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Abstract

Constraint Satisfaction Problems (CSPs) are fundamental in many real world
applications such as interpreting a visual image, laying out a silicon chip, fre-
quency assignment, scheduling, planning and molecular biology. A main chal-
lenge when designing a CSP-based system is the ability to deal with constraints
in a dynamic and evolutive environment. We talk then about on line CSP-based
systems capable of reacting, in an efficient way, to any new external information
during the constraint resolution process. During the conceptual phase of design,
for example, the designers should be able to add/remove constraints at any time
after specifying an initial statement describing the desired properties of a required
artifact. We propose in this paper a new algorithm capable of dealing with dynamic
constraints at the arc consistency level of the resolution process. More precisely,
we present a new dynamic arc consistency algorithm that has a better compromise,
in practice, between time and space than those algorithms proposed in the liter-
ature, in addition to the simplicity of its implementation. Experimental tests on
randomly generated CSPs as well as on CSPs involving temporal constraints (that
we call TCSPs), have been conducted. The results of the experimentation demon-
strate the efficiency, in time and space costs, of our algorithm to deal with large
size CSPs in a dynamic environment.

Keywords: Constraint Satisfaction, Temporal Reasoning, Dynamic Arc Consis-
tency.



1 Introduction

Constraint Satisfaction problems (CSPs) [8] are a fundamental concept used in many
real world applications such as interpreting a visual image, laying out a silicon chip,
frequency assignment, scheduling, planning and molecular biology. This motivates
the scientific community from artificial intelligence, operations research and discrete
mathematics to develop different techniques to tackle problems of this kind[12]. These
techniques become more popular after they were incorporated into constraint program-
ming languages [11, 2, 8]. A main challenge when designing a CSP-based system is
the ability to deal with constraints in a dynamic and evolutive environment. We talk
then about on line CSP-based systems capable of reacting, in an efficient way, to any
new external information during the constraint resolution process. One example, in the
case of scheduling problems, is when a solution, corresponding to an ordering of tasks
to be processed, has to be reconsidered after a given machine becomes unavailable. We
have then to look for another solution (ordering of tasks) satisfying the old constraints
and taking into account the new information. Another example, in the area of engineer-
ing conceptual design, is when the designers add/remove constraints after specifying
an initial statement describing the desired properties of a required artifact during the
conceptual phase of design.

A CSP involves a list of variables defined on finite domains of values and a list of
relations restricting the values that the variables can take. If the relations are binary
we talk about binary CSPs. Solving a CSP consists of finding an assignment of values
to each variable such that all relations (or constraints) are satisfied. A CSP is known
to be an NP-Hard problem. Indeed, looking for a possible solution to a CSP requires
a backtrack search algorithm of exponential complexity in time'. To overcome this
difficulty in practice, local consistency techniques are used in a pre-processing phase
to reduce the size of the search space before the backtrack search procedure. Also, in
the case of inconsistent CSPs, the inconsistency can be detected at the pre-processing
level. The backtrack phase will then be saved. A k-consistency algorithm removes all
inconsistencies involving all subsets of k variables belonging to N. The k-consistency
algorithm is polynomial in time, O(Nk), where N is the number of variables. A k-
consistency algorithm does not solve the constraint satisfaction problem, but simplifies
it. Due to the incompleteness of constraint propagation, in the general case, search is
necessary to solve a CSP problem, even to check if a single solution exists. When k =2
we talk about arc consistency. An arc consistency algorithm transforms the network of
constraints into an equivalent and simpler one by removing, from the domain of each
variable, some values that cannot belong to any global solution.

We propose in this paper a new technique capable of dealing with dynamic con-
straints at the arc consistency level. More precisely, we present a new dynamic arc
consistency algorithm that has a better compromise, in practice, between time and
space than those algorithms proposed in the literature [3, 7, 18], in addition to the
simplicity of its implementation. We call this algorithm AC3.1|DC. In order to evalu-
ate, in practice, the performance in time and memory space costs of the algorithm we

Note that some CSP problems can be solved in polynomial time. For example, if the constraint graph
corresponding to the CSP has no loops, then the CSP can be solved in O(nd?) where n is the number of
variables of the problem and d the domain size of the different variables [8].



propose, experimental tests on randomly generated CSPs and temporal CSPs (CSPs in-
volving temporal constraints) have been performed. The results of the experimentation
demonstrate the efficiency in time and memory costs of our method to deal with large
size problems. Note that the Temporal CSP (that we call TCSP) is a model we pro-
posed in [16] in order to represent a wide variety of real world applications including
scheduling and planning. Often these systems are handled in an evolutive environment
and are thus required to be solved in a dynamic manner.

The rest of the paper is organized as follows. In the next section we will present
an overview of the arc consistency and dynamic arc consistency algorithms proposed
in the literature. Our dynamic arc consistency algorithm is then presented in section 3.
Theoretical comparison of our algorithm and those proposed in the literature is covered
in this section. The experimental part of our work is presented in section 5. Finally,
concluding remarks and possible perspectives are listed in section 5.

2 Dynamic Arc-Consistency Algorithms

2.1 Arc Consistency Algorithms

The key AC algorithm was developed in [13] called AC-3 over twenty years ago and
remains one of the easiest to implement and understand today. Figure 1 illustrates the
code of the algorithm AC-3. As shown in line 2 of the algorithm, AC-3 starts with a
list of all variable pairs (i, j) and enforces the arc consistency for each of these pairs
through the function REVISE as follows. For each value a from i’domain, REVISE
looks for a value b in j’s domain such that the constraint between i and j holds. If no
such value b is found, value a is removed from i’s domain (as it has no value in j’s
domain supporting it). This change will be propagated to all the variables sharing a
constraint with variable i. For that, we reconsider all variable pairs (k,i) where k is a
variable sharing a constraint with i. This is done in line 6 of the algorithm AC-3.

There have been many attempts to best AC-3 worst case time complexity of O(ed?)
and though in theory these other algorithms (namely AC-4[15], AC-6[4] and AC-7[5])
have better worst case time complexities, they are harder to implement. In fact, the AC-
4 algorithm fares worse on average time complexity than the AC-3 algorithm[20]. It
was not only until recently when Bessiere et al. [6] proposed an improvement directly
derived from the AC-3 algorithm into their algorithm AC2001/3.1. The worst case time
complexity of AC-3 is bounded by O(ed?) [14] where e is the number of constraints
and d is the domain size of the variables. In fact this complexity depends mainly on
the way the arc consistency is enforced for each arc of the constraint graph. Indeed,
if anytime a given arc (i, j) is revised, a support for each value from the domain of i
is searched from scratch in the domain of j, then the worst case time complexity of
AC-3 is O(ed?). Instead of a search from scratch, Bessiere et al. [6] proposed a new
view that allows the search to resume from the point where it stopped in the previous
revision of (i, j). By doing so, the worst case time complexity of AC-3 is achieved
in O(ed?). This new idea is implemented by the function EXISTb in Figure 2. This
function is used in line 3 of the function REVISE in Figure 1. Indeed, in the case of



Function REVISE(i, j)
1. REVISE — false
2. For each value a € Domain; Do
3 If there is no b € Domain; such that compatible(a,b) Then
4, remove a from Domain;
5 REVISE < true
6 End-If
7. End-For

Algorithm AC-3
1. Given a constraint network CN = (E,R)

(E: set of variables, R: set of constraints between variables)
0 —{(i,j) | (i,j) € R} (list initialized to all relations of CN)
While O # Nil Do

If REVISE (i, j) Then

0 — QU{(ki) | (ki) €RAK# J}

End-If

End-While

P_NAN R WD

Figure 1: Pseudo code of the algorithm AC-3.

the standard algorithm the function REVISE works in the same way at each time it is
applied on a pair of variables (x,y). More precisely, each time (x,y) is revised, for each
value a of x’s domain REVISE will start from the beginning looking for a value b in
y’s domain supporting it. Restarting from the beginning of the variable domain causes
the algorithm to run in O(ed?).

2.2 Dynamic Arc Consistency Algorithms

Before we present the different dynamic arc consistency algorithms, let us define the
Dynamic Constraint Satisfaction Problem.

A dynamic constraint satisfaction problem (DCSP) P is a sequence of static
CSPs Py, ..., P, Pit1, ...,P, each resulting from a change in the pre-
ceding one imposed by the “outside world”. This change can either be
a constraint restriction (adding a new constraint) or a constraint relax-
ation (removing a constraint because it is no longer interesting or because
the current CSP has no solution). More precisely, P, is obtained by per-
forming a restriction (addition of a constraint) or a relaxation (suppression
of a constraint) on P;.

The arc consistency algorithms we have seen in the previous section can easily be
adapted to update the variable domains incrementally when adding a new constraint.
This simply consists of performing the arc consistency between the variables sharing



Function EXISTb((i,a), )
1. b« ResumePoint((i,a), j)
(ResumePoint ((i,a), j) remembers the first value b such that
compatible(a,b) is true in the previous revision of (i, j) )
2. If b € Domain; Then
3. return true
4. Else
5. While b « successor(b, Domain®) and b # NIL

J
(Domain(])- denotes the domain of j before arc consistency)

(successor(b,Domain(}) returns the successor of b in Domain?)
6. If b € Domain; and compatible(a,b) Then

7. ResumePoint((i,a),j) < b

8. return true

9. End-If
10. End-While
10. return false
11. End-If

Figure 2: Pseudo code of AC-3.1: function for searching b in line 3 of REVISE(i, j).

the new constraint and propagate the change to the rest of the constraint network. How-
ever, the way the arc consistency algorithm has to proceed with constraint relaxation
is more complex. Indeed, when a constraint is retracted the algorithm should be able
to put back those values removed because of the relaxed constraint and propagate this
change to the entire graph. Thus, traditional arc consistency algorithms have to be
modified so that it will be able to find those values which need to be restored anytime a
constraint is relaxed. To illustrate this idea, let us consider the following CSP problem.

Example 1: the graph coloring problem
Given a graph G (V,E) where :

e Vs the set of nodes each defined on a set of colors the node can take,

e and E a set of edges (corresponding the relation #);

find a color to each node so that no nodes with the same color are adjacent.

This example is illustrated in figure 3. The top left graph corresponds to the graph
coloring problem after performing the arc consistency algorithm. Let us assume now
that we have the following actions :

e Add the constraint (2 4).
e Add the constraint (3 4).
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e Remove the constraint (2 4).

The goal here is to enforce the arc consistency after each action. The first two
actions are constraint restrictions and can easily be handled by a traditional arc consis-
tency algorithm. The top right and bottom left graphs of figure 3 show the maintenance
of arc consistency respectively after adding the constraints (2 4) and (3 4).

The third action is however more complex. Indeed we need to know which of the
suppressed values should be restored.

Bessiere has proposed DnAC-4[3] which is an adaptation of AC-4[15] to deal with
constraint relaxations. This algorithm stores a justification for each deleted value.
These justifications are then used to determine the set of values that have been re-
moved because of the relaxed constraint and so can process relaxations incrementally.
DnAC-4 inherits the bad time and space complexity of AC-4. Indeed, comparing to
AC-3 for example, AC-4 has a bad average time complexity[20]. The worst-case space
complexity of DnAC-4 is O(ed” + nd) (e,d and n are respectively the number of con-
straints, the domain size of the variables and the number of variables). To work out
the drawback of AC-4 while keeping an optimal worst case time complexity, Bessiere
has proposed AC-6[4]. Debruyne has then proposed DnAC-6 adapting the idea of
AC-6 for dynamic CSPs by using justifications similar to those of DnAC-4[7]. While
keeping an optimal worst case time complexity (O(ed?)), DnAC-6 has a lower space
requirements (O(ed + nd)) than DnAC-4. To solve the problem of space complexity,
Neveu and Berlandier proposed AC|DC[18]. AC|DC is based on AC-3 and does not
require data structures for storing justifications. Thus, it has a very good space com-
plexity (O(e + nd)) but is less efficient in time than DnAC-4. Indeed, with its O(ed?)
worst case time complexity, it is not the algorithm of choice for large dynamic CSPs.

Our goal here is to develop an algorithm that has a better compromise between
running time and memory space than the above three algorithms. More precisely, our
ambition is to have an algorithm with the O(ed?) worst case time complexity of DnAC-
6 but without the need of using complex and space expensive data structures to store the
justifications. We have then decided to adapt the new algorithm proposed by Bessiere
et al. [6] in order to deal with constraint relaxations. The details of the new dynamic
arc consistency algorithm we propose that we call AC-3.1|DC, are presented in the next
section.

3 AC-3.1|DC

The basic idea we took was to integrate the AC-3.1 into the AC|DC algorithm since
that algorithm was based on AC-3. The problem with the AC|DC algorithm was that
it relied solely on the AC-3 algorithm and did not keep support lists like DnAC4 or
DnACS6 causing the restriction and relaxation of a constraint to be fairly time consum-
ing. This is also the reason for its worst case time complexity of O(ed?). If AC-3.1
was integrated into the AC|DC algorithm, then by theory the worst case time com-
plexity for a constraint restriction should be O(ed?). The more interesting question
is whether this algorithm’s time complexity can remain the same during constraint re-
tractions. Following the same idea of AC|DC, the way our AC3.1|DC algorithm deals



with relaxations is as follows (see pseudo-code of the algorithm in figure 4). For any
retracted constraint (k,m) between the variables k and m, we perform the following
three phases :

1. An estimation (over-estimation) of the set of values that have been removed be-
cause of the constraint (k,m) is first determined by looking for the values re-
moved from the domains of k and m that have no support on (k,m). Indeed,
those values already suppressed from the domain of k (resp m) and which do
have a support on (k,m), do not need to be put back since they have been sup-
pressed because of another constraint. This phase is handled by the procedure
Propose. The over-estimated values are put in the array propagate_list[K] (resp
propagate_list[m]). In the procedure Propose, dom|i] and D[i] denote respec-
tively the initial domain and current domain of i.

2. The above set is then propagated to the other variables. In this phase, for each
value (k,a) (resp (m, b)) added to the domain of k (resp m) we will look for those
values removed from the domain of the variables adjacent to & (resp m) supported
by (k,a) (resp (m,D)). These values will then be propagated to the adjacent vari-
ables. The array propagate_list is used to contain the list of values to be prop-
agated for each variable. After we propagate the values in propagate list[i] of
a given variable i, these values are removed from the array propagate_list and
added to the array restore_list in order to be added later to the domain of the
variable i. This way we avoid propagating the values more than once.

3. Finally a filtering procedure (the function Filter) based on AC-3.1 is then per-
formed to remove, from the estimated set, the values which are not arc-consistent
with respect to the relaxed problem.

The worst case time complexity of the first phase is O(d?). AC-3.1 is applied in the
third phase and thus the complexity is O(ed?). Since the values in propagate_list are
propagated only once, then the complexity of the second phase is also O(ed?). Thus
the overall complexity of the relaxation is O(ed?).

In terms of space complexity, the arrays propagate_list and restore_list require
O(nd). AC-3.1 requires an array storing the resume point for each variable value with
respect to any related constraint (in order to have O(ed?) time complexity). The space
required by this array is O(ed). If we add to this the O(e + nd) space requirement of the
traditional AC-3 algorithm, the overall space requirement is O(ed + nd). Comparing
to the three dynamic arc consistency algorithms we mentioned in the previous section,
ours and DnAC-6 have a better compromise, in theory, between time and space costs
as illustrated by table 1.

4 Experimentation

Theoretical comparison of the four dynamic arc consistency algorithms, presented in
table 1, shows that AC3.1|DC has a better compromise between time and space costs
than the other three algorithms. In order to see if the same conclusion can be said
in practice, we have performed comparative tests respectively on randomly generated



Function Relax(k,m)
1. propagate_list < nil
2. Remove (k,m) from the set of constraints
3. Propose(k,m,propagate_list)
4. Propose(m,k,propagate_list)
5. restore_list < nil
6. Propagate(k,m,propagate_list,restore_list)
7. Filter(restore_list)
8. forallicV do
9 domain; < domain;Urestore _list]i]

Function Propose(i,j,propagate_list)
1. for all value a € dom[i] — DJi] do
support «— false
for all b € D[;] do
if ((i a),(j b)) is satisfied by (i,j) then
support «— true
exit
if support < false then
propagate_list[i] < propagate_list[i] U {a}

PN B WD

Function Propagate(k,m,propagate_list,restore_list)

I. L+ {km}

2. while L # nil do

3 i < pop(L)

4. for all j such that (i,j) € the set of constraints
5. S < nil

6 for all b € dom[j] — (D[ j]Urestore_list] j]JUpropagate_list[j]) do
7 for all a € propagate_list[i] do

8. if ((i a),(j b)) is satisfied by (i,j) then
9. S—Su{b}

10. exit

11. if S # nil do

12. L —LuU{j}

13.  propagate_list[j] < propagate_list[j1 U S
14.  restore_list[i] < restore_list[i] U propagate_list[i]
15.  propagate_list[i] < nil

Figure 4: Pseudo code of AC3.1|DC.



DnAC4 | DnAC-6 | ACDC | AC-3.1]DC
Space complexity | O(ed”> +nd) | O(ed+nd) | O(e+nd) | O(ed +nd)
Time complexity O(ed?) O(ed?) O(ed?) O(ed?)

Table 1: Comparison in terms of time and memory costs of the four algorithms.

dynamic CSPs and Temporal CSPs (that we call TCSPs). The criteria used to compare
the algorithms are the running time needed and the memory space required by each
algorithm to achieve the arc consistency. The experiments are performed on a Sun
Sparc 10 station and all procedures are coded in C|C++.

4.1 Experimental tests on randomly generated dynamic CSPs

Given n the number of variables and d the domain size, each CSP instance is ran-
domly obtained by generating n sets of d natural numbers. @ constraints are then
picked randomly from a set of arithmetic relations {=,#,<,<,>,>,...}. The gen-
erated CSPs are characterized by their tightness, which can be measured, as shown in
[19], as the fraction of all possible pairs of values from the domain of two variables

that are not allowed by the constraint.

Figure 5 shows the performance in time performed by each arc consistency al-
gorithm to achieve the arc consistency in a dynamic environment, as follows. Start-
ing from a CSP having n = 100 variables, d = 50 and O constraints, restrictions are
done by adding the relations from the random CSP until a complete graph (number

of constraints:@) is obtained. Afterwards, relaxations are performed until the

graph is 50% constrained (number of constraints:@). These tests are performed
on various degrees of tightness to determine if one type of problem, (over-constrained,
middle-constrained or under-constrained) favored any of the algorithms. As we can
easily see, the results provided by AC-3.1|DC fares better than that of AC|DC and
DnAC-4 in all cases. Also AC-3.1|DC algorithm is comparable if not better than
DnAC6 (that has the best running time of the three dynamic arc consistency algo-
rithms) as it can be seen in figure 5.

Table 2 shows the comparative results of DnAC-6 and AC3.1|DC in terms of mem-
ory space. The tests are performed on randomly generated CSPs in the same way as for
the previous ones. As we can easily see, AC3.1|DC requires much less memory space
than DnAC-6 especially for large problems with large domain size.

4.2 Experimental tests on randomly generated dynamic TCSPs

Before we present the tests on dynamic TCSPs let us first define TCSPs and dynamic
TCSPs.

10
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Figure 5: Comparative tests of the dynamic arc-consistency algorithms

4.2.1 TCSPs and dynamic TCSPs

We define a TCSP? as a CSP where constraints are disjunctions of Allen primitives
[1] (see table 3 for the definition of the thirteen Allen primitives) and variables are
temporal events defined on domains of numeric intervals. Indeed, in order to define a
unique model for managing both numeric and symbolic temporal information, we have
proposed the model TemPro [17, 16] based on Allen’s interval Algebra and a discrete
representation of time. TemPro transforms a problem involving numeric and symbolic
time information into a TCSP. CSP search techniques can then be applied to check the
consistency of the TCSP and to provide a solution in the case where the TCSP is con-
sistent. A solution corresponds here to an assignment of temporal intervals to temporal
events such that all the constraints (disjunction of Allen primitives) are satisfied.

Example 2
Consider the following typical temporal reasoning problem? :

1. John, Mary and Wendy separately rode to the soccer game.

2. It takes John 30 minutes, Mary 20 minutes and Wendy 50 minutes
to get to the soccer game.

ZNote that this name and the corresponding acronym was used in [9]. The TCSP, as defined by Dechter et
al, is a quantitative temporal network used to represent only numeric temporal information. Nodes represent
time points while arcs are labeled by a set of disjoint intervals denoting a disjunction of bounded differences
between each pair of time points.

3This problem is basically taken from an example presented by Ligozat, Guesgen and Anger at the tu-
torial : Tractability in Qualitative Spatial and Temporal Reasoning, IJCAI’01. We have added numeric
constraints for the purpose of our work.

11



n d | DnAC6 | AC|DC3.1
500 | 100 | 354MB 58MB
500 | 90 | 312MB 54MB
500 | 80 | 276MB 49MB
500 | 70 | 221MB 43MB
500 | 60 | 186MB 34MB
500 | 50 | 154MB 28MB
500 | 40 | 112MB 25MB
500 | 30 | 75MB 17MB
500 | 20 | 54MB 14MB
500 | 10 | 27MB 10MB
500 | 5 16MB 8MB

Table 2: Comparative results in terms of memory cost

John either started or arrived just as Mary started.
John either started or arrived just as Wendy started.
John left home between 7:00 and 7:10.

Mary arrived at the soccer game between 7:55 and 8:00.
Wendy left home between 7:00 and 7:10.

John’s trip overlapped the soccer game.

0 %0 N & R W

Mary’s trip took place during the game or else the game took place
during her trip.

10. The soccer game starts at 7:30 and lasts 105 minutes.

The above story includes numeric and qualitative information (words in boldface).
Given this information, one important task is to represent and reason about such knowl-
edge and answer queries such as: “is the above problem consistent ?”, “what are the
possible times at which Wendy arrived at the soccer game ?”, ... etc. To do that, we first
transform the above story to the TCSP shown in figure 6. There are four main events :
John, Mary and Wendy are going to the soccer game respectively and the soccer game
itself. These events are denoted respectively by J, M, W and Sc. Some numeric con-
straints specify the duration of the different events, e.g. 30 minutes is the duration
of John’s event. Other numeric constraints describe the temporal windows in which
the different events occur, e.g. John left home between 7:00 and 7:10. The numeric
constraints of a given event are represented by the fourfold [Start, End, Duration, Step)
where Start, End, Duration and Step denote respectively the earliest start time, latest
end time, duration and discretisation step of the event. In the case of John’s event (J),
this fourfold is equal to [0,40,30,1](7:00 is the time origin and is denoted by 0).
Given that the discretisation step is 1, the fourfold can be converted to the domain
{(030),(131),...,(1040)} as shown in figure 6. Symbolic constraints state the rel-
ative positions between events e.g. John’s trip overlapped the soccer game which is
denoted by J O Sc in the figure. The information John either started or arrived just

12



as Wendy started is denoted by the relation J ESS —M W which means that the start
time of John and Wendy are equal or that the end time of John equals the start time of
Wendy.

[0,40,30,1]={(0 30) .. (10 40)}

@
ESSM ESSM
W)
[35,60,20,1]={(35 55) .. (40 60)} [0,60,50,1]={(0 50) .. (10 60)}
D D- ©
&

[30,135,105,1]={(30 135)}
Figure 6: TCSP corresponding to example 2.

After the translation to the TCSP, consistency check is then enforced using a reso-
lution method based on CSP techniques described as follows.

1. Arc consistency is first applied in order to reduce the size of the search space and
to detect possible inconsistencies. Indeed, if the TCSP is not arc consistent then
it is not consistent.

2. A backtrack search algorithm is then performed in order to look for a possible
solution.

As we can see in figure 7, when applying arc consistency on the TCSP representing
example 2, the domains of John’s and Wendy’s events are reduced. Indeed values
{(030)...(4 34)} from the domain of John’s event are deleted since they do not have
support in Mike’s event domain. As a consequence (after constraint propagation) values
{(050)...(454)} from the domain of Wendy’s event are deleted since they do not have
support in John’s event domain

In the case of dynamic CSPs, a constraint restriction corresponds to the addition of a
constraint while a constraint relaxation is a retraction of a constraint. This is not exactly
the case of Dynamic TCSPs (that we call DTCSPs). Indeed, a restriction of a temporal
constraint is obtained by removing one or more Allen primitive from the disjunctive
relation. A particular case is when the constraint is equal to the disjunction of the 13
primitives (we call it the universal relation /) which means that the constraint does not
exist (there is no information about the relation between the two involved events). In
this particular case, removing one or more Allen primitives from the universal relation
is equivalent to adding a new constraint. Using the same way, a relaxation of a temporal
constraint is obtained by adding one or more Allen primitives to a given constraint. A
particular case is when the new constraint has 13 Allen primitives which is equivalent
to the suppression of the constraint.

13



Relation | Symbol| Inverse Meaning
X Y
X precedes Y P P-
X
X equalsY E E
Y
X meets Y M M- X v
X overlaps Y (0] O- X Y
X during Y D D- X v
X starts’ Y S S X Y
X finishes Y F F- v X

Table 3: Allen Primitives

{(030) .. (10 40)} {(535) .. (10 40)}
@ Q@
ESSM ESS M ESSM ESSM
Arc Consistency
——
{(3555) . (40 60)} {(050) .. (1060)} {(3555) .. (40 60)} {(555) .. (10 60)}
D D- ° DD- o
{(30135)} {(30135)}

Figure 7: Applying Arc Consistency to the TCSP of Example 2.

Example 3

Starting from the arc consistent graph of figure 7, we assume now that we have the
following constraint restrictions and relaxations :

1. Mary and Wendy arrived together but started at different times.
2. Retract the constraint between John and Mary.
3. Mary’s event can also be overlapped by Wendy’s one.

The first operation is a constraint restriction and corresponds to the addition of
the relation F'V F~ between Mary and Wendy. Arc consistency is performed after
this constraint restriction but the domains of the events are not changed. The second
operation is a constraint relaxation and corresponds to the suppression of the constraint
between John and Mary. Figure 8 shows the application of the above three actions to

14
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Figure 8: Restrictions and relaxations of the TCSP corresponding to example 3.

the arc consistent graph of example 2 presented in figure 7. The third operation is a
constraint relaxation and corresponds to the addition of the primitive Overlapped by
to the constraint between Mary’s and Wendy’s events. As a consequence, the values
removed earlier from the domains of John’s and Wendy’s events are put back after
applying our dynamic arc consistency algorithm.

As we stated in introduction, TCSPs enable the representation and solving of a
wide variety of planning and scheduling applications. The following shows how to use
a TCSP for solving a typical scheduling problem.

Example 4

The following example is taken from [16].

The production of five items A,B,C,D and E requires three mono pro-
cessor machines M,M, and Ms. Each item can be produced using two
different ways depending on the order in which the machines are used.
The process time of each machine is variable and depends on the task to
be processed. The following lists the different ways to produce each of the
five items (the process time for each machine is mentioned in brackets) :

itemA:  M»(3),M;(3),M5(6) or

M;(3),M3(6),M1(3)
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item B: M2(2),M1 (5),M2(2),M3(7) or
M>(2),M3(7),M2(2), M1 (5)
item C: M, (7),M3(5),M2(3) or
M3(5)7M1 (7)7M2(3)
item D:  My(4),M3(6),M,(7),M>(4) or
My (4),M3(6),M2(4),M:(7)
itemE:  M(6),M3(2) or
M3(2),M>(6)

The above problem can easily be represented by a TCSP. A temporal event cor-
responds here to the contribution of a given machine to produce a certain item. For
example, AM; corresponds to the use of machine M| to produce the item A4, ... etc. 16
events are needed in total to produce the five items. Most of the qualitative information
can easily be represented by the disjunction of Allen primitives. For example, the con-
straint (disjunction of two sequences) needed to produce item A is represented by the
following three relations :

AM, PVM AM;
AM, PVM AM;
AM, PVMNV P~ VM~ AM;

However the translation to Allen relations of the disjunction of the two sequences
required to produce item B needs an additional event (EV T17) and is represented by the
following seven binary relations :

BM»,, PVM BM,
BM» PVM BM5
BM», PVM BM»y,
BM, PV P~ BMj;
BM| SVF EVTi;
BM; SVF EVTi;
BM>, D EVTi7

56 binary relations are needed in total to represent all the qualitative information.

The following (see figure 9) is the solution to the above problem provided by our
solving method. Note that this solution is optimal* but not unique.

4.2.2 Tests on Consistent and Inconsistent DTCSPs

All tests are performed on randomly generated DTCSPs. Three classes of instances,
corresponding to 3 types of tests, are generated as follows.

“4The total processing time of all machines needed to produce the five items, 26 seconds, is minimal
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Figure 9: Optimal solution provided by the CSP based method.

case 1: actions correspond to additions of constraints. C = N(N —1)/2 (constraints
are added until a complete graph is obtained). N and C are respectively the
number of variables and the number of constraints.

case 2: Actions can be additions or relaxations of constraints.
C=N(N—-1)/2 additions +N(N—1)/4
retractions (the final TCSP will have N(N — 1) /4 constraints).

case 3: This case is similar to case 1 but with inconsistent DTCSPs. Indeed, in the
previous two cases the generated DTCSPs are consistent. In this last case, con-
straints are added until an arc inconsistency and thus a global inconsistency is
detected (the inconsistency is detected if one variable domain becomes empty).
Retractions are then performed until the arc-consistency is restored.

In each of the above three cases the constraints added are taken from TCSPs (consistent
or inconsistent) randomly generated as described by the following subsections. Each
generated problem is characterized by two parameters: N the number of events and
Horizon the time before which all events must be processed. In the following, we will
describe the generation of consistent and inconsistent problems.

Generation of Consistent TCSPs

Consistent problems of size N are those having at least one complete numeric solu-
tion (set of N numeric intervals satisfying all the constraints of the problem). Thus, to
generate a consistent problem we first randomly generate a numeric solution and then
add other numeric and symbolic information to it. More precisely, the generation is
performed by the following three steps.
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Step 1. Generation of the numeric solution

Randomly pick N pairs (x,y) of integers such that x < y and x,y € [0, ..., Horizon].
This set of N pairs forms the initial solution where each pair corresponds to a time
interval.

Step 2. Generation of numeric constraints

For each interval (x,y) randomly pick an interval contained within [0, ..., Horizon]
and containing the interval (x,y). This newly generated interval defines the temporal
window of the corresponding variable. From this temporal window, we generate the
domain of the corresponding event.

Step 3. Generation of symbolic constraints

Compute the basic Allen primitives that can hold between each interval pair of the ini-
tial solution. Add to each relation a random number belonging to the interval [0, Nr] (1 <
Nr < 13) of chosen Allen primitives.

Example 4

Let us assume we want to generate a consistent problem with N = 3 and Horizon = 10.

1. First a numeric solution is generated : S = {(1 4), (28), (57)}.

2. Numeric constraints (domains of the three events) are then randomly generated
from the numeric solution.

Numeric Temporal Domains
Interval Window of events
14 - 29 - {(25)...(6 9)}
28 - [2.10] - {(28)...(4 10)}
67 - 138 - {(35)...(6 8)}
3. Allen primitives are then computed from the pairs of intervals of the numeric
solution :

(1 4)and (2 8) —  Overlaps (O)
(1 4)and (57) — Preceeds(P)
(2 8)and (57) — During inverse (D7)

and finally other Allen primitives are randomly chosen from the list of the 13
basic relations and added to the above primitives.

O+ PM —  POM
P+DD-EO — DDTEOP
D~ + DEFSP — FSDD~PE
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Generation of Inconsistent TCSPs

Each inconsistent problem of size N is generated using the following steps.

Step 1. Generation of numeric constraints

Randomly pick N pairs of ordered values (x,y) such that x,y € [0, ..., Horizon]. x
and y are respectively considered the earliest start time and the latest end time of a
given event. For each pair of value (x,y), randomly pick a numberd € [1...y—x]. d is
considered the duration of the event.

Step 2. Generation of symbolic constraints

Randomly generate C constraints between the N events where C € [1... @] (C=

@ in the case of a complete graph of constraints). Each constraint C is a disjunction
of a random number nb (nb € [1...13]) of relations chosen randomly from the set of
the 13 Allen primitives.

Step 3. Consistency check of the generated problem

Perform a backtrack search algorithm to check the consistency of the problem. If a
solution exists then the generated problem is consistent otherwise goto step 1.

4.2.3 Test Results

Figure 10 shows the results of tests corresponding to case . As we can easily see,
the results provided by DnAC-6 and AC-3.1|DC are better than the ones provided by
AC|DC and DnAC-4 (which is too slow to appear on the chart). This can be explained
by the worst case time complexity AC|DC has (O(ed?) comparing to O(ed?) for AC-
3.1|DC and DnAC-6 as shown in table 1). On the other hand, while DnAC-4 has
the same worst case time complexity as AC-3.1|DC and DnAC-6, it inherits the bad
running time in practice of AC-4 as we mentioned in Section 2.1.

Since DnAC-6 requires much more memory space than AC-3.1|DC in practice as
we have shown in table 2, this latter is the algorithm of choice in the case of constraint
additions.

Figure 11 and 12 correspond to case 2 and case 3 respectively. DnAC-4 and DnAC-
6 have better performance in this case than AC3.1|DC and AC|DC (the running time
of AC|DC is very slow comparing to the other 3 algorithms due to its worst case time
complexity as we reported above, thus it does not appear on the chart). However, since
AC3.1|DC does not require a lot of memory space as shown in 1 and 2, it has less
limitations than DnAC-4 and DnAC-6 in terms of space requirements especially in the
case of problems having large domain sizes.
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Figure 10: Experimental Tests on random DTCSPs : case 1

5 Conclusion and future work

In this paper we have presented a new algorithm, that we call AC3.1|DC, for maintain-
ing the arc consistency of a CSP in a dynamic environment. Our proposed algorithm
maintains the worst case time and space cost, in theory, of the best dynamic arc con-
sistency algorithm DnAC-6. In addition, experimental results on randomly generated
CSPs show that AC3.1|DC has comparable running time to DnAC-6 but outperforms
this latter algorithm in the case of space cost. This is very significant especially for
large size problems where space can become a serious issue. We have also conducted
experimental tests on randomly generated dynamic temporal CSPs. These particular
case of CSPs represent a wide variety of applications including dynamic scheduling
and planning, Geographic Information Systems (GIS) and temporal databases. Our
goal here is to see how does AC3.1|DC behave in the case of numeric and symbolic
temporal constraints. The result of the tests show that AC3.1|DC has comparable run-
ning time to DnAC-6 in the case of constraint addition but is less efficient in the case
of constraint relaxation.

In the near future we are looking to integrating our dynamic arc consistency algo-
rithm during the backtrack search phase in order to handle the addition and relaxation
of constraints dynamically during the search. For instance, if a value from a variable
domain is deleted during the backtrack search, would it be worthwhile to use a DAC
algorithm to determine its effect or would it be more costly than just continuing on
with the backtrack search. Another perspective is to use our dynamic arc consistency
algorithm for solving conditional CSPs. Conditional CSPs are CSPs containing vari-
ables whose existence depends on the values chosen for other variables. In this case
our algorithm AC3.1|DC will have to maintain the arc consistency of the CSP any time
new variables and their corresponding constraints are added.
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