
Using Neural Nets for Max-TCSPs
Malek Mouhoub

Department of Computer Science
University of Regina

3737 Waskana Parkway,
Regina SK, Canada, S4S 0A2

email : mouhoubm@cs.uregina.ca

ABSTRACT

In this paper we present an approximation method
based on discrete Hopfield neural network (DHNN) for
solving Maximum Temporal Constraint Satisfaction Prob-
lems (Max-TCSPs). A Max-TCSP is a Constraint Satisfac-
tion Problem (CSP) involving numeric and symbolic tem-
poral constraints and where a solution satisfying the max-
imum number of constraints needs to be found within a
given deadline. The method that we propose in this paper
has the ability to provide a solution with a quality propor-
tional to the allocated process time. The quality of the solu-
tion corresponds here to the number of satisfied constraints.
This property is very important for real world applications
including reactive scheduling and planning and also for
over constrained problems where a complete solution can-
not be found. Experimental study, in terms of time cost
and quality of the solution provided, of the DHNN based
method we propose, provides promising results comparing
to the other exact methods based on branch and bound and
approximation methods based on stochastic local search.

KEY WORDS
Temporal Reasoning, Neural Networks, Hopfield Model,
Constraint Satisfaction, Planning and Scheduling.

1 Introduction

In 1985, John Hopfield and David Tank first attempted
using discrete Hopfield neural networks (DHNN) as an
approximation method to solve optimization problems,
mainly the Traveling Salesman Problem[1]. Since then,
there has been wide spread interest in applying neural
nets to solve a large variety of combinatorial optimization
problems[2][3].

In this paper we will use the Hopfield model as an
approximation method to solve the constraint satisfaction
problem (CSP)1 involving numeric and symbolic tempo-
ral constraints. We call it temporal constraint satisfaction
problem (TCSP)2. The goal here is to look for a solution

1A CSP (Constraint Satisfaction Problem)[4][5] [6][7] involves a list
of variables defined on finite domains of values and a list of rela-
tions (constraints) between variables. A binary CSP is a CSP where the
relations are binary.

2Note that this name and the corresponding acronym was used in [8].

that satisfies the maximum number of temporal constraints
of the problem within a given deadline. More precisely the
resolution method we propose has the ability to provide a
solution with a quality proportional to the allocated pro-
cess time. The quality corresponds here to the number of
solved constraints. This property is of interest in many real
world applications such as reactive scheduling and plan-
ning where the resolution method can be interrupted at any
time and provides the optimal solution at that time. We talk
then about anytime method (see [10] for more details about
anytime algorithms). Also the method can be used to solve
over constrained problems (problems where a complete so-
lution cannot be found) by providing a partial solution sat-
isfying the maximal number of temporal constraints.

In a previous work[11][12], we have proposed two
type of anytime methods for solving TCSPs. The first
one is an exact algorithm based on partial constraint sat-
isfaction techniques[13]. Local consistency techniques and
backtrack search methods we have used to solve TCSPs
in general [9] were adapted to cope with, and take advan-
tage of, the differences between partial and complete con-
straint satisfaction. The exact method is based on branch
and bound techniques and has the advantage to provide a
solution that is guaranteed to be optimal [11]. However,
as we mentioned in [11][12], this method is impractical
for large size problems and is in general useful to ver-
ify the optimality and, therefore, the quality of the solu-
tion returned by approximation methods. The second type
of methods are approximation algorithms based on local
search techniques (Min-Conflict Random Walk (MCRW),
Steepest Descent Random Walk (STRW) and Tabu Search).
This second type of methods does not guarantee the opti-
mality of the solution provided (as it is the case of the exact
method) but are obviously of interest when they provide
near optimal solutions.

In order to evaluate the performance in time of the
method based on DHNN we propose, experimental com-
parisons with the exact and approximation methods we
mentioned above have been performed on randomly gen-
erated temporal constraint problems. This study shows that
the method based on DHNN presents promising results in

This latter approach is different from our method in the way numeric (and
also symbolic) constraints are represented. See [9] for a comparison of
the two methods.



the case of over-constrained problems.
The rest of the paper is organized as follows. In the

next section we will present, through an example, our tem-
poral model TemPro which represents symbolic and nu-
meric information in the form of temporal constraints. Sec-
tion 3 and 4 are dedicated respectively to the representation
of numeric and symbolic time information using Neural
Networks (the Hopfield model). Experimental comparison
of the DHNN based method with the other approximation
methods are reported in section 5. Finally, concluding re-
marks are presented in section 6.

2 CSP-based Representation of Numeric
and Symbolic Constraints : the model
TemPro

Relation Symbol Inverse Meaning
X precedes Y P P^ XXX YYY
X equals Y E E XXX

YYY
X meets Y M M^ XXXYYY
X overlaps Y O O^ XXXX

YYYY
X during y D D^ XXX

YYYYYY
X starts Y S Ŝ XXX

YYYYY
X finishes Y F F^ XXX

YYYYY

Table 1. Allen primitives

One important issue when dealing with problems in-
volving temporal information is the ability to manage both
the symbolic and numeric aspects of time. This motivates
us to develop the model TemPro[9], extending the Inter-
val Algebra defined by Allen[14] to handle numeric con-
straints. TemPro transforms any problem under qualita-
tive and quantitative constraints into a binary CSP where
constraints are disjunctions of Allen primitives[14] (see ta-
ble 1 for the definition of the 13 Allen primitives) and
variables, representing temporal events, are defined on
domains of time intervals. Each event domain contains
the Set of Possible Occurrences (SOPO) of numeric in-
tervals the corresponding event can take. The SOPO
is the numeric constraint of the event and is expressed
by the fourfold[earliest start, latest end, duration, step]
whereearliest start is the earliest start time of the event,
latest end is the latest end time of the event,duration is
the duration of the event, andstepis the discretization step
corresponding to the number of time units between the start
time of two adjacent intervals.

To illustrate the different components of the model

TemPro let us consider the following scheduling problem3 :

The production of two itemsA and B requires
three mono processor machinesM1,M2 andM3.
Each of the two items can be produced using two
different ways depending on the order in which
the machines are used. The process time of each
machine is variable and depends on the task to be
processed. The following lists the different ways
to produce each of the two items (the process time
for each machine is mentioned in brackets) :

itemA: M2(3),M1(3),M3(6) or
M2(3),M3(6),M1(3)

itemB: M2(2),M1(5),M2(2),M3(7) or
M2(2),M3(7),M2(2),M1(5)

The goal here is to find a possible schedule of the dif-
ferent machines to produce the two items and respecting all
the constraints of the problem. We also assume that items
A andB should be produced within 25 and 30 units of time
respectively.

In the following we will describe how is the above
problem transformed into a TCSP using our model Tem-
Pro. Figure 1 illustrates the graph representation of the
TCSP corresponding the the scheduling problem. A tem-
poral event corresponds here to the contribution of a given
machine to produce a certain item. For example, the event
AM1 corresponds to the use of machineM1 to produce the
item A, . . ., etc. 7 events are needed in total to produce the
two items as follows :

item A: AM2(3),AM1(3),AM3(6) or
AM2(3),AM3(6),AM1(3)

item B: BM21(2),BM1(5),BM22(2),BM3(7) or
BM21(2),BM3(7),BM22(2),BM1(5)

The translation to Allen primitives of the disjunction
of the two sequences required to produce itemB needs a
3-ary relation involvingBM1, BM22 andBM3. This rela-
tion states thatBM22 should occur betweenBM1 andBM3.
Since our temporal network handles only binary relations,
the way we use to represent this kind of 3-ary relations is
as follows : we create an additional event (EVT1) and rep-
resent the constraints for producing itemB as shown in fig-
ure 1. The durationX of EVT1 is greater (or equal) than the
sum of the durations ofBM1, BM22 andBM3.

3 Neural Representation of Numeric Con-
straints

To represent the event SOPO in terms of neurons, a two-
dimensional array is adequate. One axis depicts the time

3This problem is a simplified version of the scheduling problem taken
from [15].



AM2 AM1 AM3

BM22 BM21 BM1 BM3

EVT1

PM PP-MM-

PM

PP-MM- PP-MM- PP-MM- PP-MM-

PM

SF

PM PP-MM-

D

[0,25,3,1]=
{(0 3)..(22 25)}

[0,25,3,1]={(0 3)..(22 25)} [0,25,6,1]={(0 6)..(19 25)}

[0,30,2,1]=
{(0 2)..(28 30)} [0,30,2,1]=

{(0 2)..(28 30)}

[0,30,5,1]=
{(0 5)..(25 30)}

[0,30,7,1]={(0 7)..(23 30)}

[0,30,X,1]

Figure 1. TCSP corresponding to the problem presented in
example 1.

line; one neuron equates to one discretization step. The
other axis represents an individual SOPO event.

To represent an assignment of an interval to a par-
ticular event in terms of neural states, there should only
be two neurons ’on’ while the rest of the neurons ’off’ for
each given event. The two ’on’ neurons represent the start
and end times of the event interval. The distance between
them (number of neurons between the start and end time
neurons) represents the duration.

When dealing with the constraint and energy func-
tions, the ’on’ state is considered to be 1 and the ’off’ state
is considered to be 0. Each neuronai j represents a time
point i for a given neuronj. ai j can have only 2 possible
values 0 or 1.

The approach we use to satisfy the different temporal
constraints of the problem is essentially a Lagrangian relax-
ation of the constraints, i.e minimize the following energy
function :

F = α1C1 +α2C2 + · · ·+αnCn (1)

where :

• eachCi is a nonnegative penalty function representing
a given constraint and such thatCi = 0,

• and∀i αi > 0.

The energy functionF representing the numeric con-
straints will then be :

F = αF1 +βF2 (2)

where :

• F1 represents the fact that there should be exactly 2
activated neurons (equal to 1) per row (corresponding
to the end points of a given time interval).F! includes
also the constraint forcing each neuron to have a digi-
tal value (0 or 1).

F1 =
n

∑
i=1

[
h

∑
j=1

ai j −2]2 +
n

∑
i=1

h

∑
j=1

ai j (1−ai j ) (3)

n is the number of events andh is the constant
horizon (time before which all events should be pro-
cessed).

• F2 states that there are exactly 2 activated neurons per
row within the temporal window of the event (EVi)
and distant bydi . In other words, the role ofF2 is
to force a given temporal interval to appear within its
temporal window.

F2 =
n

∑
i=1

[
supi−di

∑
s=in fi

ais +ai,s+di −2]2 (4)

in fi , supi anddi are respectively the earliest start time,
latest end time and duration of a given event.

By comparingF1 and F2 with the following energy
function of the Hopfield net H, we are able to find proper
weightsw and thresholdswo for the network.

H =−1
2 ∑

i, j,k,l

wij ,kl ai j akl−∑
i, j

woij ai j (5)

If we multiply out the summations in (2) we obtain
constant terms, linear terms proportional to oneai j and
quadratic terms with twoai j ’s. The quadratic terms can be
represented by connectionswi j ,kl between the units, while
the linear terms can be considered as thresholds.

4 Neural Representation of Symbolic Con-
straints

As we mentioned in section 2, in our model TemPro
qualitative constraints are disjunctions of Allen primitives.
Thus, to represent qualitative constraints using neural
networks, we need to find a neural representation for each
of the 13 primitives (see table 1 for the definition of the
13 Allen primitives). To do so we need first to define the
Allen primitives in the form of a list of equations involving
the end points of the intervals and their durations. Table 2
defines the equations corresponding the Allen primitives
E,S,M,D,O,F andS. The inverse relations are defined in
a similar way.begin, endanddur are functions returning
respectively the start time, end time and duration of a
given numeric interval. In the following, we will present
the conversion of the equations defined in table 2 to energy
functions.

I E J : FE = ∑in fi≤k≤supi−di
(ni,k+di + n j,k+d j + ni,k+di +

n j,k+d j −4)
I F J : FF = ∑in f j≤k≤supj−d j

(ni,k+d j−di + n j,k + ni,k+di +
n j,k+d j −4)
I M J : FM = ∑in fi≤k≤supi−di

(ni,k+di +n j,k−2)
I P J : FP = ∑1≤p≤max∑in fi≤k≤supi−di

(ni,k+p +n j,k−2)
I D J : FD = ∑in f j≤k≤supj−d j

(ni,k + n j,k+a + ni,k+di+b +
n j,k+d j − 4) + ∑1≤dur j−duri ∑1≤dur j−duri (a + b − duri −
dur j)



Allen Primitive Corresponding Equation

X P Y begin(X)+ p = begin(Y), p > 0

X E Y
begin(X) = begin(Y)

end(X) = end(Y)

X M Y end(X) = begin(Y)

X D Y

begin(Y)+a = begin(X)

end(X)+b = end(Y),

a+b = dur(Y)−dur(X)

X O Y

begin(X)+a = begin(Y)

end(Y)+b = end(X)

end(X)+c = end(Y)

a+b = dur(X)

b+c = dur(Y)

X F Y
end(X) = end(Y)

begin(X) = begin(Y)+dur(Y)−dur(X)

X S Y
begin(X) = begin(Y)

end(X)+dur(Y) = end(Y)+dur(X)

Table 2. Definitions of Allen primitives.

I O J : FO = ∑in fi≤k≤supi−di
(ni,k+a + n j,k + n j,k+d j+b +

ni,k+di + ni,k+di+c + n j,k+d j −6)+ ∑1≤duri (a+ b−duri)+
∑1≤dur j

(b+c−dur j)

5 Experimentation

In this section, we present comparative tests concerning dif-
ferent approximation algorithms based on local search, namely
the Min-Conflict-Random-walk (MCRW), the Steepest-Descent-
Random-Walk (SDRW) and the Tabu Search methods; and the
method based on DHNN we propose. Tests are performed on con-
sistent and inconsistent temporal constraint problems, each hav-
ing 200 variables and randomly generated as shown in subsection
5.1. The experiments are performed on a SUN SPARC Ultra 5
station. All the procedures are coded in C/C++.

We use two criteria to compare the different approximation
methods. The first one is the quality of the solution, i.e the min-
imum number of violated constraints of the solution provided by
the method. The second criterion is the computing effort needed
by an algorithm to find its best solution. This last criterion is mea-
sured by the running time in seconds required by each algorithm.

5.1 Generated Instances

Each generated problem is characterized by two parameters :N
the number of events andHorizonthe parameter before which all
events must be processed. In the following we will describe the
generation of consistent and inconsistent problems.

5.1.1 Generation of Consistent Problems

Consistent problems of sizeN are those having at least one com-
plete numeric solution (set ofN numeric intervals satisfying all
the constraints of the problem). Thus to generate a consistent
problem we first randomly generate a numeric solution and then
add other other numeric and symbolic information to it. More
precisely the generation is performed in the following steps.

1. Generation of the numeric solution : Randomly pick
N pairs (x,y) of integers such thatx < y and
x,y ∈ [0, . . . ,Horizon] (Horizon is the parameter be-
fore which all events must be processed). This set ofN
pairs forms the initial solution where each pair corresponds
to a time interval.

2. Generation of the numeric constraints : For each inter-
val (x,y) randomly pick an interval contained within
[0..Horizon] and containing the interval(x,y). This newly
generated interval defines the SOPO of the corresponding
variable.

3. Generation of the symbolic constraints :Compute the basic
Allen primitives that can hold between each interval pair of
the initial solution. Add to each relation a random number
in the interval[0,Nr] (1≤ Nr ≤ 13) of chosen Allen primi-
tives.

5.1.2 Generation of Inconsistent Problems

Each inconsistent problem of sizen (n is the number of variables)
is generated using the following steps :

1. Generation of numeric constraints : Randomly pickn pairs
of ordered values(x,y) such thatx,y ∈ [0, . . . ,Horizon]. x
andy are respectively considered the earliest start time and
the latest end time of a given event. For each pair of value
(x,y), randomly pick a numberd ∈ [1. . .y−x]. d is consid-
ered the duration of the event.

2. Generation of symbolic constraints : Randomly generatec

constraints between then events wherec∈ [1. . .
n(n−1)

2 ] (c=
n(n−1)

2 in the case of a complete graph of constraints). Each
constraintc is a disjunction of a random numbernb(nb∈
[1. . .13]) of relations chosen randomly from the set of the
13 Allen primitives.

3. Consistency check of the generated problem :Perform a
backtrack search algorithm on the generated problem. If the
problem is consistentgoto 1and generate another problem
otherwise the problem is inconsistent.

The generated problems are characterized by their tightness,
which can be measured, as shown in [16], by the fraction of all
possible pairs of values from the domain of two variables that are
not allowed by the constraint. The tightness depends in our case
on the parametersHorizon(time before which all tasks should be



Tightness MCRW SDRW Tabu Search DHNN
of the problem qual time # moves qual time # moves qual time # moves qual time
0.0002 0 0.12 5 0 2.67 80 0 0.17 4 0 3.12
0.0004 0 0.28 18 0 4.95 136 1 37 5000 0 6.18
0.001 0 0.46 28 0 8.24 193 0 0.6 16 0 7.34
0.002 0 0.95 68 0 11.22 212 2 94 10000 0 22
0.0037 0 1.74 145 0 126 712 1 88 10000 0 37
0.006 0 4 255 0 33 336 3 86 10000 0 56
0.03 0 86 3713 33 33802 10000 12 249 10000 0 77
0.044 0 73 1633 4 9595 10000 25 355 10000 0 66
0.045 0 72 1633 4 9614 10000 16 376 10000 0 65
0.058 0 15 433 74 12333 10000 12 364 10000 0 60
0.1 0 12 332 0 34 225 0 112 211 0 33
0.14 0 8.47 304 0 39 243 0 112 193 0 27
0.35 0 181 2009 0 66 210 68 714 10000 0 32
0.44 0 137 1291 220 8346 10000 63 646 10000 0 38
0.55 0 315 2505 0 66 210 0 262 190 0 34
0.67 372 13945 100000 0 130 297 0 422 224 20 112
0.75 412 14818 100000 0 147 301 0 511 317 17 117
0.80 397 14231 100000 0 159 228 0 547 362 11 129
0.87 511 16359 100000 0 221 412 0 601 413 23 134
0.95 258 11820 100000 0 112 286 0 433 328 12 92

Table 3. Comparative results of Tabu Search, MCRW, SDRW and the DHNN based method for consistent problems

Tightness MCRW SDRW Tabu Search DHNN B Bound
of the problem qual time # moves qual time # moves qual time # moves qual time qual
0.0002 8 0.44 32 8 4.5 107 8 0.28 6 12 120 8
0.001 10 0.7 53 10 10.26 199 11 242 10000 15 88 10
0.002 2 0.68 43 3 7.77 183 2 194 10000 8 49 2
0.0037 14 1237 9100 14 14.62 238 18 230 10000 20 22 14
0.006 20 5.83 425 20 33 336 22 377 10000 24 27 20
0.03 21 190 5406 32 3663 10000 85 341 10000 25 105 21
0.044 43 853 25 46 4827 10000 45 255 10000 43 120 43
0.1 41 10 318 106 41 233 91 25 230 41 22 41
0.14 208 10.14 279 208 37 215 230 22 197 208 22 208
0.35 141 259 3015 141 439 554 141 201 415 141 34 141
0.44 531 105 271 531 82 216 531 48 195 531 22 531
0.67 858 156 315 858 98 206 924 58 224 858 27 858
0.75 911 162 100000 0 147 301 0 511 317 17 117 913
0.80 923 177 100000 0 159 228 0 547 362 11 129 923
0.87 816 211 100000 0 221 412 0 601 413 23 134 1021
0.95 789 123 100000 0 112 286 0 433 328 12 92 818

Table 4. Comparative results of Tabu Search, MCRW, SDRW and the DHNN based method for non consistent problems

processed),Nr (the maximal number of Allen primitives per sym-
bolic constraint) and the density of the problem (2C

N(N−1) whereC

is the number of constraints of the problem).

5.2 Results

Table 3 presents the results of the tests performed on
randomly generated temporal consistent problems. It
gives a summary of the best results of MCRW, SDRW,
Tabu Search and the DHNN based method for the chosen
instances in terms of quality of the solutions. The results
correspond to the average running time and the quality
of the solution provided by each method. To obtain
these results, the algorithms were run 100 times on each
instance, each run being given a maximum of 100,000
moves in the case of MCRW and 10,000 moves in the case
of SDRW and Tabu Search. Note that, as mentioned in
[12], the cost in time of a move in the case of Tabu Search

and SDRW is equal toN times the cost of a move in the
case of the MCRW method, whereN is the number of
variables (events).

From the data of Table 3, when comparing the meth-
ods based on local search we can make the following ob-
servations. For under-constrained and middle-constrained
problems, the MCRW method always provides the best re-
sults. It always founds a complete solution within a rea-
sonable amount of time which is not the case of the other
two methods. It is also faster than the other two methods
to find solutions of the same quality. However for over-
constrained problems (see last row of table 3) SDRW and
Tabu Search have better performance. We can explain this
by the fact that, for under constrained problems the initial
configuration is in general of good quality. A complete so-
lution can be obtained in this case by only changing the
values of some conflicting variables (case of MCRW) in-
stead of looking for the best neighbor which is much more



expensive.
When comparing the DHNN based method with the meth-
ods based on Local search, we notice that the former one
provides comparable results if not better for middle con-
strained and over-constrained problems.

Table 4 presents tests performed on randomly gener-
ated inconsistent temporal problems. For each instance, the
exact method based on branch and bound techniques[11]
was first performed in order to get the optimal solu-
tion (solution with the minimum number of violated con-
straints). The three algorithms are then run 100 times on
each instance, each run being given a maximum of 100,000
moves in the case of MCRW and 10,000 moves in the case
of SDRW and Tabu search.

From table 4 we can make the same observations we
made for table 3 i.e the MCRW method is the algorithm of
choice if we have to deal with under-constrained or middle-
constrained problems. The effort made by SDRW and Tabu
Search methods to look for the best neighbor helps only in
the case of over constrained problems. As we can easily
see, the DHNN based method is the best one for middle
constrained and over constrained problems. The Branch
and Bound method is used here to check the goodness of
solution provided by the approximation method.

6 Conclusion

In this paper we have presented an approximation method
based on discrete Hopfield neural network (DHNN) for
solving problems involving numeric and symbolic tempo-
ral constraints. When dealing with these kind of problems
in the real world, we often look for a solution that solves
the maximal number of temporal constraints instead of a
complete one. This can be the case of over constrained
problems or those problems where a solution needs to be
found within a given deadline.

In order to evaluate the performance of the DHNN
based method we propose, experimental comparison with
approximation methods based on local search have been
performed. Results show that the DHNN based method
presents better results for middle constrained and over con-
strained problems.

References

[1] J.J. Hopfield and D.W. Tank. Neural computation of
decisions in optimization problems.Biological Cy-
bernetics, 52:141–152, 1985.

[2] G. A. Tagliarini, J. F. Christ, and E.W. Page. Opti-
mization using neural networks.IEEE transactions
on computers, 40:1347–1358, 1991.

[3] Kate A. Smith. Neural networks for combinatorial
optimization : A review of more than a decade of re-
search.INFORMS Journal of Computing, 11(1):15–
33, 1999.

[4] E. Tsang.Foundation of Constraint Satisfaction. Aca-
demic Press, 1994.

[5] A. K. Mackworth. Consistency in networks of rela-
tions. Artificial Intelligence, 8:99–118, 1977.

[6] A. K. Mackworth and E. Freuder. The complexity
of some polynomial network-consistency algorithms
for constraint satisfaction problems.Artificial Intelli-
gence, 25:65–74, 1985.

[7] R.M. Haralick and G.L. Elliott. Increasing tree search
efficiency for Constraint Satisfaction Problems.Arti-
ficial Intelligence, 14:263–313, 1980.

[8] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks.Artificial Intelligence, 49:61–95, 1991.

[9] M. Mouhoub, F. Charpillet, and J.P. Haton. Ex-
perimental Analysis of Numeric and Symbolic Con-
straint Satisfaction Techniques for Temporal Reason-
ing. Constraints: An International Journal, 2:151–
164, Kluwer Academic Publishers, 1998.

[10] S. Zilberstein and S. J. Russell. Optimal composi-
tion of real-time systems.Artificial Intelligence, 82(1-
2):181–213, 1996.

[11] M. Mouhoub. Reasoning about Numeric and Sym-
bolic Time Information. Inthe Twelfth IEEE In-
ternational Conference on Tools with Artificial In-
telligence(ICTAI’2000), pages 164–172, Vancouver,
2000. IEEE Computer Society.

[12] M. Mouhoub. Analysis of Approximation Algorithms
for Maximal Temporal Constraint Satisfaction Prob-
lems. InThe 2001 International Conference on Arti-
ficial Intelligence (IC-AI’2001), pages 165–171, Las
Vegas, 2001.

[13] R. J. Wallace. Partial constraint satisfaction.Lecture
Notes in Computer Science, 923:121–138, 1995.

[14] J.F. Allen. Maintaining knowledge about temporal in-
tervals.CACM, 26(11):832–843, 1983.

[15] P. Laborie.Une approche int́egŕee pour la gestion de
ressources et la synthèse de plans. PhD thesis,́Ecole
Nationale Suṕerieure des T́elécommunications, 1995.

[16] D. Sabin and E. C. Freuder. Contradicting conven-
tional wisdom in constraint satisfaction. InProc. 11th
ECAI, pages 125–129, Amsterdam, Holland, 1994.


