
Stochastic Local Search for Incremental SAT

Malek Mouhoub
Department of Computer Science, University of Regina
3737 Wascana Parkway, Regina SK, Canada, S4S 0A2

phone : +1 (306) 585 4700 fax : +1 (306) 585 4745
email : mouhoubm@cs.uregina.ca

ABSTRACT
The boolean satisfiability problem (SAT) is stated as follows: given a boolean formula
in CNF, find a truth assignment that satisfies its clauses. In this paper, we present
a general framework based on stochastic local search and the structure of the CNF
formula for solving incremental SAT problems. Given a satisfiable boolean formula in
CNF, incremental SAT consists of checking whether the satisfiability is preserved when
new clauses are added to the current clause set and if not, look for a new assignment
that satisfies the old clauses and the new ones. The results of the experimentation we
have conducted demonstrate the efficiency of our method to deal with large randomly
generated incremental SAT problems.

KEY WORDS
Stochastic Local Search, GSAT, Dynamic Satisfiability.

1



1 Introduction

A boolean variable is a variable that can have one or two values: true or false. If x is a
boolean variable,¬x is the negation of x. A literal is a boolean variable or its negation.
A clause is a sequence of literals separated by the logicalor operator (∨). A logical
expression in conjunctive normal form (CNF) is a sequence of clauses separated by the
logical and operator (∧). For example, the following is a logical expression in CNF:
(x1 ∨ x3) ∧ (x1 ∨ x2) ∧ x3.

The CNF-Satisfiability Decision Problem(called also SAT problem) is to deter-
mine, for a given logical expression in CNF, whether there is some truth assignment (set
of assignment of true and false to the boolean variables) that makes the expression true.
For example, the answer is “yes” for the above CNF expression since the truth assign-
ment{x1 = true , x2 = true , x3 = false} makes the expression true.

SAT problems are fundamental to the theory of NP-completeness. Indeed, using the
concept of “polynomial-time reducibility” all NP-complete problems can be reduced in
polynomial time to any NP-complete problem including uniform mapping such as SAT
1. This means that any new technique for SAT problems will lead to general approaches
for many hard combinatorial problems.

One important issue when dealing with SAT problems is to be able to maintain
the satisfiability of a propositional formula anytime a conjunction of new clauses is
added. That is to check whether a solution to a SAT problem continues to be a solution
anytime a set of new clauses is added and if not, whether the solution can be modified
efficiently to satisfy the old formula and the new clauses.

In this paper we discuss the applicability of stochastic local search (SLS) algorithms
for solving SAT problems in an incremental way. This choice is motivated by the fact
that the underlying local search paradigms are well suited for recovering solutions after
local changes (addition of constraints) of the problem occur. We use the SLS method
within a general framework we propose for solving incremental SAT problems. This
general framework takes advantage of the structure of the SAT formula in order to re-
duce the effort needed at each time to check the satisfiability of the formula anytime
new clauses are added. Note that related work on solving SAT problems in an incre-
mental way has already been reported in the literature [2, 3, 4, 5, 6]. These methods
rely on stochastic local search [2, 3] or branch and bound [4, 5, 6] and handle the ad-
dition of one clause at a time. As we will see in the next Section, our method handles
the addition of more than one clause at a time and depends on the structure of the CNF
formula. Experimental comparison of our method with one of the well known methods
proposed in the literature [4] has been carried out on randomly generated incremental
SAT instances. The results favour our method in all the cases.

In the next section, we define the incremental SAT problem and present a general
framework based on SLS for solving it. Section 3 is dedicated to the empirical exper-
imentation evaluating our method. Concluding remarks and possible perspectives are
finally presented in Section 4.

1We refer the reader to the paper published by Cook[1] proving that if CNF-Satisfiability is in P, then P
= NP.

2



Procedure GSAT
begin

for i ← 1 until MAX-TRIES do
begin

T← a randomly generated truth assignment
for j ← 1 until MAX-FLIPS do

if T satisfies the formulathen return T
elsemake a flip

end
return (“no satisfying assignment found”)

end

Figure 1: GSAT Procedure

2 Stochastic Local Search Based Framework for Solv-
ing incremental SAT

Before we define the incremental SAT problem and present the general method to solve
it, let us introduce one of the well known SLS algorithms for solving SAT.

2.1 GSAT for SAT problems

One of the well known SLS algorithms for solving SAT problems is the GSAT proce-
dure [7, 8] presented in figure 1. GSAT is a greedy based algorithm that starts with a
random assignment of values to boolean variables. It then iterates by selecting at each
step a variable, flips its value from false to true or true to false and records the decrease
in the number of unsatisfied clauses. The algorithm stops and returns a solution if the
number of unsatisfied clauses is equal to zero. After a given number of iterations, the
algorithm updates the current solution to the new solution that has the largest decrease
in unsatisfied clauses and starts flipping again until a solution satisfying all the clauses
is found or a given number of tries is reached.

2.2 GSAT for Incremental SAT

We define dynamic SAT problem as a sequence of static SAT problemsSAT0, . . .,
SATi, SATi+1, . . ., SATn each resulting from a change in the preceding one imposed
by the ”outside world”. This change can either be a restriction (adding a new set of
clauses) or a relaxation (removing a set of clauses because these later clauses are no
longer interesting or because the current SAT has no solution). In this paper we focus
only on restrictions.

Let us assume we have the following situation:SATi+1 = SATi ∧ NC, where
SATi is the current satisfiable SAT formula,NC is a new set of clauses to be added
to SATi andSATi+1 is the new formula obtained after adding NC. The goal here is to

3



check the consistency ofSATi+1 when adding the new set of clauses denoted byNC.
This is done by performing the following steps.

1. If x ∧ x is contained inNC, return “NC is inconsistent”.NC cannot be added
to SATi.

2. Simplify NC by removing any clause containing a disjunction of the form x∨
x.

3. Let NC = NC1 ∧ NC2 whereNC1 is the set of clauses, each containing at
least one variable that appears inSATi andNC2 the set of clauses that do not
contain any variable that appears inSATi or NC1. SATi = S1 ∧ S2 whereS1 is
the set of clauses, each containing at least one variable that appears inNC and
S2 the set of clauses that do not contain any variable that appears inNC or S1.

4. Assign the truth assignment ofSATi to NC1. If NC1 is satisfiable goto 7.

5. Using SLS flip the variables ofNC1 that do not appear inS1. If NC1 is satisfied
goto 7. The search method starts from an initial configuration which satisfies
SATi.

6. Using SLS look for a truth assignment that satisfies bothS1 andNC1. If no
such assignment is found return “NC cannot be added” as it will violate the
consistency ofSATi.

7. Using SLS look for a truth assignment forNC2. If no such assignment is found
return “NC cannot be added” as it will violate the satisfiability ofSATi.

In step 7 GSAT is used as shown in figure 1. When used in step 5, the GSAT
algorithm starts from the initial configuration (corresponding to the truth assignment
found for the formula before adding the new clauses) instead of a random configuration.
Also, only the variables belonging toNC1 and which do not appear inS1 can be chosen
for the flip. In step 6, GSAT starts from the best configuration found in step 5. Also,
all the configurations explored in step 5 are avoided in step 6.

3 Experimentation

In this section we present the experimental tests we have conducted in order to evalu-
ate the performance of our method for solving incremental SAT problems. All tests are
performed on a 2 GHz Pentium 4 computer under Linux. In each test, our incremental
method (that we call incremental GSAT) is compared (in terms of running time in sec-
onds) to the well known algorithm based on branch and bound for solving incremental
SAT [4] (that we call incremental BB). All procedures are coded in C language.

4



3.1 Generation of Incremental SAT Instances

Since we did not find libraries providing dynamic SAT problems, we have generated
incremental SAT instances from random SAT ones taken from the well known SATLIB
library [2]. Each dynamic SAT instance is obtained from a SAT one in a series of
stages. At each stage, a random number of clauses is taken from the SAT instance and
added to the dynamic SAT one until there are no more clauses to take. In the following
we considerst the total number of stages andN the total number of clauses of the
SAT instance. The number of clauses(N1 . . . Nst) taken at each stage are generated as
follows. N1 andN2 are randomly chosen form[1, N/5 − 1]. N3 andN4 will then be
generated from[1, (N −N1 −N2)/4− 1], andN5 andN6 from [1, (N −N1 −N2 −
N3 − N4)/3 − 1]. N7, N8, . . . , Nst will be generated in the same manner. This will
ensure that the average number of clauses in each stage is almost equal toN/st. In the
following tests, the value ofst is fixed to 10.

Using the method above, we have generated incremental SAT instances from the
following three types of SAT problems.

“Flat” Graph Coloring Problem. For a given graph, the “flat” graph coloring prob-
lem tries to color the nodes of the graph such that any pair of connected nodes
have different colors. Here we focus on decision variant which consists of de-
ciding whether for a particular number of colors, a coloring of the given graph
exists. SAT instances corresponding to the “flat” coloring problem are generated
as shown in [9].

Incremental “Morphed” Graph Coloring Problem. A particular class of graph col-
oring problems consists of morphing regular ring lattices with random graphs.
A(typeB) p-morph of two graphsA = (V, E1) andB = (V,E2) is a graph
C = (V, E) where E contains all the edges common toA andB, a fractionp of
the edges fromE1 − E2 (the remaining edges ofA), and a fraction1− p of the
edges fromE2−E1. More details regarding the generation of SAT instances for
morphed graphs can be found in [10].

Random-3-SAT Instances with Controlled Backbone Size Problems.The backbone
of a satisfiable SAT instance is the set of entailed literals. A literall is entailed
by a satisfiable SAT instanceS if and only if S AND (NOT l) is unsatisfiable.
The backbone size is the number of entailed literals. Random 3-SAT Instances
with Controlled Backbone Size are generated as shown in [11].

In order to evaluate our method on hard incremental SAT problems, we have gen-
erated other incremental 3-SAT instances (from uniform random 3-SAT problems gen-
erated as shown in [12]) as follows. Since for 3-SAT problems the phase transi-
tion (corresponding to the hardest problems to solve) corresponds to a ratio#clauses

#variables =
4.2 we first split the random SAT instance into sets of clauses such that the addition of
each set to the incremental SAT formula will always lead to a ratio#clauses

#variables close to
4.2 . This way the formula to solve at each stage will be close to the phase transition.

5



Table 1: Comparative tests on randomly generated Incremental “Flat” Graph Coloring
Problems.

testset #variables #clauses Incremental GSAT Incremental BB
flat30-60 90 300 0.00490 0.004
flat50-115 150 545 0.0153 0.09
flat75-180 225 840 0.113 0.85
flat100-239 300 1117 0.731 1.11
flat125-301 375 1403 3.829 13.2
flat150-360 450 1680 4.354 67.05

Table 2: Comparative tests on randomly generated Incremental “Morphed” Graph Col-
oring Problems.

testset #variables #clauses Incremental GSAT Incremental BB
sw100-8-lp0-c5 500 3100 0.012 0.010
sw100-8-lp1-c5 500 3100 0.021 0.27
sw100-8-lp2-c5 500 3100 0.0268 0.8
sw100-8-lp3-c5 500 3100 0.258 2.39
sw100-8-lp4-c5 500 3100 0.38 11.4
sw100-8-lp5-c5 500 3100 1.659 24.7
sw100-8-lp6-c5 500 3100 4.776 67.6
sw100-8-lp7-c5 500 3100 5.869 127
sw100-8-lp8-c5 500 3100 6.75 233
sw100-8-lp9-c5 500 3100 7.35 173

3.2 Test Results

The results of the tests performed on Incremental “Flat” Graph Coloring Problems,
Incremental “Morphed” Graph Coloring Problems, and Incremental Random-3-SAT
Instances with Controlled Backbone Size Problems are respectively reported in tables
1, 2 and 4. As we can see our incremental method is much faster than incremental
BB for all problems which demonstrates the efficiency of our method over Hookers’
algorithm.

Table 3 presents comparative tests of our incremental method and incremental BB,
for solving incremental hard uniform 3-SAT instances. The results obtained by our
method are very appealing comparing to those of incremental BB. This is mainly due
to steps 3 to 7 of our resolution method. Indeed, anytime a new set of clauses is added
to a given formula in CNF, the goal of these steps is to maintain the satisfiability of
the new formula by checking the satisfiability of the new set of clauses and only the
clauses related to them from the initial set.

6



Table 3: Comparative tests on randomly generated Incremental Hard Uniform 3-SAT
Problems.

testset #variables #clauses Incremental GSAT Incremental BB
uf50-218 50 218 0.00174 0.00464
uf75-325 75 325 0.00285 0.180
uf100-430 100 430 0.00476 0.273
uf125-538 125 538 0.00660 0.652
uf150-645 150 645 0.00705 4.021
uf175-753 175 753 0.0154 5.302
uf200-860 200 860 0.0191 2.901
uf225-960 225 960 0.0213 5.348
uf250-1065 250 1065 0.0211 14.194

4 Conclusion

In this paper we have presented a new method based on stochastic local search for
maintaining the satisfiability of SAT problems in an incremental way. Our work is of
interest to a large variety of combinatorial problems that need to be processed in an
evolutive environment. This can be the case of applications such as reactive schedul-
ing and planning, dynamic combinatorial optimization, dynamic constraint satisfaction
and machine learning in an dynamic environment.

One perspective of our work is to deal with retraction of clauses in an efficient way.
Assume that during the search, a given clause (or a set of clauses) is removed. Would
it be worthwhile to reconsider any decision made because of these clause(s) or would
it be more costly than just continuing on with search. Another idea we will investigate
in order to improve the performance of our general procedure for solving incremental
SAT consists of processing steps 4 until 6 and step 7 of our procedure in parallel. If
any of these two parallel phases fails then the main procedure will stop and returnsNC
inconsistent. Finally our method can easily be extended to handle incremental MAX-
SAT problems. The maximum satisfiability problem (MAX-SAT) consists of finding a
truth assignment that satisfies the maximum possible number of clauses in a given SAT
formula. The incremental MAX-SAT problem focuses on maintaining the maximum
satisfiability of a propositional formula anytime a conjunction of new clauses is added.
More precisely, this consists of checking whether the minimum number of violated
clauses is preserved after new clauses are added otherwise we have to look for a new
minimum. This can be achieved by performing the same method we have proposed
in Section 2.2 with a slight modification of the GSAT algorithm in order to handle the
maximum satisfiablity (instead of a complete satisfiability).

7



Table 4: Comparative tests on randomly generated Incremental 3-SAT Instances with
Controlled Backbone.

testset #variables #clauses Incremental GSAT Incremental BB
CBS k3 n100m403b10 100 403 0.0461 0.05
CBS k3 n100m403b30 100 403 0.048 0.06
CBS k3 n100m403b50 100 403 0.0694 0.9
CBS k3 n100m403b70 100 403 0.181 1.2
CBS k3 n100m403b90 100 403 0.706 1.8
CBS k3 n100m411b10 100 411 0.0660 2.3
CBS k3 n100m411b30 100 411 0.107 2.9
CBS k3 n100m411b50 100 411 0.0717 3.2
CBS k3 n100m411b70 100 411 0.148 4.6
CBS k3 n100m411b90 100 411 0.663 5.8
CBS k3 n100m418b10 100 418 0.0771 0.7
CBS k3 n100m418b30 100 418 0.105 0.8
CBS k3 n100m418b50 100 418 0.198 0.9
CBS k3 n100m418b70 100 418 0.108 1.1
CBS k3 n100m418b90 100 418 0.121 1.7
CBS k3 n100m423b10 100 423 0.104 2.2
CBS k3 n100m423b30 100 423 0.158 2.44
CBS k3 n100m423b50 100 423 0.157 3.12
CBS k3 n100m423b70 100 423 0.133 1.8
CBS k3 n100m423b90 100 423 0.214 1.5
CBS k3 n100m429b10 100 429 0.0628 3.4
CBS k3 n100m429b30 100 429 0.0644 0.7
CBS k3 n100m429b50 100 429 0.317 4.8
CBS k3 n100m429b70 100 429 0.1800 3.6
CBS k3 n100m429b90 100 429 0.188 3.5
CBS k3 n100m435b10 100 435 0.0572 0.9
CBS k3 n100m435b30 100 435 0.0947 1.1
CBS k3 n100m435b50 100 435 0.049 0.8
CBS k3 n100m435b70 100 435 0.150 1.45
CBS k3 n100m435b90 100 435 0.193 3.78
CBS k3 n100m441b10 100 441 0.1170 1.12
CBS k3 n100m441b30 100 441 0.049 0.8
CBS k3 n100m441b50 100 441 0.056 2.6
CBS k3 n100m441b70 100 441 0.130 5.4
CBS k3 n100m441b90 100 441 0.206 7.8
CBS k3 n100m449b10 100 449 0.0323 11.2
CBS k3 n100m449b30 100 449 0.0102 0.6
CBS k3 n100m449b50 100 449 0.0422 0.5
CBS k3 n100m449b70 100 449 0.037 0.6
CBS k3 n100m449b90 100 449 0.347 2.12

8



References

[1] S. A. Cook. The complexity of theorem proving procedures. In3rd Annual ACM
Symposium on the Theory of Computing, pages 151–158, 1971.

[2] H.H. Hoos and K O’Neil. Stochastic Local Search Methods for Dynamic SAT
- an Initial Investigation. InAAAI-2000 Workshop ’Leveraging Probability and
Uncertainty in Computation, pages 22–26, 2000.

[3] J. Gutierrez and A.D. Mali. Local search for incremental satisfiability. InInter-
national Conference on Artificial Intelligence, pages 986–991, 2002.

[4] J.N. Hooker. Solving the incremental satisfiability problem.Journal of Logic
Programming, 15:177–186, 1993.

[5] H. Bennaceur, I. Gouachi, and Plateau. An incremental branch-and-bound
method for satisfiability problem.INFORMS Journal on Computing, 10:301–
308, 1998.

[6] J. Wittemore, J. Kim, and K.A. Sakallah. Satire: A new incremental satisfiability
engine. InDAC 2001, pages 542–545, 2001.

[7] B. Selman and H. A. Kautz. An empirical study of greedy local search for satis-
fiability testing. InAAAI’93, pages 46–51, 1993.

[8] B. Selman, H. A. Kautz, and B. Cohen. Noise Strategies for Improving Local
Search. InAAAI’94, pages 337–343. MIT Press, 1994.

[9] T. Hogg. Refining the phase transition in combinatorial search.Artificial In-
teligence, 81:127–154, 1996.

[10] I. Gent, H. H. Hoos, P. Prosser, and T. Walsh. Combining structure and random-
ness. InAAAI-99, pages 654–660, 1999.

[11] J. Singer, I. Gent, and A. Smaill. Backbone fragility and the local search cost
peak.Journal of Artificial Intelligence Research, pages 235–270, 2000.

[12] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems
are. InIJCAI-91, pages 331–337, 1991.

9


