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ABSTRACT

In this paper we present an approximation method
based on discrete Hopfield neural network (DHNN) for
solving Maximum Temporal Constraint Satisfaction Prob-
lems (Max-TCSPs). A Max-TCSP is a Constraint Satisfac-
tion Problem (CSP) involving numeric and symbolic tem-
poral constraints and where a solution satisfying the max-
imum number of constraints needs to be found within a
given deadline. The method that we propose in this paper
has the ability to provide a solution with a quality propor-
tional to the allocated process time. The quality of the solu-
tion corresponds here to the number of satisfied constraints.
This property is very important for real world applications
including reactive scheduling and planning and also for
over constrained problems where a complete solution can-
not be found. Experimental study, in terms of time cost
and quality of the solution provided, of the DHNN based
method we propose, provides promising results comparing
to the other exact methods based on branch and bound and
approximation methods based on stochastic local search.
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1 Introduction

In 1985, John Hopfield and David Tank first attempted
using discrete Hopfield neural networks (DHNN) as an
approximation method to solve optimization problems,
mainly the Traveling Salesman Problem[1]. Since then,
there has been wide spread interest in applying neural
nets to solve a large variety of combinatorial optimization
problems[2][3].

In this paper we will use the Hopfield model as an
approximation method to solve the constraint satisfaction
problem (CSP) involving numeric and symbolic tempo-
ral constraints. We call it temporal constraint satisfaction
problem (TCSP). The goal here is to look for a solution

1A CSP (Constraint Satisfaction Problem)[4][5] [6][7] involves a list
of variables defined on finite domains of values and a list of rela-
tions (constraints) between variables. A binary CSP is a CSP where the
relations are binary.

’Note that this name and the corresponding acronym was used in [8].

that satisfies the maximum number of temporal constraints
of the problem within a given deadline. More precisely the
resolution method we propose has the ability to provide a
solution with a quality proportional to the allocated pro-
cess time. The quality corresponds here to the number of
solved constraints. This property is of interest in many real
world applications such as reactive scheduling and plan-
ning where the resolution method can be interrupted at any
time and provides the optimal solution at that time. We talk
then about anytime method (see [10] for more details about
anytime algorithms). Also the method can be used to solve
over constrained problems (problems where a complete so-
lution cannot be found) by providing a partial solution sat-
isfying the maximal number of temporal constraints.

In a previous work[11][12], we have proposed two
type of anytime methods for solving TCSPs. The first
one is an exact algorithm based on partial constraint sat-
isfaction techniques[13]. Local consistency techniques and
backtrack search methods we have used to solve TCSPs
in general [9] were adapted to cope with, and take advan-
tage of, the differences between partial and complete con-
straint satisfaction. The exact method is based on branch
and bound techniques and has the advantage to provide a
solution that is guaranteed to be optimal [11]. However,
as we mentioned in [11][12], this method is impractical
for large size problems and is in general useful to ver-
ify the optimality and, therefore, the quality of the solu-
tion returned by approximation methods. The second type
of methods are approximation algorithms based on local
search techniques (Min-Conflict Random Walk (MCRW),
Steepest Descent Random Walk (STRW) and Tabu Search).
This second type of methods does not guarantee the opti-
mality of the solution provided (as it is the case of the exact
method) but are obviously of interest when they provide
near optimal solutions.

In order to evaluate the performance in time of the
method based on DHNN we propose, experimental com-
parisons with the exact and approximation methods we
mentioned above have been performed on randomly gen-
erated temporal constraint problems. This study shows that
the method based on DHNN presents promising results in

This latter approach is different from our method in the way numeric (and
also symbolic) constraints are represented. See [9] for a comparison of
the two methods.



the case of over-constrained problems.

The rest of the paper is organized as follows. In the
next section we will present, through an example, our tem-
poral model TemPro which represents symbolic and nu-
meric information in the form of temporal constraints. Sec-
tion 3 and 4 are dedicated respectively to the representation
of numeric and symbolic time information using Neural
Networks (the Hopfield model). Experimental comparison
of the DHNN based method with the other approximation
methods are reported in section 5. Finally, concluding re-
marks are presented in section 6.

2 CSP-based Representation of Numeric

and Symbolic Constraints: the model
TemPro
Relation Symbol | Inverse| Meaning
X precedes Y P P- XXXYYY
X equalsY E E XXX
YYY
X meets Y M M~ XXXYYY
X overlaps Y (0] (O XXXX
YYYY
X duringy D D— XXX
YYYYYY
Xstarts Y S S- XXX
YYYYY
X finishes Y F F- XXX
YYYYY

Table 1. Allen primitives

One important issue when dealing with problems in-
volving temporal information is the ability to manage both
the symbolic and numeric aspects of time. This motivates
us to develop the model TemPro[9], extending the Inter-
val Algebra defined by Allen[14] to handle numeric con-
straints. TemPro transforms any problem under qualita-
tive and quantitative constraints into a binary CSP where
constraints are disjunctions of Allen primitives[14] (see ta-
ble 1 for the definition of the 13 Allen primitives) and
variables, representing temporal events, are defined on
domains of time intervals. Each event domain contains
the Set of Possible Occurrences (SOPO) of numeric in-
tervals the corresponding event can take. The SOPO
is the numeric constraint of the event and is expressed
by the fourfold[earliest start, latestend, duration step
whereearlieststart is the earliest start time of the event,
latestendis the latest end time of the evemturationis
the duration of the event, arstle pis the discretization step
corresponding to the number of time units between the start
time of two adjacent intervals.

To illustrate the different components of the model

TemPro let us consider the following scheduling problem

The production of two itemA and B requires
three mono processor machinkgls, M, and Ms.
Each of the two items can be produced using two
different ways depending on the order in which
the machines are used. The process time of each
machine is variable and depends on the task to be
processed. The following lists the different ways
to produce each of the two items (the process time
for each machine is mentioned in brackets) :

itemA:  M2(3),M1(3),M3(6) or
M2(3),M3(6),M1(3)

itemB:  M2(2),M1(5),M2(2),M3(7) or
M2(2)7M3(7)7M2(2)7M1(5)

The goal here is to find a possible schedule of the dif-
ferent machines to produce the two items and respecting all
the constraints of the problem. We also assume that items
A andB should be produced within 25 and 30 units of time
respectively.

In the following we will describe how is the above
problem transformed into a TCSP using our model Tem-
Pro. Figure 1 illustrates the graph representation of the
TCSP corresponding the the scheduling problem. A tem-
poral event corresponds here to the contribution of a given
machine to produce a certain item. For example, the event
AM; corresponds to the use of machiMe to produce the
itemA, ..., etc. 7 events are needed in total to produce the
two items as follows :

itemA:  AMy(3),AM;(3 ) AM3(6) or
AM2(3), AM3(6), AM1(3)
item B: BM21(2),BM;(5),BM2(2),BM3(7) or
(2

\/\/

BM,1(2),BM5(7),BM22(2), BMy (5

The translation to Allen primitives of the disjunction
of the two sequences required to produce it@meeds a
3-ary relation involvingBM;, BM2; andBMgs. This rela-
tion states thaBM,» should occur betweeBM; andBMs.
Since our temporal network handles only binary relations,
the way we use to represent this kind of 3-ary relations is
as follows : we create an additional evelB¥(T;) and rep-
resent the constraints for producing it&as shown in fig-
ure 1. The duratioX of EV Ty is greater (or equal) than the
sum of the durations dM;, BM»2 andBMs.

3 Neural Representation of Numeric Con-
straints

To represent the event SOPO in terms of neurons, a two-
dimensional array is adequate. One axis depicts the time

3This problem is a simplified version of the scheduling problem taken
from [15].
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Figure 1. TCSP corresponding to the problem presented in
example 1.

line; one neuron equates to one discretization step. The
other axis represents an individual SOPO event.

To represent an assignment of an interval to a par-
ticular event in terms of neural states, there should only
be two neurons 'on’ while the rest of the neurons ’off’ for
each given event. The two 'on’ neurons represent the start
and end times of the event interval. The distance between
them (number of neurons between the start and end time
neurons) represents the duration.

When dealing with the constraint and energy func-
tions, the 'on’ state is considered to be 1 and the 'off’ state
is considered to be 0. Each neurap represents a time
pointi for a given neurorj. aj can have only 2 possible
values O or 1.

The approach we use to satisfy the different temporal
constraints of the problem is essentially a Lagrangian relax-
ation of the constraints, i.e minimize the following energy
function:

F=0a1C+02C+--- +anCq (1)
where :

e eachC is a nonnegative penalty function representing
a given constraint and such thgt= 0,

e andvia; > 0.

The energy functiofr representing the numeric con-
straints will then be :

F =oaF +BR (2)

where:

e F; represents the fact that there should be exactly 2
activated neurons (equal to 1) per row (corresponding
to the end points of a given time intervak). includes
also the constraint forcing each neuron to have a digi-
tal value (O or 1).

n h

n h
:[leaij—z]2+i;zaij(l—aij) (3)

FL=
i =1

M

n is the number of events and is the constant
horizon (time before which all events should be pro-
cessed).

e [, states that there are exactly 2 activated neurons per
row within the temporal window of the everiYf)
and distant byd,. In other words, the role of; is
to force a given temporal interval to appear within its
temporal window.

n sup—d

= =i;[$%ﬁ ais + & siq, — 22 @)

infi, sup andd; are respectively the earliest start time,
latest end time and duration of a given event.

By comparingF; and F with the following energy
function of the Hopfield net H, we are able to find proper
weightsw and thresholdsvo for the network.

1
H=_=

5 2 Wik aijak — > Woj aij %)
]

i1,k

If we multiply out the summations in (2) we obtain
constant terms, linear terms proportional to ajeand
quadratic terms with tway;’s. The quadratic terms can be
represented by connectiong x between the units, while
the linear terms can be considered as thresholds.

4 Neural Representation of Symbolic Con-
straints

As we mentioned in section 2, in our model TemPro
gualitative constraints are disjunctions of Allen primitives.
Thus, to represent qualitative constraints using neural
networks, we need to find a neural representation for each
of the 13 primitives (see table 1 for the definition of the
13 Allen primitives). To do so we need first to define the
Allen primitives in the form of a list of equations involving
the end points of the intervals and their durations. Table 2
defines the equations corresponding the Allen primitives
E,SM,D,O,F andS. The inverse relations are defined in

a similar way. begin endanddur are functions returning
respectively the start time, end time and duration of a
given numeric interval. In the following, we will present
the conversion of the equations defined in table 2 to energy
functions.

' E J: Fe = Jinfi<kesup—d (Miktdi + Njkid; + Nikig +
Njkid, —4)

I F 30 Fr = Sinfj<k<sup—d; (Nikidj—c + Njk + Niksg +
Njkid —4)

IMJ v = Sinfi<k<sup—d (Nik+d +Njk—2)

IPJ. = Zlgpgmaxszigkgsunfdi (ni-,kJrP +Njk— 2)

I' D J: Fo = Yinf<k<sup—d; Mk + Njkta + Mkig+b +
Njktdj — 4) + 2 1<durj—dur, 2. 1<durj—dur, (@+ b —dur —
durj)



[ Allen Primitive | Corresponding Equation

XPY begin(X) + p = beginY), p>0
XEY beginX) = beginY)
endX) endY)
XMY end(X) = begin(Y)
beginY)+a = beginX)
XDY endX)+b = endY),
a+b dur(Y) —dur(X)
beginX)+a = beginY)
endY)+b = endX)
XOY endX)+c = endY)
a+b = dur(X)
b+c = dur(Y)
endX) = endY)
XFY beginX) = beginY)+dur(Y) —dur(X)
beginX) = beginY)
XSY endX)+durY) = endY)-+dur(X)

Table 2. Definitions of Allen primitives.

I O J: Fo = Yinfi<k<sup—d (Nik+a + Njk + Nj k+dj+b +
Mikdy + Mkt dp+c + Njkrd; — 6) + Y1<duy (@+b—dur) +
2 1<dur; (b+c—durj)

5 Experimentation

In this section, we present comparative tests concerning dif-
ferent approximation algorithms based on local search, namely
the Min-Conflict-Random-walk (MCRW), the Steepest-Descent-
Random-Walk (SDRW) and the Tabu Search methods; and the
method based on DHNN we propose. Tests are performed on con-
sistent and inconsistent temporal constraint problems, each hav-
ing 200 variables and randomly generated as shown in subsection
5.1. The experiments are performed on a SUN SPARC Ultra 5
station. All the procedures are coded in C/C++.

We use two criteria to compare the different approximation
methods. The first one is the quality of the solution, i.e the min-
imum number of violated constraints of the solution provided by
the method. The second criterion is the computing effort needed
by an algorithm to find its best solution. This last criterion is mea-
sured by the running time in seconds required by each algorithm.

5.1 Generated Instances

Each generated problem is characterized by two paramekérs :
the number of events ardlorizonthe parameter before which all
events must be processed. In the following we will describe the
generation of consistent and inconsistent problems.

5.1.1 Generation of Consistent Problems

Consistent problems of si2¢ are those having at least one com-
plete numeric solution (set df numeric intervals satisfying all
the constraints of the problem). Thus to generate a consistent
problem we first randomly generate a numeric solution and then
add other other numeric and symbolic information to it. More
precisely the generation is performed in the following steps.

1. Generation of the numeric solution : Randomly pick
N pairs (x,y) of integers such thatx < y and
X,y € [0,...,Horizon (Horizon is the parameter be-
fore which all events must be processed). This seNof
pairs forms the initial solution where each pair corresponds
to a time interval.

2. Generation of the numeric constraints: For each inter-
val (x,y) randomly pick an interval contained within
[0..Horizon and containing the intervdk,y). This newly
generated interval defines the SOPO of the corresponding
variable.

3. Generation of the symbolic constraints : Compute the basic
Allen primitives that can hold between each interval pair of
the initial solution. Add to each relation a random number
in the interval[O,Nr] (1 < Nr < 13) of chosen Allen primi-
tives.

5.1.2 Generation of Inconsistent Problems

Each inconsistent problem of sinén is the number of variables)
is generated using the following steps:

1. Generation of numeric constraints : Randomly pickn pairs
of ordered valuegx,y) such thatx,y € [0,...,Horizon. x
andy are respectively considered the earliest start time and
the latest end time of a given event. For each pair of value
(x,y), randomly pick a numbett € [1...y—X]. d is consid-
ered the duration of the event.

2. Generation of symbolic constraints : Randomly generate

constraints between timevents wheree [1... @] (c=
w in the case of a complete graph of constraints). Each
constraintc is a disjunction of a random numbab(nb €
[1...13)) of relations chosen randomly from the set of the

13 Allen primitives.

3. Consistency check of the generated problemPerform  a
backtrack search algorithm on the generated problem. If the
problem is consistergoto 1and generate another problem
otherwise the problem is inconsistent.

The generated problems are characterized by their tightness,
which can be measured, as shown in [16], by the fraction of all
possible pairs of values from the domain of two variables that are
not allowed by the constraint. The tightness depends in our case
on the parametetd orizon(time before which all tasks should be



Tightness MCRW SDRW Tabu Search \ DHNN
of the problem| qual | time | #moves| qual | time | # moves| qual | time | # moves| qual | time
0.0002 0 0.12 5 0 2.67 80 0 | 017 4 0 | 312
0.0004 0 0.28 18 0 4.95 136 1 37 5000 0 |6.18
0.001 0 0.46 28 0 8.24 193 0 0.6 16 0 | 734
0.002 0 0.95 68 0 11.22 212 2 94 10000 0 22
0.0037 0 1.74 145 0 126 712 1 88 | 10000 0 37
0.006 0 4 255 0 33 336 3 86 | 10000 0 56
0.03 0 86 3713 33 | 33802| 10000 | 12 | 249 | 10000 0 77
0.044 0 73 1633 4 9595 | 10000 | 25 | 355 | 10000 0 66
0.045 0 72 1633 4 9614 | 10000 | 16 | 376 | 10000 0 65
0.058 0 15 433 74 | 12333| 10000 | 12 | 364 | 10000 0 60
0.1 0 12 332 0 34 225 0 112 211 0 33
0.14 0 8.47 304 0 39 243 0 | 112 193 0 27
0.35 0 181 2009 0 66 210 68 | 714 | 10000 0 32
0.44 0 137 1291 | 220 | 8346 | 10000 | 63 | 646 | 10000 0 38
0.55 0 315 2505 0 66 210 0 | 262 190 0 34
0.67 372 | 13945| 100000 | O 130 297 0 422 224 20 | 112
0.75 412 | 14818| 100000 | O 147 301 0 511 317 17 | 117
0.80 397 | 14231 | 100000 | O 159 228 0 547 362 11 | 129
0.87 511 | 16359| 100000 | O 221 412 0 601 413 23 | 134
0.95 258 | 11820| 100000 | O 112 286 0 | 433 328 12 | 92

Table 3. Comparative results of Tabu Search, MCRW, SDRW and the DHNN based method for consistent problems

Tightness MCRW SDRW TabuSearch [ DHNN [ BBound
of the problem| qual | time | # moves| qual | time | # moves| qual | time | # moves| qual | time qual
0.0002 8 | 0.44 32 8 4.5 107 8 | 0.28 6 12 | 120 8
0.001 10 | 0.7 53 10 | 10.26 199 11 | 242 | 10000 | 15 | 88 10
0.002 2 | 0.68 43 3 7.77 183 2 194 | 10000 8 49 2
0.0037 14 | 1237 | 9100 14 | 1462| 238 18 | 230 | 10000 | 20 | 22 14
0.006 20 | 5.83 425 20 33 336 22 | 377 | 10000 | 24 | 27 20
0.03 21 | 190 5406 32 | 3663 | 10000 | 85 | 341 | 10000 | 25 | 105 21
0.044 43 | 853 25 46 | 4827 | 10000 | 45 | 255 | 10000 | 43 | 120 43
0.1 41 10 318 106 | 41 233 91 | 25 230 41 | 22 41
0.14 208 | 10.14 279 208 37 215 230 | 22 197 208 | 22 208
0.35 141 | 259 3015 141 | 439 554 141 | 201 415 141 | 34 141
0.44 531 | 105 271 531 | 82 216 531 | 48 195 531 | 22 531
0.67 858 | 156 315 858 98 206 924 | 58 224 858 | 27 858
0.75 911 | 162 | 100000| O 147 301 0 | 511 317 17 | 117 913
0.80 923 | 177 | 100000| O 159 228 0 | 547 362 11 | 129 923
0.87 816 | 211 | 100000| O 221 412 0 | 601 413 23 | 134 1021
0.95 789 | 123 | 100000| O 112 286 0 | 433 328 12 | 92 818

Table 4. Comparative results of Tabu Search, MCRW, SDRW and the DHNN based method for non consistent problems

processed)\r (the maximal number of Allen primitives per sym-
bolic constraint) and the density of the problemﬁ%l) whereC
is the number of constraints of the problem).

5.2 Results

Table 3 presents the results of the tests performed on
randomly generated temporal consistent problems. It
gives a summary of the best results of MCRW, SDRW,

Tabu Search and the DHNN based method for the chosen
instances in terms of quality of the solutions. The results
correspond to the average running time and the quality
of the solution provided by each method. To obtain

these results, the algorithms were run 100 times on each
instance, each run being given a maximum of 100,000
moves in the case of MCRW and 10,000 moves in the case
of SDRW and Tabu Search. Note that, as mentioned in
[12], the cost in time of a move in the case of Tabu Search

and SDRW is equal td times the cost of a move in the
case of the MCRW method, whef¢ is the number of
variables (events).

From the data of Table 3, when comparing the meth-
ods based on local search we can make the following ob-
servations. For under-constrained and middle-constrained
problems, the MCRW method always provides the best re-
sults. It always founds a complete solution within a rea-
sonable amount of time which is not the case of the other
two methods. It is also faster than the other two methods
to find solutions of the same quality. However for over-
constrained problems (see last row of table 3) SDRW and
Tabu Search have better performance. We can explain this
by the fact that, for under constrained problems the initial
configuration is in general of good quality. A complete so-
lution can be obtained in this case by only changing the
values of some conflicting variables (case of MCRW) in-
stead of looking for the best neighbor which is much more



expensive.

When comparing the DHNN based method with the meth-
ods based on Local search, we notice that the former one
provides comparable results if not better for middle con-
strained and over-constrained problems.

Table 4 presents tests performed on randomly gener-
ated inconsistent temporal problems. For each instance, the
exact method based on branch and bound techniques[11]
was first performed in order to get the optimal solu-
tion (solution with the minimum number of violated con-
straints). The three algorithms are then run 100 times on
each instance, each run being given a maximum of 100,000
moves in the case of MCRW and 10,000 moves in the case
of SDRW and Tabu search.

From table 4 we can make the same observations we
made for table 3 i.e the MCRW method is the algorithm of
choice if we have to deal with under-constrained or middle-
constrained problems. The effort made by SDRW and Tabu
Search methods to look for the best neighbor helps only in
the case of over constrained problems. As we can easily
see, the DHNN based method is the best one for middle
constrained and over constrained problems. The Branch
and Bound method is used here to check the goodness of
solution provided by the approximation method.

6 Conclusion

In this paper we have presented an approximation method
based on discrete Hopfield neural network (DHNN) for
solving problems involving numeric and symbolic tempo-
ral constraints. When dealing with these kind of problems
in the real world, we often look for a solution that solves
the maximal number of temporal constraints instead of a
complete one. This can be the case of over constrained
problems or those problems where a solution needs to be
found within a given deadline.

In order to evaluate the performance of the DHNN
based method we propose, experimental comparison with
approximation methods based on local search have been
performed. Results show that the DHNN based method
presents better results for middle constrained and over con-
strained problems.
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