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Propositional satisfiability (SAT) problem is fundamental to the theory of NP-completeness. Indeed,
using the concept of ”polynomial-time reducibility” all NP-complete problems can be polynomially
reduced to SAT. Thus, any new technique for satisfiability problems will lead to general approaches for
thousands of hard combinatorial problems. In this paper, we introduce the incremental propositional
satisfiability problem that consists of maintaining the satisfiability of a propositional formula anytime
a conjunction of new clauses is added. More precisely, the goal here is to check whether a solution to
a SAT problem continues to be a solution anytime a new set of clauses is added and if not, whether
the solution can be modified efficiently to satisfy the old formula and the new clauses. We will study
the applicability of systematic and approximation methods for solving incremental SAT problems. The
systematic method is based on the branch and bound technique while the approximation methods rely
on stochastic local search (SLS) and genetic algorithms (GA). A comprehensive empirical study, con-
ducted on a wide range of randomly generated consistent SAT instances, demonstrates the efficiency
in time of the approximation methods over the branch and bound algorithm. However these approxi-
mation methods do not guarantee the completeness of the solution returned. We show that a method
we propose that uses non systematic search in a limited form together with branch and bound has the
best compromise, in practice, between time and the success ratio (percentage of instances completely
solved).
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1. Introduction

A boolean variable is a variable that can have one of two values: true or false. If X is a
boolean variable, ¬X is the negation of X . That is, X is true if and only if ¬X is false. A
literal is a boolean variable or its negation. A clause is a sequence of literals separated by
the logical or operator (∨). A logical expression in conjunctive normal form (CNF) is a
sequence of clauses separated by the logical and operator (∧). For example, the following
is a logical expression in CNF:

(X1∨X3)∧ (¬X1∨X2)∧¬X3

The CNF-Satisfiability Decision Problem (also called SAT problem) is to determine,
for a given logical expression in CNF, whether there is some truth assignment (set of as-
signments of true and false to the boolean variables) that makes the expression true. For
example, the answer is ”yes” for the above CNF expression since the truth assignment
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{X1 = true,X2 = true,X3 = f alse } makes the expression true. SAT problem is funda-
mental to the theory of NP-completeness. Indeed, using the concept of ”polynomial-time
reducibility” all NP-complete problems can be polynomially reduced to SAT a. This means
that any new technique for SAT problems will lead to general approaches for thousands of
hard combinatorial problems.

One important issue when dealing with SAT problems is to be able to maintain the
satisfiability of a propositional formula anytime a conjunction of new clauses is added. That
is to check whether a solution to a SAT problem continues to be a solution anytime a set of
new clauses is added and if not, whether the solution can be modified efficiently to satisfy
the old formula and the new clauses. More formally, we define a dynamic SAT problem as
a sequence of static SAT problems SAT0, . . . ,SATi,SATi+1, . . . ,SATn each resulting from a
change in the preceding one imposed by the ”outside world”. This change can either be a
restriction (adding a new set of clauses) or a relaxation (removing a set of clauses because
these later clauses are no longer interesting or because the current SAT has no solution). In
this paper we will focus only on restrictions (we talk then about incremental SAT). More
precisely, SATi+1 is obtained by performing an addition of a set of clauses to SATi. We
consider that SAT0 (initial SAT) has an empty set of clauses. An incremental SAT over a
set X of boolean variables is a sequence of static SAT problems using only the variables
in X . Solving an incremental SAT problem consists of maintaining the satisfiability of the
related static SAT problems anytime a new set of clauses is added. To illustrate this, let us
consider the following example. We assume we have the following SAT formula : (X1 ∨
X2)∧ (¬X1 ∨¬X2) and that when using a given solving method we obtain the following
solution : { X1 = true,X2 = f alse }. Let us assume now that we add the clause ¬X1 to our
SAT formula. As we can see, the solution obtained for the old SAT formula is no longer
a solution for the new formula (X1∨X2)∧ (¬X1∨¬X2)∧¬X1. We need here to restart the
search in order to find a solution for the old and new clauses. In our case, the following
satisfies the new formula : { X1 = f alse,X2 = true}. Our aim here is, instead of restarting
the search from scratch, we use some of the effort made to solve the old formula in order
to find a solution for the new one.

Dealing with incremental SAT problems is relevant in so many real world discrete com-
binatorial problems including reactive scheduling and planning, timetabling, resource allo-
cation, conceptual design, network management and configuration, and interactive graphic.
One example, in the case of scheduling problems, is when a solution, corresponding to an
ordering of tasks to be processed, has to be reconsidered after a given machine becomes
unavailable. We have then to look for another solution (ordering of tasks) satisfying the old
constraints and taking into account the new information. Another example, in the area of
engineering conceptual design, is when the designers add constraints after specifying an
initial statement describing the desired properties of a required artifact during the concep-
tual phase of design.

In this paper, we will investigate different systematic and approximation methods for
solving the SAT problem in an incremental way. The systematic method is a branch and

aWe will refer the reader to the paper published by Cook1 proving that if CNF-Satisfiability is in P, then P = NP.
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bound technique based on the Davis-Putnam-Loveland algorithm (DPLL) 2,3,4,5,6,7. More
precisely, we use here the well known zChaff solver 7 including the most advanced
heuristics improving the DPLL algorithm. The second method relies on stochastic local
search 8,9,10,11. Indeed the underlying local search paradigm is well suited for recovering
solutions after local changes (addition of constraints) of the problem occur. We adopt here
the Scaling and Probabilistic Smoothing (SAPS) algorithm 12 from the UBCSAT experi-
mentation environment 11. The third method, based on genetic algorithms 13, is similar to
the second one except that the search is multi-directional and maintains a list of potential
solutions (population of individuals) instead of a single one 14,15,16,17,18,19,20. This has the
advantage to allow the competition between solutions of the same population which sim-
ulates the natural process of evolution. Experimental comparison of the time performance
of the different methods have been conducted on randomly generated consistent SAT in-
stances. With no surprise, the results favor the approximation methods (especially SLS)
over the systematic one (branch and bound). The approximation methods however do not
guarantee the correctness of the solution provided. The most relevant and new result we
show is that a method we propose that uses non systematic search in a limited form to-
gether with the branch and bound method has the best compromise, in practice, between
time cost and success ratio (percentage of instances completely solved). Indeed, while this
hybrid method does guarantee, in practice, the completeness of the solution returned, the
time returned by this technique is comparable to the running time of the approximation
methods.

Related work on solving SAT problems in an incremental way has already been reported
in the literature. These methods rely solely on SLS 21,22 or systematic search (backtrack
search or branch and bound) 23,24,25 and handle the addition of one clause at a time. Our
goal, in this paper, is to explore and compare different systematic and approximation meth-
ods to tackle the dynamic satisfiability problem. Also, as we will see in the next section, our
method handles the addition of more than one clause at a time and depends on the structure
of the CNF formula. Note that incremental SAT problems can be solved using the dynamic
CSP paradigm. Indeed CSPb is formally equivalent to SAT as it is well indicated in 27,28.
Managing dynamic CSPs has already been reported in the literature 29,30,31,32,33,34,35,36.
29 introduced the notion of Dynamic Constraint Satisfaction Problems for configuration
problems (renamed Conditional Constraint Satisfaction Problems (CCSPs) later). In con-
trast with the standard CSP paradigm, in a CCSP the set of variables requiring assignment
is not fixed by the problem definition. A variable has either active or nonactive status. An
activity constraint enforces the change of the status of a given variable from nonactive
to active. In 30, Freuder and Sabin have extended the traditional CSP framework by in-
cluding the combination of three new CSP paradigms : Meta CSPs, Hierarchical Domain
CSPs, and Dynamic CSPs. This extension is called composite CSP. In a composite CSP,
the variable values can be entire sub CSPs. A domain can be a set of variables instead of

bA CSP consists of a finite set of variables with finite domains, and a finite set of constraints restricting the possible
combinations of variable values 26. Solving a CSP consists of obtaining a set of values of variables satisfying all
the constraints.
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atomic values (as it is the case in the traditional CSP). The domains of variable values can
be hierarchically organized. The participation of variables in a solution is dynamically con-
trolled by activity constraints. Jónsson and Frank 34 proposed a general framework using
procedural constraints for solving dynamic CSPs. This framework ha s been extended to
a new paradigm called Constraint-Based Attribute and Interval Planning (CAIP) for repre-
senting and reasoning about plans 35. CAIP and its implementation, the EUROPA system,
enable the description of planning domains with time, resources, concurrent activities, dis-
junctive preconditions and conditional constraints. The main difference, comparing to the
formalisms we described earlier, is that in this latter framework 34 the set of constraints,
variables and their possible values do not need to be enumerated beforehand which gives
a more general definition of dynamic CSPs. Note that the definition of dynamic CSPs in
34 is also more general than the one in 33 since in this latter work variable domains are
predetermined.

In the next section we present a general procedure we propose for solving Incremental
SAT. Sections 3, 4 and 5 are respectively dedicated to the systematic method based on
branch and bound, the approximation method based on stochastic local search and the
approximation method based on genetic algorithms. Section 6 is dedicated to the empirical
experimentation evaluating and comparing the solving methods. Concluding remarks and
possible future works are finally presented in Section 7.

2. New Procedure for Solving Incremental SAT

Let us assume that we have the following situation: SATi+1 = SATi∧NC where:

• SATi is the current SAT formula,
• NC is a new set of clauses to be added to SATi,
• and SATi+1 is the new formula obtained after adding the new set of clauses.

Both SATi and NC (and by consequence SATi+1) are defined on a set X of boolean
variables. Assuming that SATi is satisfiable, the goal here is to check the consistency of
SATi+1 when adding the new set of clauses denoted by NC. To do so, we have defined the
following procedure:

(1) If x∧¬x is contained in NC, return that NC is inconsistent. NC cannot be added to
SATi.

(2) Simplify NC by removing any clause containing a disjunction of the form x∨¬x.
(3) Let NC = NC1 ∧NC2 where NC1 is the set of clauses, each containing at least one

variable that appears in SATi and NC2 the set of clauses that do not contain any variable
that appears in SATi and NC1. Let SATi = S1 ∧ S2 where S1 is the set of clauses, each
containing at least one variable that appears in NC and S2 the set of clauses that do
not contain any variable that appears in NC or S1. S2 will be discarded from the rest
of the procedure since any assignment to the variables of NC will not affect the truth
assignment already obtained for S2.
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(4) Using a search method look for a truth assignment for NC2. If no such assignment is
found return NC cannot be added as it will affect the satisfiability of SATi.

(5) Assign the truth assignment of SATi to NC1. If NC1 is satisfiable goto 7.
(6) Using a search method flip the variables of NC1 that do not appear in S1. If NC1 is

satisfied goto 7.
(7) Using a search method, look for a truth assignment for both S1 and NC1. If no such

assignment is found return NC cannot be added as it will affect the consistency of
SATi.

Step 5 requires a search procedure that starts from an initial configuration and iterates
until a truth assignment satisfying NC1 is found. To perform this step we can use one of the
following methods:

(1) A randomized local search method starting from the initial configuration. The local
search algorithm will iterate by flipping the values of the variables of NC1 which do
not appear in S1 until a truth assignment for NC1 is found. Details about the stochastic
local search method are presented in Section 4.

(2) A genetic algorithm starting from a population containing instances of the initial con-
figuration. The genetic algorithm iterates performing the mutation and crossover oper-
ators on only the part of the vectors containing the variables of NC1 that do not appear
in S1. The method based on genetic algorithms is presented in Section 5.

(3) A branch and bound method which starts with a lower bound equal to the number of
non satisfied clauses of the initial configuration, and explores a subset of the search
space by assigning values to the variables that appear in NC1 but not in S1. The algo-
rithm will stop when the lower bound is equal to zero or when the entire subset of the
search space is explored. The detail of the branch and bound method is presented in
Section 3.

In step 6 the search procedure starts from the best configuration (assignment) found in
step 5, and iterates until a truth assignment satisfying both NC1 and S1 is obtained. The
search procedure has also to make sure to avoid checking any configuration already ex-
plored in step 5. This can be done by checking, at each variable assignment, that the subset
of the variables belonging to S1 and that do not belong to NC1 has an assignment different
from the old one satisfying SATi. Step 7 requires a search procedure for determining a truth
assignment for NC2.

3. Branch and Bound for Incremental SAT

The exact algorithms for solving SAT problems include the well known Davis-Putnam-
Loveland algorithm (DPLL) 2,3 and the integer programming approaches 37.

DPLL starts with an upper bound (UB) corresponding to the number of unsatisfied
clauses of a given complete assignment. The algorithm will then iterate updating the value
of UB anytime a new complete assignment with a lower number of unsatisfied clauses is
found. The algorithm will stop when UB is equal to zero (which corresponds to a solution
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satisfying all the clauses) or when the entire search tree has been explored. More precisely,
this backtrack search method compares at each node the upper bound UB with a lower
bound (LB) corresponding to the estimation of the minimum number of unsatisfied clauses.
LB is equal to the sum of the number of unsatisfied clauses of the current partial assignment
and an underestimation of the number of clauses that become unsatisfied if we extend the
current partial assignment into a complete one. More formally, LB is defined as follows.

LB = current unsatis f ied + ∑
x∈Xunsat

min(unsat(x),unsat(¬x))

where :

• current unsatis f ied is the number of unsatisfied clauses of the current assignment,
• Xunsat is the set of variables that have not been assigned yet,
• unsat(x) (resp unsat(¬x)) is the function returning the the number if unsatisfied clauses

if x is assigned true (resp false).

If UB ≤ LB the algorithm backtracks and changes the decision at the upper level. If
UB > LB the current partial assignment is extended by instantiating the current node to
true or false. If the current node is a leaf node, UB will take the value of LB (a new upper
bound has been found). The algorithm will stop when UB is equal to zero or when the entire
search tree has been explored. The underestimation is equal here to the minimum between
the number of clauses that become unsatisfied if true is chosen for the next assignment and
the number of clauses that become unsatisfied if false is chosen for the next assignment.
For choosing the next variable to assign, we use the in-most-shortest clause heuristic as
reported in 38.

DPLL has been improved using the following rules :

• Unit propagation 2,3. This technique is used during the backtrack search as follows.

– Look for a unit clause : a clause containing just one literal l.
– Fix the value of l to true.
– Remove all clauses containing l.
– Remove all occurrences of l’s negation.

• The Jeroslow-Wang branching rule 39 as variable selection heuristic. This rule indicates
which child should be generated first when the algorithm branches. Roughly, the literal
added to the latest generated node should occur in a large number of short clauses. Let
us consider the formula F corresponding to the current node and a variable xi to con-
sider for branching. The Jeroslow-Wang rule is used through the following function :
ω(F, j,v) = ∑Nikv2−k where Nikv is the number of clauses of length k that contain x j

(if v = 1) or ¬x j (if v = 0). v represents here a logical value (0 or 1). If ( j,v) max-
imizes ω(F, j,v), then xi is chosen first (F

S{xi}) if v = 1, and otherwise select ¬xi

first ( F
S{¬xi}).

We have chosen the zChaff solver 7 which is the best and most recent improvement to
the DPLL algorithm. Indeed, zChaff was the best complete solver in the industrial category
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in the SAT 2002 and SAT 2004 competitions 40,41. zChaff includes the following advanced
heuristics and strategies.

• Variable State Independent Decaying Sum (VSIDS). This heuristic keeps a score
for each variable literal which allows the focus on the recent conflicts. The goal here is
to increase the locality of the search. A variable ordering scheme is also used here to
increase the frequency of score decay.
• Two Literal Watching. This strategy is used for boolean constraint propagation as

follows. During backtracking there is no need to modify the watched literals in the
clause database.
• Conflict Driven Clause Learning. This heuristic is important when solving structured

problems.
• BerkMin Type Decision Heuristic. Like for VSIDS, the goal here is to increase the

search locality. This is done using BerkMin’s rule 42 which consists of using the most
recent unsatisfied conflict clauses.

• Choose Short Antecedent Clauses First. This is motivated by the fact that short
clauses prune large spaces from the search and enable the early detection of conflicts.

• Frequent Restarts. This consists of using a rapid fixed interval restart policy in the
hope of making the solver more robust.

4. SLS for Incremental SAT

One of the well known randomized local search algorithms for solving SAT problems is the
GSAT procedure 8,9 presented in figure 1. GSAT is a greedy based algorithm that starts with
a random assignment of values to boolean variables. It then iterates by selecting at each step
a variable, flips its value from false to true or true to false and records the decrease in the
number of unsatisfied clauses. The algorithm stops and returns a solution if the number
of unsatisfied clauses is equal to zero. After MAX-FLIPS iterations, the algorithm updates
the current solution to the new solution that has the largest decrease in unsatisfied clauses
and starts flipping again until a solution satisfying all the clauses is found or MAX-TRIES
is reached. In order to prevent the search from getting trapped in a local minima, a new
approach called Dynamic Local Search (DLS) has been proposed. DLS associates weights
with the clauses of the formula to solve. The goal here is to minimize the total weight rather
than the number of satisfied clauses as we mentioned above. Many variants of the DLS
strategy have been developed. The most powerful one is the Exponentiated Sub-Gradient
(ESG) method 43. Through the UBCSAT experimentation environment 11, we have adopted
an improved version of ESG called Scaling and Probabilistic Smoothing (SAPS) algorithm
12 with the following modifications. When used in step 5, SAPS starts from the initial
configuration (corresponding to the truth assignment found for the formula before adding
the new clauses) instead of a random configuration. Also, only the variables belonging to
NC1 and which do not appear in S1 can be chosen for the flip. For step 6, SAPS starts from
the best configuration found in step 5. Also, all the configurations explored in step 5 are
avoided in step 6 as shown in subsection 2.2.
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Procedure GSAT
begin

for i← 1 until MAX-TRIES do
begin

T← a randomly generated truth assignment
for j← 1 until MAX-FLIPS do

if T satisfies the formula then return T
else make a flip

end
return (“no satisfying assignment found”)

end

Fig. 1. GSAT Procedure

5. Genetic Algorithms for Incremental SAT

Genetic Algorithms (GAs) perform multi-directional non systematic searches by maintain-
ing a population of individuals (called also potential solutions) and encouraging informa-
tion formation and exchange between these directions. It is an iterative procedure that main-
tains a constant size population of candidate solutions. Each iteration is called a generation
and it undergoes some changes. Crossover and mutation are the two primary genetic oper-
ators that generate or exchange information in GAs. Under each generation, good solutions
are expected to be produced and bad solutions die. It is the role of the objective (evaluation
or fitness) function to distinguish the goodness of the solution.

The idea of crossover operators is to combine the information from parents and to pro-
duce a child that obtains the characteristics of its ancestors. In contrast, mutation is a unary
operator that needs only one input. During the process, mutation operators produce a child
by selecting some bad genes from the parent and replacing them with the good genes. The
two operators may behave differently but they both follow the characteristic of GAs in that
the next generation is expected to perform better than the ancestors.

Let us see now how to solve the SAT problem using genetic algorithms. Since we are
dealing with variables that can only take on two states, true or false, the representation we
choose is a binary vector of length n where n is the number of boolean variables with the
coding of 1 being true and 0 being false. Each entry in the vector corresponds to the truth
assignment for the variable which corresponds to that location in the vector. For example, if
we consider the formula in introduction, then the vector (010) will correspond to the truth
assignment {x1 = f alse , x2 = true , x3 = f alse} which does not satisfy the formula. The
pseudo code of the GA based search algorithm we use is presented in figure 2.

The GA search method will start from an initial randomized population of binary vec-
tors and evaluate each vector using a fitness function to see if we have discovered the opti-
mum solution. We define the fitness function as the number of true clauses corresponding
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1. Begin
2. t← 1
3. // P(t) denotes a population at iteration t
4. P(t)← p random binary vectors of size n
5. eval← evaluate P(t)
6. while t ≤ max iterations do
7. begin
8. t← t +1
9. select P(t) from P(t−1)
10. alter P(t)
11. evaluate P(t)
12. end
13. end

Fig. 2. Genetic Algorithm.

to a given vector. For example, if we consider the following formula :

(X1∨X3)∧ (¬X1∨X2)∧¬X3

then the fitness function of the vector (101) (corresponding to X1 = 1, X2 = 0 and
X3 = 1) is equal to 1 (since it violates the last two clauses). If the fitness function is equal
to C (C is the number of clauses of the formula) then the CNF expression is satisfied. Af-
ter evaluating the randomized population, if the optimum function is not found then the
crossover and mutation operators will be applied to the selected individuals of the current
population respectively with probability pc and pm. The way we use to select the M indi-
viduals at each iteration (where M is the population size) is to assign a probability of being
selected to each individual in proportion of their relative fitness. That is, an individual with
the fitness function equal to 10 is 10 times more likely to be chosen than an individual with
a score of 1. Note that we may obtain multiple copies of individuals that happened to be
chosen more than once (case, for example, of individuals with good fitness function) and
some individuals very likely would not be selected at all. Note also that even the individual
with the best fitness function might not be selected, just by random chance. We have im-
plemented the crossover and mutation operators in the same way as reported in 17. Figure
3 describes an example of a crossover. After randomly selecting 2 positions a and b (a = 3
and b = 8 in the figure) in each parent, each of the two children is generated by taking
all the bits in the neighborhood of a and b from one parent and the remaining bits from
the other parent. The neighborhood is obtained using a given parameter d. The mutation
operator is performed by flipping exactly one randomly selected bit of the parent (this is
similar to the MutOne operator in 15).

Solving SAT problems using GAs has been reported in the literature 14,15,16,17,18,19,20.
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2d

1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1

1 0 0 10 1 1 0 0 1 1 11 11 1 1 0 1 1 1 0

Parent 1 Parent 2

Child 1 Child 2

a b a b

Fig. 3. Crossover operator

The results provided are less promizing than those of SLS methods unless if GAs are cou-
pled with SLS algorithms as it is the case in 17,18,19. We include GAs in our study in order to
see how they behave (comparing to SLS and complete methods) in the case of incremental
SAT.

In step 6 of our resolution procedure the above GA method will be used as is to look
for the satisfiability of the formula NC2. In step 5, the initial population contains instances
of the initial configuration. Crossover and mutation operators are modified such that only
the entries of the vectors corresponding to variables of N1 which do not appear in S1 are
affected by the operators.

6. Experimentation

In this Section we present an empirical comparative study of the following four methods.

• SLS: the stochastic local search method is used here in steps 5, 6 and 7 of the resolution
procedure.
• GA: the method based on genetic algorithms is used in steps 5,6 and 7.
• BB: the branch and bound method is used in steps 5, 6 and 7.
• SLS+BB: the branch and bound method is used in steps 5 and 6 while the stochastic

local search method is used in step 7.

In order to find the best values for the parameters of the GA method, we have conducted
preliminary tests on several randomly generated incremental SAT instances described as
shown below. The results show that the following provides the best running time perfor-
mances.

• Population size M = 320.
• Probability for each individual in a population to be selected for the crossover pc ∈
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[0.1,0.5] (depending on the problem instance).
• Probability for each individual in a population to be selected for the mutation pm ∈

[0.8,1] (depending on the problem instance).

All tests are performed on a 2.8 GHz Pentium IV computer under Linux and all proce-
dures are coded in C language.

6.1. Incremental SAT Instances

Since we did not find libraries providing incremental SAT problems, we build incremental
and consistent SAT instances taken from the well known SATLIB library 21. Each incre-
mental SAT instance is generated from a SAT one in a series of stages. At each stage, a
random number of clauses is taken from the SAT instance and added to the incremental
SAT one until there are no more clauses to take. In the following we consider st the total
number of stages and N the total number of clauses of the SAT instance. The number of
clauses (N1 . . .Nst ) taken at each stage are generated as follows. N1 and N2 are randomly
chosen form [1,N/5−1]. N3 and N4 will then be generated from [1,(N−N1−N2)/4−1],
and N5 and N6 from [1,(N−N1−N2−N3−N4)/3− 1]. N7,N8, . . . ,Nst will be generated
in the same manner. This will ensure that the average number of clauses in each stage is
almost equal to N/st. The first advantage of this procedure is to guarantee that we handle
the addition of more than one clause at each time. The second one, as we will see later, is
to be able to generate hard problems (near the phase transition, where the ratio #clauses

#variables is
close to 4.2). In the following tests, the value of st is fixed to 10.

Using the method above, we have generated incremental and consistent SAT instances
from the following three types of SAT problems.

• “Flat” Graph Coloring Problem. For a given graph, the “flat” graph coloring problem
tries to color the nodes of the graph such that any pair of connected nodes have differ-
ent colors. Here we focus on the decision variant which consists of deciding whether
for a particular number of colors, a coloring of the given graph exists. SAT instances
corresponding to the “flat” coloring problem are generated as shown in 44.

• Incremental “Morphed” Graph Coloring Problem. A particular class of graph
coloring problems consists of morphing regular ring lattices with random graphs.
A(typeB) p-morph of two graphs A = (V,E1) and B = (V,E2) is a graph C = (V,E)
where E contains all the edges common to A and B, a fraction p of the edges from
E1−E2 (the remaining edges of A), and a fraction 1− p of the edges from E2−E1.
More details regarding the generation of SAT instances for morphed graphs can be
found in 45.
• Random-3-SAT Instances with Controlled Backbone Size Problems. The backbone

of a satisfiable SAT instance is the set of entailed literals. A literal l is entailed by a
satisfiable SAT instance S if and only if S AND (NOT l) is unsatisfiable. The back-
bone size is the number of entailed literals. Random 3-SAT Instances with Controlled
Backbone Size are generated as shown in 46.

In order to evaluate and compare the methods on hard incremental SAT problems,
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we have generated other incremental 3-SAT instances (from uniform random 3-SAT prob-
lems generated as shown in 47) as follows. Since for 3-SAT problems the phase transi-
tion (corresponding to the hardest problems to solve) corresponds to a ratio #clauses

#variables = 4.2
we first split the random SAT instance into sets of clauses such that the addition of each set
to the incremental SAT formula will always lead to a ratio #clauses

#variables close to 4.2 . This way
the formula to solve at each stage will be close to the phase transition.

6.2. Test Results

The results of the tests performed on Incremental “Flat” Graph Coloring Problems, Incre-
mental “Morphed” Graph Coloring Problems, Incremental Hard Uniform 3-SAT and Incre-
mental Random 3-SAT Instances with Controlled Backbone Size Problems are respectively
reported in figures 4, 5, 6 and 7.

Fig. 4. Comparative tests on randomly generated Incremental “Flat” Graph Coloring Problems.

testset SLS GA SLS+BB BB
flat30-60 0.00450 0.00460 0.00460 0.004
flat50-115 0.014 0.015 0.014 0.08
flat75-180 0.06 0.1 0.06 0.4
flat100-239 0.3 0.5 0.4 0.8
flat125-301 0.9 (98%) 1.8 (98%) 1.2 3.5
flat150-360 1.6 (97%) 2.4 (97%) 2 13.2

Fig. 5. Comparative tests on randomly generated Incremental “Morphed” Graph Coloring Problems.

testset SLS GA SLS+BB BB
sw100-8-lp0-c5 0.01 0.01 0.01 0.01
sw100-8-lp1-c5 0.02 0.02 0.02 0.1
sw100-8-lp2-c5 0.02 0.022 0.02 0.18
sw100-8-lp3-c5 0.021 0.024 0.228 0.9
sw100-8-lp4-c5 0.07 0.14 0.1 2.7
sw100-8-lp5-c5 0.18 (98%) 0.4 (98%) 0.7 6.3
sw100-8-lp6-c5 0.4 (97%) 1 (95%) 0.9 14.7
sw100-8-lp7-c5 0.7 (92%) 1.2 (92%) 1.2 23.8
sw100-8-lp8-c5 0.9 (93%) 2.1 (93%) 2.5 34.6
sw100-8-lp9-c5 1.2 (95%) 2.1 (95%) 2.8 48.7

In figures 4, 6 and 7, each test set is characterized by the number of variables and clauses
of the random instances. For instance, uf20-91 in figure 6 corresponds to uniform random
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Fig. 6. Comparative tests on randomly generated Incremental Hard Uniform 3-SAT Problems.

testset SLS GA SLS+BB BB
uf50-218 0.001 0.001 0.001 0.002
uf75-325 0.001 0.001 0.0012 0.06
uf100-430 0.0013 0.002 0.002 0.08
uf125-538 0.002 0.003 0.003 0.12
uf150-645 0.0024 0.004 0.003 1.3
uf175-753 0.004 0.008 0.008 2
uf200-860 0.008 0.009 0.01 2.1
uf225-960 0.01 (98%) 0.01 (98%) 0.012 2.8

uf250-1065 0.01 (98%) 0.01 (98%) 0.014 3.9

3-SAT problems having 20 variables and 91 clauses. Similarly, CBS k3 n100 m403 b10 in
figure 7 corresponds to Random 3-SAT Instances with Controlled Backbone Size having
100 variables and 403 clauses. In figure 5, all instances have 500 variables and 3100 clauses
each.

All the figures present the average running time needed by each of the four methods to
solve the incremental SAT instances. Indeed, for each test set, each method is executed on
100 instances and the average execution time for solving the instances is taken. Moreover
the running time for each instance is obtained by taking the average of 50 independent
run on the same instance as this is common procedure when evaluating algorithms on ran-
dom SAT instances where a phase transition has been observed such as Incremental Hard
Uniform 3-SAT Problems 48.

In the case of SLS and GA, we put in brackets the success rate (beside the running time)
anytime the approximation method fails to solve the problem for a particular instance. The
time is averaged here over the successful instances. For instance, in the case of flat125-301,
figure 4, SLS and GA succeeded to solve 98% of the instances and the time is averaged over
these 98 instances. Note that a method fails to solve a problem instance if it fails to get a
complete solution in at least one of the 50 independent run on this instance. In order to have
a more accurate picture regarding the behavior of SLS and GA on these types of instances
and especially those from test-sets uf225-960 and uf250-1065 c we conducted a more in
depth study by using a more adequate empirical method called runtime distribution (RTD)
48. More precisely the RTD of a given randomized algorithm (such as SLS or GA in our
case) is a cumulative distribution function F defined as follows.

F(t) = Pr{runtime≤ t},F : [0,∝)→ [0,1]

For example, figure 8 shows a typical RTD of SLS and GA in the case of a problem

cFor the other instances where the success ratio is less than 100% both SLS and GA fail to get a complete solution
in all the 50 run.
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Fig. 7. Comparative tests on randomly generated Incremental 3-SAT Instances with Controlled Backbone.

testset SLS GA SLS+BB BB
CBS k3 n100 m403 b10 0.01 0.01 0.01 0.01
CBS k3 n100 m403 b30 0.012 0.02 0.02 0.02
CBS k3 n100 m403 b50 0.015 0.034 0.04 0.1
CBS k3 n100 m403 b70 0.02 0.05 0.06 0.9
CBS k3 n100 m403 b90 0.03 0.1 0.09 1.2
CBS k3 n100 m411 b10 0.064 0.12 0.20 2
CBS k3 n100 m411 b30 0.1 0.2 0.2 2.2
CBS k3 n100 m411 b50 0.06 0.07 0.07 3
CBS k3 n100 m411 b70 0.08 0.08 0.1 3.2
CBS k3 n100 m411 b90 0.09 0.22 0.24 3.8
CBS k3 n100 m418 b10 0.03 0.04 0.05 0.7
CBS k3 n100 m418 b30 0.04 0.05 0.1 0.8
CBS k3 n100 m418 b50 0.04 0.05 0.09 0.9
CBS k3 n100 m418 b70 0.03 0.05 0.07 1
CBS k3 n100 m418 b90 0.03 0.05 0.08 1.4
CBS k3 n100 m423 b10 0.02 0.03 0.09 2
CBS k3 n100 m423 b30 0.06 0.1 0.09 2.23
CBS k3 n100 m423 b50 0.06 0.09 0.1 2.87
CBS k3 n100 m423 b70 0.06 0.05 0.1 1.7
CBS k3 n100 m423 b90 0.03 0.04 0.09 1.2
CBS k3 n100 m429 b10 0.01 0.01 0.03 2.8
CBS k3 n100 m429 b30 0.01 0.01 0.03 0.7
CBS k3 n100 m429 b50 0.02 0.04 0.13 3.7
CBS k3 n100 m429 b70 0.03 0.04 0.08 3.6
CBS k3 n100 m429 b90 0.04 0.04 0.07 3.5
CBS k3 n100 m435 b10 0.01 0.01 0.03 0.9
CBS k3 n100 m435 b30 0.01 0.01 0.08 1.1
CBS k3 n100 m435 b50 0.01 0.01 0.03 0.6
CBS k3 n100 m435 b70 0.02 0.03 0.090 1.34
CBS k3 n100 m435 b90 0.02 0.02 0.08 3.34
CBS k3 n100 m441 b10 0.02 0.03 0.09 1
CBS k3 n100 m441 b30 0.01 0.02 0.03 0.7
CBS k3 n100 m441 b50 0.01 0.02 0.04 2.2
CBS k3 n100 m441 b70 0.03 0.03 0.08 4.3
CBS k3 n100 m441 b90 0.02 0.02 0.08 5.3
CBS k3 n100 m449 b10 0.012 0.013 0.03 6.4
CBS k3 n100 m449 b30 0.01 0.01 0.01 0.6
CBS k3 n100 m449 b50 0.02 0.022 0.022 0.5
CBS k3 n100 m449 b70 0.03 0.03 0.03 0.6
CBS k3 n100 m449 b90 0.06 0.05 0.3 1.6
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instance where there is a little variability in the results obtained over the 50 rund. t0 is here
the average over the 50 run while F(t) is the corresponding RTD.
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Fig. 8. Typical RTD of SLS and GA when success ratio is 100%.

We run 200 independent tests on both uf225-960 and uf250-1065 with SLS and GA.
The chart in figure 9 is the RTD corresponding to the SLS with uf225-960 (the RTDs of
the other cases are similar). As we can see from the chart, although there is some variability
in the results, we did not notice any behaviour such as heavy-tailed RTD e. Actually heavy-
tailed RTD was not observed in any of the tests we conducted. This is justified by the fact
that heavy-tailed RTD does mainly occur with backtracking or randomized backtracking
algorithms and on structured problems 49.

In all the figures (4, 5, 6 and 7), SLS method presents the best results. Due to the
exponential running time of the branch and bound method (comparing to the polynomial
time cost of the approximation techniques) BB is slower especially for large instances.
However BB is a systematic search method that always guarantees the completeness of the
solution returned which is not the case of SLS and GA. Indeed, for very large problems
SLS and GA fail sometimes to solve the problem completely. For example, in the test-
sets uf225-960 and uf250-1065, figure 6, SLS and GA fail to solve 2% of the instances.
SLS+BB is the method that has the best compromise between the porformance in time and
the completeness of the solution returned. Indeed, SLS+BB succeded to solve completely
all the problem instances (even for very large problems) in a reasonable execution time.
Indeed, as we can see the running time of SLS+BB is, in general, comparable to the running
time of SLS and outperfoms the one of GA. The completeness of SLS+BB is guaranteed
here because the non systematic part of the method (SLS) is applied only in step 7 on a

dThis mainly concerns all problem instances where the success ratio is 100%.
eHeavy tailed RTD occurs when most runs are short while some others take very long ruining time 49.
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Fig. 9. RTD of SLS for uf225-960.

small set of clauses (NC2 which is a subset of the set of new added clauses at each time).
In practice, SLS always finds a complete solution for a SAT formula when its number of
clauses is small.

Note that we conducted the same tests reported in figures 4, 5, 6 and 7, on the static
versions of SLS (SAPS), BB (zChaff) and GAs. The running time of these static algorithms
are very poor (sometimes 100 times slower) than their incremental variants, as indicated in
figures 10, 11, 12 and 13. In these latter comparative figures each running time of a static
method is reported in brackets beside the one of its incremental variant.

Fig. 10. Comparative tests on randomly generated Incremental “Flat” Graph Coloring Problems.

testset SLS (SAPS) GA (Static) SLS+BB BB (zChaff)
flat30-60 0.00450 (0.04) 0.00460 (0.04) 0.00460 0.004(0.04)

flat50-115 0.014 (0.15) 0.015(0.15) 0.014 0.08(0.09)
flat75-180 0.06(0.07) 0.1(0.9) 0.06 0.4(4.12)
flat100-239 0.3(3.56) 0.5(6.8) 0.4 0.8(18.12)
flat125-301 0.9 (98%) (22.11) 1.8 (98%)(37.12) 1.2 3.5 (44)
flat150-360 1.6 (97%)(74) 2.4 (97%) (88) 2 13.2 (127)
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Fig. 11. Comparative tests on randomly generated Incremental “Morphed” Graph Coloring Problems.

testset SLS (SAPS) GA (Static) SLS+BB BB (zChaff)
sw100-8-lp0-c5 0.01 (0.2) 0.01(0.2) 0.01 0.01(0.23)
sw100-8-lp1-c5 0.02(0.33) 0.02(0.44) 0.02 0.1(2.3)
sw100-8-lp2-c5 0.02(0.45) 0.022(1.12) 0.02 0.18(3.4)
sw100-8-lp3-c5 0.021(0.56) 0.024 (0.67) 0.228 0.9 (13.45)
sw100-8-lp4-c5 0.07(1.12) 0.14(2.44) 0.1 2.7(34)
sw100-8-lp5-c5 0.18(14.5) (98%) 0.4(19) (98%) 0.7 6.3 (67)
sw100-8-lp6-c5 0.4(27) (97%) 1(34) (95%) 0.9 14.7(98)
sw100-8-lp7-c5 0.7(56) (92%) 1.2(64) (92%) 1.2 23.8 (240)
sw100-8-lp8-c5 0.9(88) (93%) 2.1(112) (93%) 2.5 34.6 (278)
sw100-8-lp9-c5 1.2 (97)(95%) 2.1(144) (95%) 2.8 48.7 (2145)

Fig. 12. Comparative tests on randomly generated Incremental Hard Uniform 3-SAT Problems.

testset SLS (SAPS) GA (Static) SLS+BB BB (zChaff)
uf50-218 0.001(0.01) 0.001(0.012) 0.001 0.002(0.03)
uf75-325 0.001(0.01) 0.001(0.022) 0.0012 0.06(0.05)

uf100-430 0.0013(0.017) 0.002(0.034) 0.002 0.08(0.09)
uf125-538 0.002(0.02) 0.003(0.034) 0.003 0.12(2.3)
uf150-645 0.0024(0.03) 0.004(0.05) 0.003 1.3(12)
uf175-753 0.004(0.06) 0.008(0.1) 0.008 2(17)
uf200-860 0.008(0.09)) 0.009(0.09) 0.01 2.1(25)
uf225-960 0.01(0.23) (98%) 0.01(0.4) (98%) 0.012 2.8(45)
uf250-1065 0.01(0.46) (98%) 0.01(0.7) (98%) 0.014 3.9(58)

7. Conclusion

In this paper we have presented different ways based respectively on systematic and ap-
proximation methods for maintaining the satisfiability of CNF propositional formulas in
an incremental way. Although the non systematic methods have the best performance in
time, they do not always guarantee the completeness of the solution returned. On the other
hand, the systematic method based on branch and bound does not have good performance
in time while it guarantees a complete solution. Finally, a method we propose that uses
a non systematic search in a limited form has the best compromise between time and the
success ratio (percentage of instances completely solved).

Our work is of interest to a large variety of applications that need to be processed in
an evolutive environment. This can be the case of real-world problems such as reactive
scheduling and planning, dynamic combinatorial optimization, dynamic constraint satis-
faction and machine learning in a dynamic environment.
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Fig. 13. Comparative tests on randomly generated Incremental 3-SAT Instances with Controlled Backbone.
testset SLS (SAPS) GA (Static) SLS+BB BB (zChaff)

CBS k3 n100 m403 b10 0.01(0.08) 0.01(0.09) 0.01 0.01(0.09)
CBS k3 n100 m403 b30 0.012(0.22) 0.02(0.3) 0.02 0.02(0.26)
CBS k3 n100 m403 b50 0.015(0.24) 0.034(0.37) 0.04 0.1(0.4)
CBS k3 n100 m403 b70 0.02(0.32) 0.05(0.44) 0.06 0.9(5.8)
CBS k3 n100 m403 b90 0.03(0.34) 0.1(1.12) 0.09 1.2(6.8)
CBS k3 n100 m411 b10 0.064 (0.07) 0.12(1.1) 0.20 2(9.3)
CBS k3 n100 m411 b30 0.1 (1.2) 0.2(2.3) 0.2 2.2(10.11)
CBS k3 n100 m411 b50 0.06 (0.77) 0.07(0.8) 0.07 3(12.4)
CBS k3 n100 m411 b70 0.08(0.8) 0.08(0.87) 0.1 3.2(18.7)
CBS k3 n100 m411 b90 0.09(9.23) 0.22(3.11) 0.24 3.8(24)
CBS k3 n100 m418 b10 0.03(0.32) 0.04(0.38) 0.05 0.7(6.18)
CBS k3 n100 m418 b30 0.04(0.4) 0.05(0.46) 0.1 0.8(8.12)
CBS k3 n100 m418 b50 0.04(0.43) 0.05(0.49) 0.09 0.9(9.3)
CBS k3 n100 m418 b70 0.03(0.32) 0.05(0.51) 0.07 1(12)
CBS k3 n100 m418 b90 0.03(0.3) 0.05(0.55) 0.08 1.4(12.3)
CBS k3 n100 m423 b10 0.02(0.22) 0.03(0.34) 0.09 2(26)
CBS k3 n100 m423 b30 0.06(0.65) 0.1(1.2) 0.09 2.23(23)
CBS k3 n100 m423 b50 0.06(0.7) 0.09(0.9) 0.1 2.87(18)
CBS k3 n100 m423 b70 0.06(0.7) 0.05(0.6) 0.1 1.7(15.8)
CBS k3 n100 m423 b90 0.03(0.3) 0.04(0.44) 0.09 1.2(15)
CBS k3 n100 m429 b10 0.01(0.12) 0.01(0.15) 0.03 2.8(33)
CBS k3 n100 m429 b30 0.01(0.12) 0.01(0.15) 0.03 0.7(7.8)
CBS k3 n100 m429 b50 0.02(0.2) 0.04(0.38) 0.13 3.7(36)
CBS k3 n100 m429 b70 0.03(0.35) 0.04(0.4) 0.08 3.6(33.2)
CBS k3 n100 m429 b90 0.04(0.45) 0.04(0.49) 0.07 3.5(33)
CBS k3 n100 m435 b10 0.01(0.18) 0.01(0.22) 0.03 0.9(11)
CBS k3 n100 m435 b30 0.01(0.2) 0.01(0.23) 0.08 1.1(13)
CBS k3 n100 m435 b50 0.01(0.12) 0.01(0.13) 0.03 0.6(6.8)
CBS k3 n100 m435 b70 0.02(0.23) 0.03(0.33) 0.090 1.34(13.6)
CBS k3 n100 m435 b90 0.02(0.23) 0.02(0.22) 0.08 3.34(32.5)
CBS k3 n100 m441 b10 0.02(0.23) 0.03(0.29) 0.09 1(11)
CBS k3 n100 m441 b30 0.01(0.12) 0.02(0.22) 0.03 0.7(8.12)
CBS k3 n100 m441 b50 0.01(0.12) 0.02(0.23) 0.04 2.2(18.7)
CBS k3 n100 m441 b70 0.03(0.34) 0.03(0.38) 0.08 4.3(38.6)
CBS k3 n100 m441 b90 0.02(0.21) 0.02(0.24) 0.08 5.3(45)
CBS k3 n100 m449 b10 0.012(0.2) 0.013(0.23) 0.03 6.4(48.9)
CBS k3 n100 m449 b30 0.01(0.12) 0.01(0.14) 0.01 0.6(7.8)
CBS k3 n100 m449 b50 0.02(0.2) 0.022(0.25) 0.022 0.5(5.3)
CBS k3 n100 m449 b70 0.03(0.34) 0.03(0.35) 0.03 0.6(6.12)
CBS k3 n100 m449 b90 0.06(0.5) 0.05(0.6) 0.3 1.6(12)

One perspective of our work is to deal with retraction of clauses in an efficient way.
Assume that during the search, a given clause (or a set of clauses) is removed, would it
be worthwhile to reconsider any decision made because of these clause(s) or would it be
more costly than just continuing on with search. Another idea we will investigate in order
to improve the performance of our general procedure consists of processing steps 4 until
6 and step 7 of our procedure in parallel. If any of these two parallel phases fails then the
main procedure will stop and returns NC (set of new clauses to be added) inconsistent.
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