
June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

A HOPFIELD-TYPE NEURAL NETWORK BASED MODEL FOR
TEMPORAL CONSTRAINTS

MALEK MOUHOUB

Department of Computer Science, University of Regina
3737 Waskana Parkway,

Regina Saskatchewan, Canada, S4S 0A2
email : mouhoubm@cs.uregina.ca

In this paper we present an approximation method based on discrete Hopfield neural
network (DHNN) for solving temporal constraint satisfaction problems. This method is
of interest for problems involving numeric and symbolic temporal constraints and where
a solution satisfying the constraints of the problem needs to be found within a given
deadline. More precisely the method has the ability to provide a solution with a quality
proportional to the allocated process time. The quality of the solution corresponds here
to the number of satisfied constraints. This property is very important for real world
applications including reactive scheduling and planning and also for over constrained
problems where a complete solution cannot be found. Experimental study, in terms of
time cost and quality of the solution provided, of the DHNN based method we propose
provides promising results comparing to the other exact methods based on branch and
bound and approximation methods based on stochastic local search.

Keywords: Temporal Reasoning; Neural Networks; Hopfield Model; Optimization Prob-
lems; Planning and Scheduling.

1. Introduction

In 1985, John Hopfield and David Tank first attempted using discrete Hopfield neu-
ral networks (DHNN) as an approximation method to solve optimization problems,
mainly the Traveling Salesman Problem1. Since then, there has been wide spread
interest in applying neural nets to solve a large variety of combinatorial optimization
problems2,3.

In this paper we will use the Hopfield model as an approximation method to solve
the binary constraint satisfaction problem (CSP)a involving numeric and symbolic
temporal constraints. We call it temporal constraint satisfaction problem (TCSP)b.
The goal here is to look for a solution that satisfies the temporal constraints of the

aA CSP (Constraint Satisfaction Problem) 4,5,6,7 involves a list of variables defined on finite do-
mains of values and a list of relations (constraints) between variables. A binary CSP is a CSP
where the relations are binary.
bNote that this name and the corresponding acronym was used in 8. This latter approach is
different from our method in the way numeric (and also symbolic) constraints are represented. See
9 for a comparison of the two methods

1

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

2 Malek Mouhoub

problem within a given deadline. More precisely the resolution method we propose
has the ability to provide a solution with a quality proportional to the allocated
process time. The quality corresponds here to the number of solved constraints. This
property is of interest in many real world applications such as reactive scheduling
and planning where the resolution method can be interrupted at any time and
provides the optimal solution at that time. We talk then about anytime method (see
10 for more details about anytime algorithms). Also the method can be used to solve
over constrained problems (problems where a complete solution cannot be found) by
providing a partial solution satisfying the maximal number of temporal constraints.

In a previous work11,12, we have proposed two type of anytime methods for
solving TCSPs. The first one is an exact algorithm based on partial constraint sat-
isfaction techniques13. Local consistency techniques and backtrack search methods
we have used to solve TCSPs in general 9 were adapted to cope with, and take
advantage of, the differences between partial and complete constraint satisfaction.
The exact method is based on branch and bound techniques and has the advantage
to provide a solution that is guaranteed to be optimal 11. However, as we mentioned
in 11,12, this method is impractical for large size problems and is in general useful to
verify the optimality and, therefore, the quality of the solution returned by the ap-
proximation methods. The second type of methods are approximation algorithms
based on local search techniques (Min-Conflict Random Walk (MCRW), Steepest
Descent Random Walk (STRW) and Tabu Search). This second type of methods
does not guarantee the optimality of the solution provided (as it is the case of the
exact method) but is obviously of interest when it provides near optimal solutions.

In order to evaluate the performance in time of the method based on DHNN we
propose, experimental comparisons with the exact and approximation methods we
mentioned above have been performed on randomly generated temporal constraint
problems. This study shows that the method based on DHNN presents promising
results in the case of over-constrained problems.

The rest of the paper is organized as follows. In the next section we will present,
through an example, our temporal model TemPro which represents symbolic and
numeric information in the form of temporal constraints. Section 3 and 4 are ded-
icated respectively to the representation of numeric and symbolic time informa-
tion using Neural Networks (the Hopfield model). Experimental comparison of the
DHNN based method with the other approximation methods are reported in section
5. Finally, concluding remarks are presented in section 6.

2. CSP-based Representation of Numeric and Symbolic
Constraints : the model TemPro

One important issue when dealing with problems involving temporal information
is the ability to manage both the symbolic and numeric aspects of time. This mo-
tivates us to develop the model TemPro9, extending the Interval Algebra defined
by Allen14 to handle numeric constraints. TemPro transforms any problem under

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

A Hopfield-type Neural Network based model for Temporal Constraints 3

Table 1. Allen primitives

Relation Symbol Inverse Meaning

X precedes Y P P ^ XXX YYY

X equals Y E E XXX
YYY

X meets Y M M^ XXXYYY

X overlaps Y O O^ XXXX
YYYY

X during y D D^ XXX
YYYYYY

X starts Y S S^ XXX
YYYYY

X finishes Y F F ^ XXX
YYYYY

qualitative and quantitative constraints into a binary CSP where constraints are
disjunctions of Allen primitives14 (see table 1 for the definition of the 13 Allen
primitives) and variables, representing temporal events, are defined on domains of
time intervals. Each event domain (called also temporal window) contains the Set of
Possible Occurrences (SOPO) of numeric intervals the corresponding event can take.
The SOPO is the numeric constraint of the event. It is expressed by the fourfold
[earliest start, latest end, duration, step] where :

• earliest start is the earliest start time of the event.
• latest end is the latest end time of the event.
• duration is the duration of the event.
• step is the discretization step corresponding to the number of time units

between the start time of two adjacent intervals belonging to the event
domain.

To illustrate the different components of the model TemPro let us consider the
following scheduling problemc.

Example 1

The production of two items A and B requires three mono processor ma-
chines M1,M2 and M3. Each of the two items can be produced using two
different ways depending on the order in which the machines are used. The
process time of each machine is variable and depends on the task to be
processed. The following lists the different ways to produce each of the two
items (the process time for each machine is mentioned in brackets) :

item A: M2(3), M1(3),M3(6) or
M2(3), M3(6),M1(3)

cThis problem is taken from. 15

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

4 Malek Mouhoub

item B: M2(2),M1(5),M2(2),M3(7) or
M2(2),M3(7),M2(2),M1(5)

The goal here is to find a possible schedule of the different machines to produce
the two items and respecting all the constraints of the problem. We also assume
that items A and B should be produced within 25 and 30 units of time respectively.

In the following we will describe how is the above problem transformed into a
TCSP using our model TemPro. Figure 1 illustrates the graph representation of the
TCSP corresponding the the scheduling problem. A temporal event corresponds
here to the contribution of a given machine to produce a certain item. For example,
the event AM1 corresponds to the use of machine M1 to produce the item A, . . .,
etc. Seven events are needed in total to produce the two items as follows :

item A: AM2(3), AM1(3), AM3(6) or
AM2(3), AM3(6), AM1(3)

item B: BM21(2), BM1(5), BM22(2), BM3(7) or
BM21(2), BM3(7), BM22(2), BM1(5)

The translation to Allen primitives of the disjunction of the two sequences re-
quired to produce item B needs a 3-ary relation involving BM1, BM22 and BM3.
This relation states that BM22 should occur between BM1 and BM3. Since our
temporal network handles only binary relations, the way we use to represent this
kind of 3-ary relations is as follows : we create an additional event (EV T1) and rep-
resent the constraints for producing item B as shown in figure 1. The duration X of
EV T1 is greater(or equal) than the sum of the durations of BM1, BM22 and BM3.

AM2 AM1 AM3

BM22 BM21 BM1 BM3

EVT1

PM PP-MM-

PM

PP-MM- PP-MM- PP-MM- PP-MM-

PM

SF

PM PP-MM-

D

[0,25,3,1]=
{(0 3)..(22 25)}

[0,25,3,1]={(0 3)..(22 25)} [0,25,6,1]={(0 6)..(19 25)}

[0,30,2,1]=
{(0 2)..(28 30)} [0,30,2,1]=

{(0 2)..(28 30)}

[0,30,5,1]=
{(0 5)..(25 30)}

[0,30,7,1]={(0 7)..(23 30)}

[0,30,X,1]

Fig. 1. TCSP corresponding to the problem presented in example 1.

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

A Hopfield-type Neural Network based model for Temporal Constraints 5

3. Neural Representation of Numeric Constraints

To represent the event SOPO in terms of neurons, a two-dimensional array is ade-
quate. One axis depicts the time line; one neuron equates to one discretization step.
The other axis represents an individual SOPO event.

To represent an assignment of an interval to a particular event in terms of neural
states, there should only be two neurons ’on’ while the rest of the neurons ’off’ for
each given event. The two ’on’ neurons represent the start and end times of the
event interval. The distance between them (number of neurons between the start
and end time neurons) represents the duration.

When dealing with the constraint and energy functions, the ’on’ state is consid-
ered to be 1 and the ’off’ state is considered to be 0. Each neuron aij represents a
time point j for a given event i. aij can have only 2 possible values 0 or 1.

The approach we use to satisfy the different temporal constraints of the problem
is essentially a Lagrangian relaxation of the constraints, i.e minimize the following
energy function :

F = α1C1 + α2C2 + · · ·+ αnCn (1)

where :

• each Ci is a nonnegative penalty function representing a given constraint,
• and ∀i αi > 0.

The energy function F representing the numeric constraints will then be :

F = αF1 + βF2 (2)

where :

• F1 represents the fact that there should be exactly 2 activated neurons
(equal to 1) per row. F1 includes also the constraint forcing each neuron to
have a digital value (0 or 1).

F1 =
n∑

i=1

[
h∑

j=1

aij − 2]2 +
n∑

i=1

h∑

j=1

aij(1− aij) (3)

where n is the number of events and h is the constant horizon (time
before which all events should be processed).

• F2 states that there are exactly 2 activated neurons per row within the
temporal window of the event (EVi) and distant by di.

F2 =
n∑

i=1

[(
supi−di∑

s=infi

ais + ai,s+di) − 2]2 (4)

infi, supi and di are respectively the earliest start time, latest end time
and duration of a given event evti.

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

6 Malek Mouhoub

By comparing F1 and F2 with the following energy function of the Hopfield net
H, we are able to find proper weights w and thresholds wo for the network.

H = −1
2

∑

i,j,k,l

wij,kl aijakl −
∑

i,j

woij aij (5)

If we multiply out the summations in (2) we obtain constant terms, linear terms
proportional to one aij and quadratic terms with two aij ’s. The quadratic terms
can be represented by connections wij,kl between the units, while the linear terms
can be considered as thresholds.

4. Neural Representation of Symbolic Constraints

As we mentioned in section 2, in our model TemPro qualitative constraints are dis-
junctions of Allen primitives. Thus, to represent qualitative constraints using neural
networks, we need to find a neural representation for each of the 13 primitives (see
table 1 for the definition of the 13 Allen primitives). To do so we need first to define
the Allen primitives in the form of a list of equations involving the end points of the
intervals and their durations. Table 2 defines the equations corresponding the Allen
primitives E, S, M, D,O, F and S. The inverse relations are defined in a similar
way. begin, end and dur are functions returning respectively the begin time, end
time and duration of a given numeric interval. In the following we will present the
conversion of the equations defined in table 2 to energy functions.

I E J

FE =
∑

infi≤k≤supi−di
(ni,k+di + nj,k+dj + ni,k+di + nj,k+dj − 4)

I F J

FF =
∑

infj≤k≤supj−dj
(ni,k+dj−di + nj,k + ni,k+di + nj,k+dj − 4)

I M J

FM =
∑

infi≤k≤supi−di
(ni,k+di + nj,k − 2)

I P J

FP =
∑

1≤p≤max

∑
infi≤k≤supi−di

(ni,k+p + nj,k − 2)

I D J

FD =
∑

infj≤k≤supj−dj
(ni,k + nj,k+a + ni,k+di+b + nj,k+dj − 4) +∑

1≤durj−duri

∑
1≤durj−duri

(a + b− duri − durj)

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

A Hopfield-type Neural Network based model for Temporal Constraints 7

Table 2. Definitions of Allen primitives.

Allen Primitive Corresponding Equation

X P Y begin(X) + p = begin(Y), p > 0

X E Y
begin(X) = begin(Y)

end(X) = end(Y)

X M Y end(X) = begin(Y)

X D Y

begin(Y) + a = begin(X)

end(X) + b = end(Y),

a + b = dur(Y)− dur(X)

X O Y

begin(X) + a = begin(Y)

end(X) + b = end(Y)

a + dur(Y) = b + dur(X)

X F Y
end(X) = end(Y)

begin(X) = begin(Y) + dur(Y)− dur(X)

X S Y
begin(X) = begin(Y)

end(X) + dur(Y) = end(Y) + dur(X)

I O J

FO =
∑

infi≤k≤supi−di
(ni,k+a + nj,k + ni,k+di+b + nj,k+dj − 4) +

∑
1≤duri

(a − b +
durj − duri)

5. Experimentation

In this section, we present comparative tests concerning different approximation
algorithms based on local search, namely the Min-Conflict-Random-walk (MCRW),
the Steepest-Descent-Random-Walk (SDRW) and the Tabu Search methods; and
the method based on DHNN we propose. Tests are performed on consistent and
inconsistent temporal constraint problems, each having 200 variables and randomly
generated as shown in subsection 5.3. The experiments are performed on a SUN
SPARC Ultra 5 station. All the procedures are coded in C/C++.

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

8 Malek Mouhoub

5.1. Comparison Criteria

We use two criteria to compare the different approximation methods. The first one
is the quality of the solution, i.e the minimum number of violated constraints of
the solution provided by the method. The second criterion is the computing effort
needed by an algorithm to find its best solution. This last criterion is measured by
the running time in seconds required by each algorithm.

5.2. Parameter tuning for MCRW, SDRW and Tabu Search

The performance of the approximation algorithms we use is greatly influenced by the
following parameters : the size of the Tabu list, tl size, in the case of Tabu Search;
and the random walk probability, p, in the case of MCRW and SDRW. Preliminary
tests determined the following ranges of parameter values : 10 ≤ tl size ≤ 20 and
0.05 ≤ p ≤ 0.15.

5.3. Generated Instances

Each generated problem is characterized by two parameters : N the number of
events and Horizon the parameter before which all events must be processed. In
the following we will describe the generation of consistent and inconsistent problems.

1. Generation of Consistent Problems

Consistent problems of size N are those having at least one complete numeric solu-
tion (set of N numeric intervals satisfying all the constraints of the problem). Thus,
to generate a consistent problem we first randomly generate a numeric solution and
then add other other numeric and symbolic information to it. More precisely the
generation is performed using the following steps.

1. Generation of the numeric solution

Randomly pick N pairs (x, y) of integers such that x < y and x, y ∈ [0, . . . ,Horizon]
(Horizon is the parameter before which all events must be processed). This set of
N pairs forms the initial solution where each pair corresponds to a time interval.

2. Generation of the numeric constraints

For each interval (x, y) randomly pick an interval contained within [0..Horizon] and
containing the interval (x, y). This newly generated interval defines the SOPO of
the corresponding variable.

3. Generation of the symbolic constraints

Compute the basic Allen primitives that can hold between each interval pair
of the initial solution. Add to each relation a random number in the interval

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

A Hopfield-type Neural Network based model for Temporal Constraints 9

[0, Nr] (1 ≤ Nr ≤ 13) of chosen Allen primitives.

Example 2

Let us assume we want to generate a consistent problem with N = 3 and
Horizon = 10.

(1) First a numeric solution is generated : S = {(1 4), (2 8), (5 7)}.
(2) Numeric constraints (SOPOs) are then randomly generated from the numeric

solution.
Numeric Interval Corresponding SOPO
(1 4) → [2 9]
(2 8) → [2 10]
(5 7) → [3 8]

(3) The Allen primitives are then computed from the pairs of intervals of the nu-
meric solution :

(14) and (28) → Overlaps (O)
(14) and (57) → Overlaps (O)
(28) and (57) → During inverse (D^)

And finally the symbolic constraints are generated from the above Allen
primitives.

O → POM

O → DD^EO

D^ → FSDD^PE

5.3.1. Generation of Inconsistent Problems

Each inconsistent problem of size N (N is the number of variables) is generated
using the following steps.

1. Generation of numeric constraints

Randomly pick N pairs of ordered values (x, y) such that x, y ∈ [0, . . . , Horizon]. x

and y are respectively considered the earliest start time and the latest end time of a
given event. For each pair of value (x, y), randomly pick a number d ∈ [1 . . . y − x].
d is considered the duration of the event.

2. Generation of symbolic constraints

Randomly generate C constraints between the N events where C ∈
[1 . . . N(N−1)

2] (C = N(N−1)
2 in the case of a complete graph of constraints). Each

constraint C is a disjunction of a random number Nb (Nb ∈ [1 . . . 13]) of relations
chosen randomly from the set of the 13 Allen primitives.

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

10 Malek Mouhoub

3. Consistency check of the generated problem

Perform the branch and bound method on the generated problem. If the quality q

of the problem (number of non solved constraints) is equal to zero (the problem is
consistent) goto 1 otherwise (q > 0) the problem is inconsistent.

The generated problems are characterized by their tightness, which can be mea-
sured, as shown in 16, using the following definition :

The tightness of a CSP problem is the fraction of all possible pairs of values
from the domain of two variables that are not allowed by the constraint.

The tightness depends in our case on the parameters Horizon (time before which
all tasks should be processed), Nr (the maximal number of Allen primitives per
symbolic constraint) and the density of the problem (2C

N(N−1) where C is the number
of constraints of the problem).

5.4. Results

Table 3 presents the results of the tests performed on randomly generated temporal
consistent problems. It gives a summary of the best results of MCRW, SDRW, Tabu
Search and the DHNN based method for the chosen instances in terms of quality of
the solutions. The results correspond to the average running time and the quality
of the solution provided by each method. To obtain these results, the algorithms
were run 100 times on each instance, each run being given a maximum of 100,000
moves in the case of MCRW and 10,000 moves in the case of SDRW and Tabu
Search. The parameter of each algorithm (the size of the Tabu list tl size and the
random-walk probability p) is fixed according to the best value found during the
parametric study. Note that, as mentioned in 12, the cost in time of a move in the
case of Tabu Search and SDRW is equal to N times the cost of a move in the case
of the MCRW method, where N is the number of variables (events).

Table 3. Comparative results for consistent problems.

Tightness MCRW SDRW Tabu Search DHNN

of the problem p qual time # moves p qual time # moves tl size qual time # moves qual time

0.0002 5 0 0.12 5 15 0 2.67 80 10 0 0.17 4 0 10.55
0.0004 5 0 0.28 18 15 0 4.95 136 10 1 185 5000 0 21.25
0.001 5 0 0.46 28 5 0 8.24 193 10 0 0.6 16 0 32.34
0.002 5 0 0.95 68 5 0 11.22 212 10 2 294 10000 0 46
0.0037 5 0 1.74 145 10 0 126 712 10 1 270 10000 0 54
0.006 5 0 4 255 10 0 33 336 10 3 286 10000 0 56
0.03 15 0 86 3713 10 33 33802 10000 10 12 349 10000 0 77
0.044 5 0 73 1633 5 4 9595 10000 15 25 355 10000 0 66
0.045 5 0 72 1633 5 4 9614 10000 10 16 376 10000 0 65
0.058 5 0 15 433 5 74 12333 10000 15 12 364 10000 0 60
0.1 5 0 12 332 5 0 34 225 10 0 112 211 0 33
0.14 5 0 8.47 304 5 0 39 243 10 0 112 193 0 27
0.35 5 0 181 2009 15 0 66 210 20 68 714 10000 0 32
0.44 5 0 137 1291 5 220 8346 10000 10 63 646 10000 0 38
0.55 5 0 315 2505 5 0 66 210 10 0 262 190 0 34
0.67 5 372 13945 100000 5 0 130 297 10 0 422 224 20 112

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

A Hopfield-type Neural Network based model for Temporal Constraints 11

From the data of Table 3, when comparing the methods based on local search we
can make the following observations. For under-constrained and middle-constrained
problems, the MCRW method always provides the best results. It always founds a
complete solution within a reasonable amount of time which is not the case of the
other two methods. It is also faster than the other two methods to find solutions
of the same quality. However for over-constrained problems (see last row of table
3) SDRW and Tabu Search have better performance. We can explain this by the
fact that, for under constrained problems the initial configuration is in general of
good quality. A complete solution can be obtained in this case by only changing the
values of some conflicting variables (case of MCRW) instead of looking for the best
neighbor which is much more expensive.
When comparing the DHNN based method with the methods based on Local search,
we notice that the former one provides better results for over-constrained problems.

Table 4 presents tests performed on randomly generated inconsistent tempo-
ral problems. For each instance, the exact method based on branch and bound
techniques11 was first performed in order to get the optimal solution (solution with
the minimum number of violated constraints). The three algorithms are then run
100 times on each instance, each run being given a maximum of 100,000 moves in
the case of MCRW and 10,000 moves in the case of SDRW and Tabu search. Quality
values in boldface correspond to the best quality (optimal solution) found by the
exact method.

Table 4. Comparative results for non consistent problems.

Tightness MCRW SDRW Tabu Search DHNN B Bound

of the problem p qual time # moves p qual time # moves tl size qual time # moves qual time qual

0.0002 5 8 0.44 32 15 8 4.5 107 10 8 0.28 6 12 120 8
0.001 5 10 0.7 53 5 10 10.26 199 10 11 242 5000 15 88 10
0.002 5 2 0.68 43 5 3 7.77 183 10 2 194 5000 8 49 2
0.0037 5 14 1237 9100 10 14 14.62 238 10 18 230 5000 20 22 14
0.006 5 20 5.83 425 10 20 33 336 10 22 377 10000 24 27 20
0.03 15 21 190 5406 10 32 3663 10000 10 85 341 10000 25 105 21
0.044 5 43 853 25 5 46 4827 10000 15 45 255 10000 43 120 43
0.1 5 41 10 318 5 106 41 233 10 91 25 230 41 22 41
0.14 5 208 10.14 279 5 208 37 215 10 230 22 197 208 22 208
0.35 5 141 259 3015 15 141 439 554 20 141 201 415 141 34 141
0.44 5 531 105 271 5 531 82 216 10 531 48 195 531 22 531
0.67 5 858 156 315 5 858 98 206 10 924 58 224 858 27 858

From table 4 we can make the same observations we made for table 4 i.e the
MCRW method is the algorithm of choice if we have to deal with under-constrained
or middle-constrained problems. The effort made by SDRW and Tabu Search meth-
ods to look for the best neighbor helps only in the case of over constrained problems.
As we can easily see, the DHNN based method is the best one for over-constrained
problems. The Branch and Bound method is used here to check the goodness of
solution provided by the approximation method.

6. Conclusion

In this paper we have presented an approximation method based on discrete Hop-
field neural network (DHNN) for solving problems involving numeric and symbolic

June 11, 2004 10:38 WSPC/INSTRUCTION FILE mouhoub

12 Malek Mouhoub

temporal constraints. This approximation method has the property to provide a
solution with a quality proportional to the allocated running time. This is very
relevant since when dealing with these kind of problems in the real world we often
look a solution that solves the maximal number of temporal constraints instead of a
complete one. This can be the case of over constrained problems or those problems
where a solution needs to be found within a given deadline.

In order to evaluate the performance of the DHNN based method we propose,
experimental comparison with approximation methods based on randomized local
search have been performed. Results show that the DHNN based method presents
better results for over constrained problems.

References

1. J.J. Hopfield and D.W. Tank. Neural computation of decisions in optimization prob-
lems. Biological Cybernetics, 52:141–152, 1985.

2. G. A. Tagliarini, J. F. Christ, and E.W. Page. Optimization using neural networks.
IEEE transactions on computers, 40:1347–1358, 1991.

3. Kate A. Smith. Neural networks for combinatorial optimization : A review of more
than a decade of research. INFORMS Journal of Computing, 11(1):15–33, 1999.

4. E. Tsang. Foundation of Constraint Satisfaction. Academic Press, 1994.
5. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–

118, 1977.
6. A. K. Mackworth and E. Freuder. The complexity of some polynomial network-

consistency algorithms for constraint satisfaction problems. Artificial Intelligence,
25:65–74, 1985.

7. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for Constraint Satis-
faction Problems. Artificial Intelligence, 14:263–313, 1980.

8. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,
49:61–95, 1991.

9. M. Mouhoub, F. Charpillet, and J.P. Haton. Experimental Analysis of Numeric and
Symbolic Constraint Satisfaction Techniques for Temporal Reasoning. Constraints:
An International Journal, 2:151–164, Kluwer Academic Publishers, 1998.

10. S. Zilberstein and S. J. Russell. Optimal composition of real-time systems. Artificial
Intelligence, 82(1-2):181–213, 1996.

11. M. Mouhoub. Reasoning about Numeric and Symbolic Time Information. In
the Twelfth IEEE International Conference on Tools with Artificial Intelli-
gence(ICTAI’2000), pages 164–172, Vancouver, 2000. IEEE Computer Society.

12. M. Mouhoub. Analysis of Approximation Algorithms for Maximal Temporal Con-
straint Satisfaction Problems. In The 2001 International Conference on Artificial In-
telligence (IC-AI’2001), pages 165–171, Las Vegas, 2001.

13. R. J. Wallace. Partial constraint satisfaction. Lecture Notes in Computer Science,
923:121–138, 1995.

14. J.F. Allen. Maintaining knowledge about temporal intervals. CACM, 26(11):832–843,
1983.

15. P. Laborie. Une approche intégrée pour la gestion de ressources et la synthèse de plans.
PhD thesis, École Nationale Supérieure des Télécommunications, 1995.

16. D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In Proc. 11th ECAI, pages 125–129, Amsterdam, Holland, 1994.

