). Contradicting conventional wisdom in constraint satisf&tion11th
European Conference on Artificial Intelligend®msterdam, Hollande, pages 125-129.

H. Tolba, F. Charpillet & J. P. Haton. (1991). Representing and propagating constraints in temporal reasoning.
Al Communicationg: 145-151.

E. Tsang. (1994)oundation of Constraint SatisfactioAcademic Press.

R. E. Val&z-Rerez. (1989). The satisfiability of temporal constraint netwdkAI'89, Menlo Park, Calif,
USA, pages 1291-1296.

P. van Beek. (1989). Approximation algorithms for temporal reasohi6#\'89, Menlo Park, Calif, USA,
pages 1291-1296.

P. van Beek. (1990) Reasoning about qualitative temporal informathol-9Q Boston, MA, pages 297—
326.

P. van Beek. (1992). Reasoning about qualitative temporal informatitificial Intelligence58: 297-326.

P. van Beek & D. W. Manchak. (1996). The design and experimental analysis of algorithms for temporal
reasoningJournal of Artificial Intelligence Researeh 1-18.

M. Vilain & H. Kautz. (1986). Constraint propagation algorithms for temporal reasofvAl-86 Philadel-
phia, PA, pages 377-382.

R. J. Wallace. (1993). Why AC-3 is almost always better than AC-4 for establishing arc consistency in CSPs.
IJCAI'93, Chambery, France, pages 239-245.

