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Simulation of complex Lotos specifications is not always efficient due to the space explo-
sion problem of their corresponding transition systems. To overcome this difficulty in
practice, we present in this paper a novel approach which integrates constraint propaga-

tion techniques into the Lotos specifications. These solving techniques are used to reduce
the size of the search space before and during the search for a solution to a given combina-
torial problem under constraints. In order to do that, we first tackle the challenging task
of describing combinatorial problems in Lotos using the Constraint Satisfaction Problem
(CSP) framework. In this regard, we provide two generic Lotos templates for describing
CSPs and temporal CSPs (CSPs involving temporal constraints). To evaluate the time
performance of the framework we propose, we have conducted several experimental tests
on instances of the N-Queens, the machine scheduling and randomly generated CSPs.
The results of these experiments are promising and demonstrate the efficiency of Lotos
simulation when CSP techniques are integrated.

Keywords: Formal specifications; lotos; simulation; constraint satisfaction; temporal
reasoning.

1. Introduction

Our goal in this paper is to use constraint propagation techniques in order to
improve the simulation phase running time of Lotos specifications. This will enable
us to simulate complex specified combinatorial problems in very efficient running
time. In order to do that, we first tackle the challenging task of describing combi-
natorial problems in Lotos using the Constraint Satisfaction Problem (CSP) frame-
work. In this regard, we provide in this paper two generic Lotos templates to facil-
itate the transformation of a combinatorial problem into a (temporal) CSP.a The
resulting Lotos specifications are then solved by incorporating existing constraint

aA temporal CSP is a CSP involving temporal constraints.
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propagation techniques. To our best knowledge, this is the first time such approach
for solving combinatorial problems has been adopted.

A CSP is composed of a list of variables defined on finite domains of values
and a list of relations restricting the values that the variables can simultaneously
take [1–4]. A solution to a CSP is a set of assigned values to variables that satisfy
all the constraints. CSPs are very powerful for representing discrete combinato-
rial problems including frequency assignment, configuration and conceptual design,
molecular biology, chemical hypothetical reasoning, and scene analysis. Since a CSP
is known to be an NP-Hard problem in general,b a backtrack search algorithm
of exponential time cost is needed to find a complete solution. To overcome this
difficulty, constraint propagation techniques have been proposed [1, 3–5]. These
techniques consist of reducing the size of the search space before and during the
backtrack search. This is achieved by removing from the domains of the variables
some values that do not belong to any solution.

Lotos is the ISOc formal specification language for describing, simulating and
verifying concurrent and distributed systems [6]. Lotos is composed of two com-
plementary parts: (i) a process algebra that expresses temporal relations of sys-
tem actions, and (ii) algebraic data types that represent data structures and value
expressions. Lotos provides the ability to describe complex data structures by com-
position and extension mechanisms. And the Lotos equations can concisely specify
complex constraints. Many tools have been developed for Lotos. The most powerful
one is CADP (CAESAR/ALDEBARAN Development Package) toolbox [7]. Indeed,
CADP is a complete design tool for the compilation, simulation (execution), verifi-
cation (with model-checking), testing and rapid prototyping of Lotos systems. The
compilation phase generates a labelled transition system (LTS) which encodes all
the possible execution sequences of a specification. To efficiently handle types, vari-
ables and operations, CADP applies concrete implementation by translating data
types into libraries of C types and functions.

In practice the simulation of complex systems is not always efficient due to the
space explosion problem of LTS [8]. Many methods [8–11] have been proposed to
cope with this difficulty. In this paper, we address this problem in a new way: first
by expressing CSPs in Lotos and then by using efficient CSP solving techniques
to improve the simulation (execution) time cost. As mentioned earlier, the choice
for CSPs is motivated by the fact that this framework is very powerful for solving
discrete combinatorial problems as indicated in [2, 12]. This is the reason why the
most popular constraint solvers such as ILOG SOLVER [13] and Prolog [14] include
a library of constraint propagation techniques.

In this paper, the challenge is how to integrate CSP techniques into Lotos spec-
ifications in order to provide a flexible and efficient way for solving large complex

bThere are special cases where CSPs are solved in polynomial time, for instance, the case where
a CSP network is a tree [1, 4].
cInternational Organization for Standardization.
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systems such as combinatorial problems. Therefore we define a Lotos-based (tem-
poral) CSP framework composed of the following.

• A library of data-types whose operations and equations are expressive enough
to clearly and concisely specify complex constraints. In addition to facilitate the
description of constraint applications, we provide two generic templates that can
be customized to represent any CSP and temporal CSP.

• The constraint propagation algorithms [1–4] used to significantly improve the per-
formance of problem solving. These algorithms (that we have implemented here
in C) are integrated into Lotos specifications through the external implementation
of Lotos data types.

• The CADP simulators to find solutions to the Lotos CSP specifications.

Our approach makes a clear separation between CSP specifications and CSP
algorithms in order to freely apply any combination of CSP algorithms and also
to include new CSP techniques in the future. In the particular case of temporal
CSPs (CSPs involving metric and symbolic temporal constraints), we integrate the
TemPro modeling framework [15,16] into the Lotos specifications. This will enable
us to simulate a wide variety of real-life applications such as scheduling, planning,
temporal databases, molecular biology and any other applications under temporal
constraints. The choice for TemPro is motivated by the fact that this latter frame-
work is heavily based on the CSP framework that we have adopted for general
constraint problems.

The rest of the paper is organized as follows. Sections 2 and 3 discuss CSPs and
temporal CSPs respectively. Section 4 presents two generic templates for describ-
ing CSPs and temporal CSPs. It also shows how to instantiate these templates for
specific constraint problems. Section 5 describes how to integrate constraint propa-
gation and TemPro into Lotos specifications. Section 6 describes the experimental
tests conducted on instances of the N-Queens, the machine scheduling and ran-
domly generated CSPs, in order to evaluate the efficiency of our (temporal) CSP
framework. Concluding remarks and some perspectives are finally covered in Sec. 7.

2. Constraint Propagation for CSPs

In order to describe CSPs and the constraint propagation techniques for solving
them, let us consider the following example of the N-Queens problem.

Example 1 (N-Queens). Given any integer N, the problem is to place N queens
on N distinct squares (each queen has to be placed on a different row or a different
column) in an N×N chessboard satisfying the constraints that no two queens should
threaten each other, that is no two queens can be placed on the same row, same
column, and same diagonal.

Figure 1 represents the example of the 4-Queens and its CSP representation
using a graph. Indeed a binary CSP (CSP where the constraints are binary relations)
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Variables: {Q1,Q2,Q3,Q4}
Domain: {1,2,3,4}
Constraints: Cij (1<= i,j <= 4)  = {(i j) such that Qi <> Qj , |Qi-Qj| <> | i - j | }

Q1 Q2 Q3 Q4

Q1 Q2

Q3 Q4

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

C12

C24

C34

C13

C23
C14

Fig. 1. The 4-Queens problem and its CSP representation using a graph.

is usually represented by a graph where nodes correspond to variables and arcs
represent the binary constraints between variables. In this case, each of the 4 queens
has to be placed on a different column.

The basic way to solve a CSP is the systematic search called Backtracking (BT)
which explores the search space looking for a possible solution satisfying all the con-
straints. BT incrementally attempts to extend a partial solution towards a complete
one, by repeatedly choosing a value for another variable [1,12]. Figure 2 traces the
BT algorithm for solving the 4-Queens. Here the search space, represented by the

X X X X X X X

X X VX X X X

X X XX X

Fig. 2. Backtracking algorithm applied to the 4-Queens.
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tree of possibilities, is explored from left to right. The first queen is first placed in
the first row, then we look for a position for the second queen such that there is no
conflict with the first one. Once this is obtained, we look for a position for the third
queen that does not conflict with the positions of the first two queens. As we can
see from Fig. 2, after several attempts we realize that it is not possible to place the
third queen because of the position of the first one. The first queen has then to be
moved to the second position as illustrated by the right subtree. This late detection
of the inconsistent value for the first queen is the main disadvantage of the BT algo-
rithm. In order to overcome this problem, constraint propagation techniques have
been proposed [1–3,12]. The goal of these techniques is to prune earlier late failure.
For example in the case of the 4-Queens, it would be better to know beforehand
that placing the first queen in position one will not lead to a solution. This will
indeed save the many tries depicted by the left tree of Fig. 2. The way constraint
propagation works is by propagating the impact of a given decision (assignment of
a value to a variable) to the domains of the variables that are not yet assigned.
For instance, placing the first queen in position one means that there is no way to
place the second queen in position one and two, the third queen in position one and
three and the fourth queen in position one and four. These positions for queens 2, 3
and 4 have then to be removed from their respective domain. This kind of elimina-
tion is handled by the Arc Consistency (AC) algorithm [3,12] which constitutes the
core of constraint propagation. AC consists of enforcing a local consistency between
each pair of variables of the CSP. More precisely, for each pair of variables (Xi, Xj)
AC removes any value a from Xi’s domain that has no support in Xj ’s domain
(no value b in Xj ’s domain such that the pair (a, b) satisfies the relation between
Xi and Xj). For instance, in the example of the 4-Queens, when applying AC after
placing queen 1 in position 1, positions 1 and 3 for queen 2 should be removed (since
these two positions conflict with position 1 of queen 1). There are two main strate-
gies for applying AC in the constraint propagation process [1, 12]. The first one is
called Forward Checking (FC)d and consists of enforcing AC between the currently
assigned variable and the future ones (variables that are not yet assigned). Figure
3 illustrates FC applied to the 4-Queens. As we can easily see with FC the search
space is considerably reduced (compared to BT). The second strategy, called Full
Look Ahead (FLA), does more consistency check than FC. Indeed, in addition to
enforcing AC between the current and the future variables (case of FC), FLA applies
AC between every pair of the future variables. Figure 4 describes FLA applied to
the 4-Queens. Note that while the search space corresponding to FLA is smaller
than the one of FC, there is more time effort spent after each variable assignment in
the case of FLA. A comparison, in terms of running time needed to obtain a solu-
tion, between FC and FLA has been carried out in [12] and favors FC in most of
the cases.

dThis strategy is also called partial look ahead [1].



October 22, 2009 13:19 WSPC/117-IJSEKE - SPI-J111 00441

770 S. Sadaoui, M. Mouhoub & B. Chen

V

X

X

X

XX
X

X

X
X

X
XXX

X

X
X

X
X

X

X X
XX

X X X

X X X

X
X

X

XX

XXX

XXX

X
X

X
X

X

X
X

XX

X
X

X

X

X
X X

X

Fig. 3. Forward Checking applied to the 4-Queens.
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Fig. 4. Full Look Ahead applied to the 4-Queens.

Note that, in addition to AC, other forms of local consistency have been pro-
posed [3, 5]. For example node consistency which consists of checking the consis-
tency according to unary constraint of each variable, path consistency which checks
the consistency between any subset of three variables and in the general case,
k-consistency which checks the consistency between any subset of k variables. AC
is still however the most popular and the most efficient form (in terms of running
time for finding a solution) of local consistency [12].

The most popular AC algorithm has been developed by Mackworth [3] and is
called AC-3.e While AC-3 has been proposed over 20 years ago, it remains one of the
easiest to implement and understand today. Figure 5 illustrates the code of AC-3.
AC-3 uses the list Q of the variable pairs to be processed. This list is initialized with
all pairs of variables sharing a constraint. The algorithm will then pick a pair of
variables from Q and applies the 2 consistency on it through the function REVISE .
More precisely, when applied to the variable pair (i, j) the function REVISE will
remove any value a, from the i′s domain, that has no support in j’s domain. For

eAC-3 is an improvement of AC-1 and AC-2, both proposed by the same author [3].



October 22, 2009 13:19 WSPC/117-IJSEKE - SPI-J111 00441

An Efficient Lotos-Based Framework for Describing and Solving (Temporal) CSPs 771

Function REVISE (i, j)
1. REVISE ← false
2. For each value a ∈ Domaini Do
3. If there is no b ∈ Domainj such that compatible(a, b) Then
4. remove a from Domaini

5. REVISE ← true
6. End-If
7. End-For

Algorithm AC-3
1. Given a CSP = (X,D,C)

(X: set of variables, D: set of the variable domains, C: set of constraints)
2. Q← {(i, j) | i, j ∈ X and (i, j) ∈ C} (list initialized to all pairs sharing a constraint)
3. While Q �= Nil Do
4. Q← Q− {(i, j)}
5. If REVISE (i, j) Then
6. Q← Q � {(k, i) | (k, i) ∈ C ∧ k �= j}
7. End-If
8. End-While

Fig. 5. Pseudo code of the algorithm AC-3.

that, the function compatible checks if there is a compatibility (according to the
constraint between i and j) between a and a value b of j’s domain.

There have been many attempts to best the worst case time complexity of AC-3f

and though in theory these other algorithms (namely AC-4 [17], AC-5 [18], AC-6
[19] and AC-7 [20]) have better worst case time complexities, they are harder to
implement. Indeed, while AC-3 only uses one data structure containing the list of
pairs to be checked, AC-4, AC-6 and AC-7 are based on very complex data structures
that maintain the support of each variable value during the arc consistency process.
On the other hand AC-5 deals with special classes of relations, such as monotonic
and functional constraints. Also the AC-4 algorithm fares worse on average time
complexity than the AC-3 algorithm [21]. It was not only until recently when Zhang
and Yap [22]g proposed an improvement directly derived from the AC-3 algorithm
into their algorithm AC-3.1. The worst case time complexity of AC-3 is bounded
by O(ed3) [4] where e is the number of constraints and d is the domain size of
the variables (number of values with the variable domain). In fact this complexity
depends mainly on the way the function REVISE , in Fig. 5 above, is enforced for
each variable pair. Indeed, if anytime a given pair (i, j) is processed, a support for
each value from the domain of i is searched from scratch in the domain of j, then
the worst case time complexity of AC-3 is O(ed3). Instead of a search from scratch,
Zhang and Yap [22] proposed a new view that allows the search to resume from
the point where it stopped in the previous revision of (i, j). By doing so, the worst

fThe worst case time complexity of AC-3 is majored by O(ed3) where e is the number of constraints
and d is the domain size (number of values within the domain) of the variables.
gAnother arc consistency algorithm (called AC-2001) based on the same idea as AC-3.1 was pro-
posed by Bessière and Régin [23]. We have chosen AC-3.1 for the simplicity of its implementation.
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Function EXISTb((i, a), j)
1. b← ResumePoint((i, a), j)
(ResumePoint((i, a), j) remembers the first value b such that
compatible(a, b) is true in the previous revision of (i, j) )
2. If b ∈ Domainj Then
3. return true
4. Else
5. While b← successor(b,Domain0

j ) and b �= NIL

(Domain0
j denotes the domain of j before arc consistency)

(successor(b,Domain0
j ) returns the successor of b in Domain0

j )

6. If b ∈ Domainj and compatible(a, b) Then
7. ResumePoint((i, a), j)← b
8. return true
9. End-If
10. End-While
10. return false
11. End-If

Fig. 6. Pseudo code of AC-3.1: function for searching b in line 3 of REVISE (i, j).

case time complexity of AC-3 is achieved in O(ed2). This new idea is implemented
by the function EXISTb in Fig. 6. This function has to be called in line 3 of the
function REVISE , Fig. 5 as follows.

3. If EXISTb((i, a), j) Then

3. Constraint Propagation for Temporal CSPs

In the past years [16,24] we have proposed a modeling framework, based on CSPs, for
managing the particular case of temporal constraints. This framework, that we call
TemPro, translates a given problem under numeric and symbolic time constraints
into a particular CSP that we call Temporal CSP (or TCSP). In the same way as
for CSPs, we use constraint propagation techniques (that we have modified in order
to handle time constraints [16]) to solve the TCSP in an efficient manner.

More precisely a TCSP is a CSP where:

• The variables are called temporal events. A temporal event is a temporal infor-
mation that holds (is true) over a numeric time interval. For instance: John is
reading the paper for 10 minutes is an event that lasts 10 minutes.

• The domain of an event is a finite and discrete set of intervals, with constant dura-
tion. We call this domain the Set Of Possible Occurrences (or SOPO) that the
event can take. Figure 8 illustrates a SOPO (domain) of a given event. As we can
see in the figure, the SOPO is defined by the parameters: Begintime and Endtime

representing the earliest start and latest end times of the event; Duration, rep-
resenting the duration of the event and Step, denoting the discretisation step
used (number of time units between the starting time of two adjacent numeric
intervals within the SOPO). Indeed, we use here a discrete representation of time.
To illustrate the SOPO of an event, let us consider the example we provided in
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the item above with the following modification: John is reading the paper for 10
minutes between 7am and 7:20am. If the time unit used here is the minute then
we will have the following SOPO: [0,20,10,1] where 0, 20, 10 and 1 are respectively
the Begintime, Endtime, Duration and Step of the SOPO (given that 7am is
chosen as the time origin).

• A Constraint is represented by the qualitative relation between a pair of events.
This relation is denoted by a disjunction of Allen primitives [25]. Indeed, Allen
has defined 13 possible primitives that can hold between a pair of numeric inter-
vals (see Fig. 7 for the definition of the 13 Allen primitives) and a disjunction
of some of these primitives can be used to express the relative position between
events. For instance, the following sentence:
John is reading the paper while he is drinking a cup of tea
can be represented by the relation:

m ∨ mi ∨ o ∨ oi ∨ d ∨ di ∨ s ∨ si ∨ f ∨ fi ∨ eq

between the events reading the paper and drinking a cup of tea.

The following example illustrates the transformation of a problem including
numeric and symbolic temporal constraints into a TCSP using the model TemPro.

Relation Symbol Inverse Meaning

X before Y b bi

X meets Y m mi

X overlaps Y o oi

X during Y d di

X starts Y s si

X finishes Y fif

X equals Y eq eq

X: Y:

Fig. 7. Allen primitives.

Interval Step

Duration

Time Line

EndtimeBegintime

Fig. 8. A SOPO (domain) of a given event.



October 22, 2009 13:19 WSPC/117-IJSEKE - SPI-J111 00441

774 S. Sadaoui, M. Mouhoub & B. Chen

Example 2 (Machine Scheduling Problem). The production of five items
A, B, C, D and E requires three mono processor machines M1, M2 and M3. Each
item can be produced using two different ways depending on the order in which the
machines are used. The process time of each machine is variable and depends on
the task to be processed. The following lists the different ways to produce each of
the five items (the process time for each machine is mentioned in brackets):

item A: M2(3), M1(3), M3(6) or
M2(3), M3(6), M1(3)

item B: M2(2), M1(5), M2(2), M3(7) or
M2(2), M3(7), M2(2), M1(5)

item C: M1(7), M3(5), M2(3) or
M3(5), M1(7), M2(3)

item D: M2(4), M3(6), M1(7), M2(4) or
M2(4), M3(6), M2(4), M1(7)

item E: M2(6), M3(2) or
M3(2), M2(6)

The goal here is to find a possible schedule of the different machines to produce
the five items and respecting all the constraints of the problem. In the following, we
will describe how is the above problem transformed into a TCSP using our model
TemPro. Figure 9 illustrates the graph representation of the sub TCSP needed to
produce items A and B. Each node of the graph represents a given event. Arcs

AM2 AM1 AM3

BM22 BM21 BM1 BM3

EVT1

b v m

b v bi v m v mi

s v f

   [0,25,3,1]=
{(0 3)..(22 25)}

   [0,25,3,1]=
{(0 3)..(22 25)}

   [0,25,6,1]=
{(0 6)..(19 25)}

   [0,30,2,1]=
{(0 2)..(28 30)}

[0,30,2,1]=
{(0 2)..(28 30)}

   [0,30,5,1]=
{(0 5)..(25 30)}

[0,30,7,1]=
{(0 7)..(23 30)}

[0,30,X,1]

b v bi v m v mi

s v f

d

b v bi v m v mi

b v bi v m v mi

b v bi v m v mi

b v m

b v m b v m

b v m

b v bi v m v mi

Fig. 9. TCSP corresponding to a subset of the problem presented in Example 2.
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represent the constraints between events and are libelled by the corresponding rela-
tions. We assume that items A and B should be produced within 25 and 30 units
of time respectively. A temporal event corresponds here to the contribution of a
given machine to produce a certain item. For example, AM1 corresponds to the use
of machine M1 to produce the item A, . . . , etc. In the particular case of item B,
machine M2 is used twice. Thus, there are two corresponding events: BM21 and
BM22. 16 events are needed in total to produce the five items. Most of the quali-
tative information can easily be represented by the disjunction of Allen primitives.
For example, the constraint (disjunction of two sequences) needed to produce item
A is represented by the following three relations:

AM2 b ∨ m AM1

AM2 b ∨ m AM3

AM1 b ∨ m ∨ bi ∨ mi AM3

We present in the following the resolution method based on constraint propaga-
tion for solving TCSPs. The method involves two main stages. A filtering stage in
which arc consistency techniques and a numeric → symbolic conversion method are
used to reduce the size of the search space by removing some inconsistent values.
The backtrack search phase is then used to look for a possible solution. More pre-
cisely, our solving method works as follows.

Numeric → Symbolic Conversion. Perform the numeric → symbolic conver-
sion on all the constraints. If one symbolic relation becomes empty then the con-
straint network is not consistent. The numeric → symbolic conversion works as
follows: from the numeric information, we can extract the corresponding symbolic
relation. An intersection of this relation with the given qualitative information
will reduce the size of the latter which simplifies the size of the original problem.

Arc Consistency. Perform the arc consistency algorithm AC-3 [22, 23] on the
temporal windows. If the new graph is not arc consistent then it is not consistent.

Backtrack Search. Perform a backtrack search algorithm in order to look for
a possible solution to the problem. The arc consistency algorithm is used here
during the backtrack search in order to prevent earlier later failure.

Figure 10 illustrates the solution to the problem of Example 1, provided by the
above solving method. Note that this solution is optimalh but not unique.

4. Lotos Specification of CSPs and TCSPs

In [26, 27], we have proposed a first approach to describe and solve CSPs with
Lotos. The sorts and operations of Lotos represent the domains, variables and con-
straints of CSPs. The Lotos equations define the constraints between CSP variables.
Using Lotos and CADP toolbox, a CSP can be solved in several ways: checking the

hThe total processing time of all machines needed to produce the five items, 26 seconds, is minimal.
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5 10 15 20 25

A

B

C

D

E

M1 M2 M3

Fig. 10. Optimal solution provided by the constraint propagation based method.

consistency, finding all the possible solutions, checking if a path is a solution or
completing a partial solution. This approach is however not general enough to spec-
ify complex CSPs. In addition, the problem solving (or simulation) is really time
consuming. For instance, it takes almost eight seconds to find a solution for the
4-Queens problem. Consequently, we build in Lotos a reusable data-type library
which is expressive enough to represent any CSP and TCSP as well. The most
important types are given in Table 1. In order to facilitate the specification of any
constraint applications, we extend this library with two generic Lotos templates for
describing CSPs and TCSPs.

4.1. A Lotos template for CSPs

In the following, we first introduce the CSP template and then we show how to
customize it through two examples. As shown in Fig. 11, the Lotos template is

Table 1. A library for specifying CSPs and TCSPs.

Data Type in Lotos Definition

Variable CSP variable
VariableSet Set of variables
Domain Domain of a variable
VariableDomainSet Set of domains of variables
Value Possible values of a variable
Constraint Set of value pairs

(possible assignments of two variables)
ConstraintSet Set of constraints
SOPO Specification of SOPO
Allen Specification of thirteen Allen primitives
ConstraintProblem Set of variables, domains and constraints
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type CSPTemplate is (*Uses*) ConstraintProblem

sorts FixVar (*Set of domains*)

opns (*Operations*)

(*Enter CSP Variables*)

varNum: -> Nat (*Number of variables*)

dSize:FixVar -> Nat (*Domain size*)

id(*!external implementation*):FixVar -> Nat

rel:FixVar,FixVar -> Bool (*Relation*)

sat:FixVar,Nat,FixVar,Nat -> Bool (*Satisfaction*)

\_eq\_,\_ne\_:FixVar,FixVar -> Bool (*Default operations*)

eqns (*Equations*)

forall x,y:FixVar, m,n:Nat

ofsort Nat

(*Enter number of variables with varNum*)

(*Enter domain size of each variable with dSize()*)

ofsort Bool

(*Define relations between two variables with rel()*)

(*Define satisfaction with sat()*)

(*Default equations*)

x eq x = true; x eq y = false; x ne y = not (x eq y);

endtype

Fig. 11. A template for CSPs.

composed of a set of operations and a set of equations. Each operation must be
defined with equations.

The Lotos description of a specific CSP consists of instantiating the CSP tem-
plate as shown below.

• Enter the names of CSP variables. Variables are enumerable, and each one is given
a meaningful name. We can also use natural numbers to represent the variables
when they are many.

• Enter the number of variables through the constant varNum.
• Enter the domain size of each variable through the operation dSize(). Variables

may have different domains. For example, one variable may have a domain of
strings while another one has a domain of natural numbers. If variables have the
same domain, they may have different set of values.

• Enter relations and satisfaction. The constraints between variables are described
via the two operations rel() and sat(). rel() checks whether there is a relation
between two variables and sat() defines the CSP constraints.

We now show how to apply the CSP template on the 3-map coloring problem
given below.

Example 3 (Map Coloring). Given a graph with six vertexes and eight edges,
we want to assign one color from a set of three colors (red, blue, green) to each
vertex such that no two adjacent vertexes have the same color.
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Fig. 12. Graph representation of the 3-map coloring.

As illustrated in Fig. 12, the CSP representation of this problem can be described
with six variables, A to F , and eight constraints, C1 to C8, where C1 means “A <>

B”, C2 “A <> C”, and so on. Here all the variables have the same domain: {red,
blue, green}. Note that in Fig. 12 we use the graph representation of a CSP where
nodes correspond to variables and arcs represent the binary constraints between
variables.

In Fig. 13, we instantiate the CSP template to generate the specification of the
map coloring. During the instantiation process, the user only needs to enter the CSP
variables, their domain size and constraints. In this example, rel() denotes which two
vertexes are adjacent. Here all the variables have the same constraint sat() which
defines that “any two adjacent vertexes cannot have the same color”. The simulation
of the 3-map coloring specification generates twelve solutions. For instance, the

type 3-MapColoring is ConstraintProblem

sorts FixVar

opns (*Enter CSP Variables*)

A, B, C, D, E, F: -> FixVar

varNum: -> Nat

dSize:FixVar -> Nat

id(*!external implementation*):FixVar -> Nat

rel:FixVar,FixVar -> Bool

sat:FixVar,Nat,FixVar,Nat -> Bool

\_eq\_,\_ne\_:FixVar,FixVar -> Bool

eqns forall x,y:FixVar, m,n:Nat

ofsort Nat

(*Enter number of variables with varNum*)

varNum = 6;

(*Enter domain size of each variable with dSize()*)

dSize(x) = 3; (*All variables have the same domain*)

ofsort Bool

(*Define relations between two variables with rel()*)

rel(A,B) = true; rel(A,D) = true; rel(A,C) = true;

rel(C,B) = true; rel(C,D) = true; rel(C,E) = true; rel(C,F) = true;

(*Define satisfaction with sat()*)

sat(x,m,y,n) = m ne n;

x eq x = true; x eq y = false; x ne y = not (x eq y);

endtype

Fig. 13. 3-map coloring specification.
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type 50-Queens is ConstraintProblem

...

ofsort Nat

(*Enter number of variables with varNum*)

varNum = tens(5, 0); (*We have 50 queens*)

(*Enter domain size of each variable with dSize()*)

dSize(x) = tens(5, 0); (*Each queen can take one of the 50 positions*)

ofsort Bool

(*Define relations between two variables with rel()*)

rel(x, x) = false; (*A queen cannot attack itself*)

rel(x, y) = true; (*Any two queens may attack each other*)

(*Define satisfaction with sat()*)

sat(x, m, y, n) = (m ne n) and abs(id(x)-id(y)) ne abs(m-n);

(* Specifying constraint given in Fig.~1*)

(*abs() for absolute value*)

...

endtype

Fig. 14. 50-Queens specification.

following is one possible solution: A, E and F have color red, B and D have color
green, and C has color blue.

Let us consider the N-Queens problem defined in Example 1. As shown in Fig. 14,
we instantiate the CSP template to produce the specification of, for instance, the
50-Queens. Note that the equations of rel() and sat() are defined for any number
of queens. To change the number of queens, we just need to change the values of
varNum and dSize().

4.2. A Lotos template for TCSPs

In order to handle temporal constraints, we extend the CSP template with two
new operations: dSOPO() assigns a SOPO to an event, and tRel() defines which
two events have a temporal relation between them. The template for describing a
TCSP is illustrated in Fig. 15. The operations dSize(), rel() and sat() have default
equations which are defined for any application under temporal constraints. The
Lotos specification of a given temporal CSP is straightforward: the user only needs
to enter the events, SOPO of each event and temporal relations between events.

It should be noted that the Allen algebra [25] for representing symbolic infor-
mation has been extended here using Lotos equations in order to include numeric
distances. For instance, we can use equations to specify the relation “Event1 should
finish within one hour after Event2 finishes”. This constraint cannot be handled by
Allen primitives. We also note that in the data type Allen, the Allen primitives are
defined as natural numbers in order to easily describe any disjunction of them.

We now show how to apply the TCSP template on the temporal reasoning
problem given below.

Example 4 (A Temporal Reasoning Problem). John, Mike and Lisa work for
the same company. It takes John 20 minutes, Mike 25 minutes and Lisa 30 minutes
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type TemporalCSPTemplate is (*Uses*) ConstraintProblem, SOPO,

Allen

sorts FixVar (*Set of domains*)

opns (*Operations*)

(*Enter all the events*)

varNum: -> Nat (*Number of events*)

dSize:FixVar -> Nat (*Domain size*)

dSopo:FixVar -> SOPO (*SOPO*)

id(*!external implementation*):FixVar -> Nat

tRel:FixVar,FixVar -> Nat (*Relations*)

(*Default operations*)

rel:FixVar,FixVar -> Bool

sat:FixVar,Nat,FixVar,Nat -> Bool

\_eq\_,\_ne\_: FixVar,FixVar -> Bool

eqns (*Equations*)

forall x,y:FixVar, m,n:Nat

ofsort Nat

(*Enter number of events with varNum*)

dSize(x) = getSize(dSopo(x)); (*Default equation*)

ofsort SOPO

(*Enter SOPO of each event with dSopo()*)

ofsort Nat

(*Define temporal relations between two events with tRel()*)

ofsort Bool

(*Default equations*)

rel(x,y) = tRel(x,y) ne a\_all;

(tRel(x, y) ne a\_all)=>

sat(x,m,y,n)=tSat(getIvl(dSopo(x),m),getIvl(dSopo(y),n),tRel(x,y));

(tRel(y,x) ne a\_all)=>

sat(x,m,y,n)=tSat(getIvl(dSopo(y),n),getIvl(dSopo(x),m),tRel(y,x));

sat(x,m,y,n) = true;

x eq x = true; x eq y = false; x ne y = not (x eq y);

endtype

Fig. 15. A template for TCSPs.

to get to work. Every day, John leaves home between 7:20 and 7:26. Mike arrives
at work between 7:55 and 8:00. Lisa arrives between 7:50 and 8:00. We also know
that John and Mike meet at a traffic light on their way to work, Mike arrives to
work before Lisa, and John and Lisa go to work at the same time.

We want to know whether this story is consistent (is possible to happen). This
problem consists of both numeric and symbolic temporal information. As illustrated
in Fig. 16, it can be transformed into a temporal CSP using TemPro model [16].
The constraints between the three events John, Lisa and Mike are the disjunction
of Allen primitives, denoted by the symbol “|”. For example, “John s|si|eq Lisa”
states that John and Lisa go to work at the same time. The domain of each event
is represented as a SOPO.

We now instantiate the TCSP template to produce the Lotos specification of
this problem. In Fig. 17, we just show the parts entered by the user. The simulation
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Lisa

Mike John

sv si v eq

s v si v f v fi v o v oi v d v di v eq

b v m v o v d v s

  [20, 60, 30, 1]

[30, 60, 25, 1] [20, 46, 20, 1]

Fig. 16. Graph representation of temporal reasoning problem.

type TemporalReasoning is ConstraintProblem, SOPO, Allen

sorts FixVar

opns

(*Enter all the events*)

Mike, Lisa, John: -> FixVar

...

(*Enter number of events with varNum*)

varNum = 3; (*We have here three events*)

(*Enter SOPO of each event with dSopo()*)

dSopo(Mike) = sp(30, 60, 25, 1);

dSopo(Lisa) = sp(20, 60, 30, 1);

dSopo(John) = sp(20, 46, 20, 1);

...

(*Define relations between two events with tRel()*)

tRel(John, Mike) = a\_touches;

tRel(Mike, Lisa) = a\_b+a\_m+a\_o+a\_d+a\_s;

tRel(John, Lisa) = a\_s+a\_si+a\_eq;

tRel(x, y) = a\_all;

...

endtype

Fig. 17. Temporal reasoning problem specification.

of this specification produces only one solution: {Mike = (30, 55), John = (26, 46),
Lisa = (26, 56)}, where for instance (30, 55) is an interval of time starting at (7:)30
and ending at (7:)55.

5. Improving Lotos Simulation

In the previous section, we have seen how to specify in Lotos any constraint applica-
tion using the generic CSP/TCSP template and its reusable library. The simulation
of the specified CSP generates the solutions. However, the simulation is still very
time consuming. For instance, the simulation of the 25-Queens takes more than
80 seconds. Therefore we propose here to integrate all the CSP algorithms intro-
duced in Sec. 2 into the Lotos specifications in order to significantly increase the
performance of the simulation. This integration is possible thanks to the external
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Solution(s)

CSP/TCSP Library 
and Templates

Fig. 18. Lotos-based (temporal) CSP framework.

implementation of data types. Indeed the CADP toolbox gives us the opportunity
to use external operations for both sorts and operations of Lotos.

As shown in Fig. 18, first we automatically translate a CSP description into
efficient data structures in C. Then we incorporate to these C types the CSP algo-
rithms. In Fig. 19, we use and implement in C the five algorithms: Backtrack,
AC-3, AC-3.1, Forward Checking (FC) and Full Look Ahead (FLA). The special
comment (*!implementedby*) allows to use external implementation of the CSP
algorithms. These algorithms can be used together for a better performance. For
instance, AC-3 + FC (respectively AC-3 + FLA) means that arc consistency using
AC-3 is performed first before applying FC (respectively FLA). For the purpose
of implementation, we use bitmap for representing both domains and relations in
order to improve time and space efficiency. In addition, because arc consistency
algorithms [1] need to save and restore domains during backtrack, all the domain
data are stored in a single memory space to expedite domains copying and restoring
operations.
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type Algorithms is opns

BT (*!implementedby ALG\_BT*): -> Nat (*Backtrack*)

AC3 (*!implementedby ALG\_AC3*): -> Nat (*AC-3*)

AC31 (*!implementedby ALG\_AC31*): -> Nat (*AC-3.1*)

FC (*!implementedby ALG\_FC*): -> Nat (*Forward Checking*)

FLA (*!implementedby ALG\_FLA*): -> Nat (*Full Look Ahead*)

eqns

ofsort Nat

BT = 1; AC3 = 2; AC31 = 4; FC = 8; FLA = tens(1, 6);

endtype

Fig. 19. Integration of CSP algorithms.

To get the solution (complete assignment of values to all variables that satisfies
all the constraints) of a given (temporal) CSP using the implemented CSP algo-
rithms, we just need to perform the operation getSolution() defined in a data type
called Solution.

getSolution(CSP specification, CSP algorithms, number of solutions)

For example to get the two solutions of the 4-Queens problem using FC (as
explained in Fig. 3), we execute the following statement: getSolution(4-Queens, FC,
2). To return all the twelve solutions of the temporal reasoning problem of Example
4, we perform the following operation: getSolution(TemporalReasoning, AC-3 +
FLA, N). This action consists of simulating the specification TemporalReasoning
(given in Fig. 17) using the two algorithms AC-3 and FLA.

Let us consider the scheduling problem of Example 2. A part of the specification
of this problem is given in Fig. 20. To produce one solution to this problem, we
execute the following operation: getSolution(MachineScheduling, AC-3.1 + FC, 1).

6. Experimentation

In this section we present and discuss the results of the experiments we conducted in
order to evaluate the time performance of our Lotos-based framework when dealing
with various constraint problems. The tests are conducted on instances of the N-
Queens problem presented in Example 1, the machine scheduling problem illustrated
in Example 2 and randomly generated CSPs. Random CSPs are generated using
the random uniform CSP generator described in [28]. All tests are performed on
a 2.8 GHz Pentium IV computer under Linux and all procedures are coded in C
language.

Figure 21 presents the results of the tests conducted on the machine scheduling
problem. The goal here is to compare the time performance of the different tech-
niques we described in Sec. 2. More precisely we evaluate the performance of the
following methods.

AC-3+BT AC-3 is used in the preprocessing phase while BT is used during the
search phase.
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type MachineScheduling is ConstraintProblem, SOPO, Allen

sorts FixVar

opns

(*Enter all the events*)

AM1, AM2, AM3, BM1,..., EVT1: -> FixVar

...

(*Enter number of events with varNum*)

varNum = tens(1, 7); (*We have 17 events*)

...

(*Enter SOPO of each event with dSopo()*)

dSopo(AM1) = sp(0, tens(2, 5), 3, 1);

dSopo(AM2) = sp(0, tens(2, 5), 3, 1);

dSopo(AM3)= sp(0, tens(2, 5), 6, 1);

dSopo(BM1)= sp(0, tens(3, 0), 5, 1);

...

(*Define temporal relations between two events*)

tRel(AM2, AM3) = a\_b + a\_m;

tRel(AM2, AM1) = a\_b + a\_m;

tRel(AM1, AM3) = a\_b + a\_m + a\_bi + a\_mi;

...

endtype

Fig. 20. Specification of machine scheduling problem.
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Fig. 21. Benchmarks of the scheduling problem.

AC-3.1+FLA AC-3.1 is used in the preprocessing phase while FLA (including
AC-3.1) is used in the backtrack search phase.

AC-3+FLA AC-3 is used in the preprocessing phase while FLA (including AC-3)
is used in the backtrack search phase.

FLA(AC-3.1) FLA using AC-3.1 is used in the backtrack search phase (there is
no preprocessing phase here).

FLA(AC-3) FLA using AC-3 is used in the backtrack search phase.
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AC-3.1+FC AC-3.1 is used in the preprocessing phase while FC (including
AC-3.1) is used in the backtrack search phase.

AC-3+FC AC-3 is used in the preprocessing phase while FC (including AC-3) is
used in the backtrack search phase.

FC(AC-3.1) FC using AC-3.1 is used in the backtrack search phase (there is no
preprocessing phase here).

FC(AC-3) FC using AC-3 is used in the backtrack search phase.

BT is the slowest method. As we mentioned in Sec. 2, the problem with this
technique is that the algorithm fails several times for the same reason. The late
detection of inconsistencies dramatically affects the performance of this method.
We can, for example, easily see from Fig. 2 that there are more consistency checks
in the case of BT for solving the 4-Queens than FC in Fig. 3 and FLA in Fig. 4.

The second point we notice is that applying AC-3 (or AC-3.1) before the search
is very helpfull. AC-3.1+FC is 10 times faster than FC alone. The same can be said
for AC-3.1+FLA and FLA alone. As we mentioned in Sec. 2, when applied before
the search, AC-3 reduces the size of the search space which will speed up later the
time needed for the search. We notice however that there is no big difference in
terms of running time when using AC-3 or AC-3.1. Indeed AC-3.1 is mainly helpful
for problems where variables are defined on very large domains.

The last point we highlight is that FC is slightly better than FLA. Indeed while
FLA reduces more inconsistent values than FC (as we can see when comparing
Figs. 3 and 4 in the case of the 4-Queens), the time effort needed to detect and
remove these inconsistencies by FLA is a little expensive and does not really com-
pensate the overall running time to get a solution.

Figure 22 shows the results of tests conducted on instances of the N-Queens
problem. Each instance is defined by the number of queens. Both BT and FC
(including AC-3.1) are used here without the preprocessing phase. Indeed applying
AC-3.1 (or AC-3) in the preprocessing phase does not remove any inconsistent value
in the case of the N-Queens. To no surprise, FC is more efficient than BT for all
instances of the problem.

Table 2 shows the results of tests conducted on instances of random CSPs.
Each problem instance is defined by the number of variables N , their domain size
D (number of values within each domain), the percentage of compatible pairs of
values within each relation and the percentage of possible constraints.i Each test
result corresponds to the running time in seconds needed to get a solution when
running the AC-3.1 + FC (AC-3.1) method on a particular problem instance. In
the table, the symbol “...” denotes that a solution cannot be obtained. As we
can see, the hardest problems are those with 50% incompatible pairs (that we
call middle-constrained problems). Indeed, under-constrained and over-constrained

iSince we are dealing with binary constraints, the total number of possible constraints is equal to
N(N − 1)/2 where N is the number of variables.
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Fig. 22. Benchmarks of the N-queens problems.

Table 2. Benchmarks on random CSPs.

% of % of Time (sec) Time (sec) Time (sec) Time(sec)
const incomp pairs N= 20, D= 20 N =30, D =30 N = 50, D = 50 N =100, D =100

100 20 0 0.2 0.7 12.1
100 50 0.6 1.8 32.5 . . .
100 80 0 0 0.2 8.3

75 20 0 0 0.6 7.8
75 50 0.5 12.3 144.3 . . .
75 80 0 0 0.3 11.4

50 20 0 0 0.8 45.12
50 50 2.2 7.8 27.3 125
50 80 0 0.3 0.3 30.9

25 20 0 0 0 2.1
25 50 0 0 17.12 28.1
25 80 0 0.2 0 0

problems (corresponding respectively to 20% and 80% incompatible pairs) are easy
to solve. In the case of under-constrained problems, there are many solutions sat-
isfying all the constraints and in the case of over-constrained problems the arc
consistency at the preprocessing stage reduces considerably the size of the search
space before the backtrack search.

7. Conclusion and Future Work

Today, there is a significant need to solve more complex combinatorial problems
with more intelligent and time efficient solving techniques. A more challenging task
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is the description of these problems which involves complex (temporal) constraints.
The data part of Lotos provides a good means for specifying and solving these
problems. We have significantly improved the simulation speed of Lotos through
the CSP constraint propagation techniques. The integration of these algorithms is
very useful to handle large combinatorial problems in practice since it can prevent
the problem from becoming practically unsolvable too quickly.

In the future, we are interested in building a user friendly tool that assists in
the construction of CSP specifications in an incremental manner. Considering that
Lotos process part is better than the data part to describing dynamic actions, it is
possible to use Lotos processes to specify the addition|retraction of constraints in a
dynamic way. This is motivated by the fact that most real-world constraint problems
are evolving in time and we have to deal in this case with any new information
that corresponds to a constraint addition|relaxation. The other reason for handling
dynamic constraints is to allow the user to interact with the solver in a more efficient
way. After specifying a given constraint problem in Lotos, the user can, for example,
add or remove some constraints and see the effect of this change in an incremental
way.

Another perspective is to extend the solving techniques by including incomplete
methods such as Stochastic Local Search (SLS) [29], Genetic Algorithms (GAs) [30],
Ant Colony Algorithms (ACAs) [31] and Neural Networks [32]. While these tech-
niques do not always guarantee a complete solution to the problem, they are very
efficient in time (comparing to CSP solving methods) and can thus be useful if we
want to trade the quality of the solution for the time performance.
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