
Chronological Backtracking versus Formal Methods for Solving
CSPs

Malek Mouhoub, Samira Sadaoui and Amrudee Sukpan
Department of Computer Science, University of Regina
3737 Waskana Parkway, Regina SK, Canada, S4S 0A2
{mouhoubm, sadaouis, sukpan1a}@cs.uregina.ca

Abstract
The aim of this paper is to compare two techniques
for solving constraint satisfaction problems(CSPs). The
first one uses constraint propagation and chronologi-
cal backtracking algorithm whereas the second one is
based onLOTOSspecifications. The languageLOTOS
combines a process calculus with abstract data types.
The data part specifies the different constraints of a
given CSP. The process part corresponds to the descrip-
tion of the resolution process, such as the constraint
propagation and backtracking.

For a given problem, the simulation of the corre-
spondingLOTOSspecification can generate zero, one or
all possible solutions. No solution means that the spec-
ification leads to a deadlock. In the other hand, with
the model checking, we can verify if a certain path is
a solution, and also complete a partial solution in an
incremental way.

Keywords: CSP, constraint propagation, formal meth-
ods,LOTOS.

1 Constraint Satisfaction Prob-
lems

A Constraint Satisfaction Problem [8, 7] involves a list
of variables defined on finite domains of values, and a
list of relations restricting the values that the variables
can take. If the relations are binary we talk about bi-
nary CSPs. Solving a CSP consists of finding an assign-
ment of values to each variable such that all relations (or
constraints) are satisfied. When solving a CSP, we may
want to find :

• just one solution, with no preference as to which
one,

• all solutions,

• an optimal, or at least a good solution, given some

objective function defined in terms of some or all
the variables.

A CSP is known to be an NP-Hard problem. In-
deed, looking for a possible solution to a CSP requires
a backtrack search algorithm of exponential complexity
in time1. To overcome this difficulty in practice, lo-
cal consistency techniques are used in a pre-processing
phase to reduce the size of the search space before the
backtrack search procedure. A k-consistency algorithm
removes all inconsistencies involving all subsets ofk
variables belonging toN. The k-consistency problem is
polynomial in time,O(Nk), whereN is the number of
variables. A k-consistency algorithm does not solve the
constraint satisfaction problem, but simplifies it. Due
to the incompleteness of constraint propagation, in the
general case, search is necessary to solve a CSP prob-
lem, even to check if a single solution exists. When
k = 2 we talk about arc consistency. An arc consistency
algorithm [8, 2, 3] transforms the network of constraints
into an equivalent and simpler one by removing, from
the domain of each variable, some values that cannot
belong to any global solution.

2 Example: the N-Queen Problem

The problem consists here in placing N queens on
a NxN chessboard satisfying the constraint that two
queens should not threaten each other. A queen attacks
all cells in its same row, column or diagonal as shown
in figure 1 (a) in the particular case where N=4. This
problem can be converted to an equivalent and a sim-
pler one by restricting each queen to be placed on a
different row (or column) (see figure 1 (b)). This way
the number of possibilities each queen has will be 4 in-
stead of 16 (N instead of NxN in the case of the N-queen

1Note that some CSP problems can be solved in polynomial time.
For example, if the constraint graph corresponding to the CSP has no
loops, then the CSP can be solved inO(nd2) wheren is the number
of variables of the problem andd the domain size of the different
variables



Q1

Q2

Q3

Q4

Q1

Q2 Q3 Q4

1 2 3 4

Q1 Q2

Q3 Q4

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

C12

C24

C34

C13

C23

C14

C12 = C23 = c34 = {(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}
C13 = C24 = {(1,2),(1,4),(2,1),(2,3),(3,2),(4,1),(4,3)}
C14 = {(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),((3,2),(3,4),(4,2),(4,3)}

Figure 1: The 4-Queen Problem.

Q1 Q2

Q3 Q4

{1,2,3,4} {1,2,3,4}

{1,2,3,4} {1,2,3,4}

C12

C24

C34

C13

C23

C14

C12 = C23 = c34 = {(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}

Q1 Q2

Q3 Q4

{ 1, 2 , 3 , 4 } { 1 , 2 , 3 , 4 }
C12

C24

C34

C13

C23
C14

C12 = {(2,4),(3,1)}

Path consistency

{ 1, 2 , 3 , 4 }{ 1 , 2 , 3 , 4 }

C13 = {(2,1),(3,4)}
C14 = {(2,3),(3,2)}

C23 = {(1,4),(4,1)}
C24 = {(1,2),(4,3)}
C34 = {(1,3),(4,2)}

C13 = C24 = {(1,2),(1,4),(2,1),(2,3),(3,2),(4,1),(4,3)}
C14 = {(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),((3,2),(3,4),(4,2),(4,3)}

Figure 2: Application of the path consistency to the 4-Queen Problem.

problem). The transformation to a CSP is then straight
forward as shown in figure 1.

As mentioned above, the resolution method of solv-
ing a CSP is divided into the following two stages :

• In this phase local consistency techniques are per-
formed in order to reduce the size of the search
space. Usually these techniques are arc and path
consistency (equivalent to 3-consistency) [8, 9] al-
gorithms. In the case of the N-queen problem, only
the path consistency is useful. The application of
the path consistency algorithm on the 4-queens is
shown in figure 2.

• After the local consistency phase is achieved, the
backtrack search algorithm is performed to look
for a possible numeric solution. Arc consistency
is also used during this phase following the prin-
ciple of the forward check strategy [6] in order to
allow branches of the search tree that will lead to
failure to be pruned earlier than with simple back-
track. More precisely, the backtrack search algo-
rithm works as follows :

Choose a node and instantiate the correspond-
ing variable (that we call current variable) to a
value (numeric interval) belonging to its domain.
Discard from the variable domain the remaining
values and run the arc consistency algorithm be-
tween the current variable and the non instantiated
variables (called future variables). If the network

is arc consistent, fix a value on another variable
and run again the arc consistency algorithm until
each value is fixed on the domain of every vari-
able of the network. We obtain a solution corre-
sponding to the set of numeric intervals fixed on
the domain of each variable. If the network does
not succeed (is not arc consistent) at some point,
choose another value of the domain of the last se-
lected variable. If there is no value to be consid-
ered, backtrack and choose another value from the
domain of the previous variable.

During the backtrack search, the following proper-
ties are in general used to select the different vari-
ables and values :

– Choose the most constrained variable to as-
sign next. This can be determined by the
number and type of the different relations
connected to each variable.

– Choose the least constraining value for each
variable.

The application of the backtrack search algorithm
with the forward check strategy is illustrated in figure
3. Note that, in this example each queen is placed on
a different column and not different row as mentioned
previously.



V

X

X

X

XX
X

X

X
X

X
XXX

X

X
X

X
X

X

X X
XX

X X X

X X X

X
X

X

XX

XXX

XXX

X
X

X
X

X

X
X

XX

X
X

X

X

X
X X

X

Figure 3: Application of the backtrack search algorithm to the 4-Queen Problem.

3 Formal Methods

The languageLOTOS (Language Of Temporal Order-
ing Specification) is used to represent (specify) and
solve (execute) the specified CSP.LOTOS is the ISO
standardized formal specification technique for describ-
ing concurrent and distributed systems [1]. The spec-
ification in LOTOS gives the temporal ordering of ac-
tions i.e., the relative ordering of actions in time.LO-
TOS combines a process calculus with an abstract data
type language [4].

The abstract data type (ADT) part specifies the dif-
ferent constraints of a given CSP, their corresponding
variables and domains. More precisely, the ADT de-
scribes the static part of a system i.e., data structures
and value expressions. An ADT definition identifies an
algebra formed by sets of data values or domains, and
a set of associated operations. The definition also in-
cludes equations (axioms) which are equalities between
terms. Only positive conditional equalities are allowed.

The process part, describing processes or behavior
expressions, defines the external visible behavior of a
system. In the case of CSPs, it corresponds to the de-
scription of the resolution process. Behavior expres-
sions are built using the process operators, such as the
action prefix; which denotes the sequence of actions,
and exit the successful termination of a specification.
An action (or interaction) can be followed by the con-
struct? in order to input values from the environment
e.g.,QUEEN1?p:position expresses that the first queen
is placed on the position p in the chessboard; p has two

coordinates given by the user. InLOTOS, the unary con-
straints are defined using the selection predicates. Such
predicates are meant to restrict the values offered within
an action. For instance,g?x:nat [x <2] means that
the domain of the variable x is restricted to the set{1,
2, 3}.

The specifications of the N-Queen problem are built
with the monolithic style where only observable inter-
actions are presented and ordered as a collection of al-
ternative sequences of actions in branching time. The
specifications are executable because of the operational
semantics ofLOTOS. There are many supporting tools
for LOTOS such as theEUCALYPTUS environment [5].
The simulation of the specifications generates zero, one
or all possible solutions. No solution means that the
specification leads to a deadlock. In the other hand, the
model checker can verify if a certain path is a solution,
and also complete a given partial solution in an incre-
mental way. We present in figures 4 and 5 two speci-
fications for the 4-Queen problem: the first one checks
whether the problem is consistent, and the second one
supports the interactive consistency check.

3.1 Global Consistency Check

In this case, we are interested in generating one or all
possible solutions. The specification that checks the
consistency of the 4-Queen problem is given in figure
4. For the 4-Queen problem, we have only two solu-
tions that are produced by the standard simulation:



specification Queens[QUEEN]:exit
library Boolean endlib
type Natural is Boolean
sorts nat
opns

0 (*! constructor *): -> nat
1 (*! constructor *): -> nat
2 (*! constructor *): -> nat
3 (*! constructor *): -> nat
4 (*! constructor *): -> nat
_eq_:nat,nat-> bool
_ - _ : nat, nat -> nat

eqns
forall x:nat
ofsort bool
x eq x = true;
0 eq 1 = false; 0 eq 2 = false; 0 eq 3 = false; 0 eq 4 = false;
1 eq 0 = false; 1 eq 2 = false; 1 eq 3 = false; 1 eq 4 = false;
2 eq 0 = false; 2 eq 1 = false; 2 eq 3 = false; 2 eq 4 = false;
3 eq 0 = false; 3 eq 1 = false; 3 eq 2 = false; 3 eq 4 = false;
4 eq 0 = false; 4 eq 1 = false; 4 eq 2 = false; 4 eq 3 = false;
ofsort nat
0-x=x; x-0=x;
x-x=0;
1-2=1; 1-3=2; 1-4=3;
2-1=1; 2-3=1; 2-4=2;
3-1=2; 3-2=1; 3-4=1;
4-1=3; 4-2=2; 4-3=1;

endtype

type position is Natural, Boolean
sorts position
opns

put (*! constructor *): nat,nat -> position
nattack: position, position -> bool
_neqp_: position, position-> bool
nthp: position, nat ->bool

eqns
forall c1,c2:nat, r1,r2:nat
ofsort bool
put(c1,r1) neqp put(0,0) = (not(c1 eq 0)) and (not(r1 eq 0));

nthp(put(c1,r1), c1) = true;
not((c1-c2) eq 0) => nthp(put(c1,r1),c2)=false;

(((c1-c2) eq 0) or ((r1-r2) eq 0)) or ((r1-r2) eq (c1-c2)) =>
nattack(put(c1,r1),put(c2,r2))=false;
not((((c1-c2) eq 0) and ((r1-r2) eq 0)) and ((r1-r2) eq (c1-c2)))
=>nattack(put(c1,r1),put(c2,r2))=true;

endtype

behaviour
QUEEN ?p1,p2,p3,p4:position
[(p1 neqp put(0,0)) and (p2 neqp put(0,0)) and (p3 neqp put(0,0))

and (p4 neqp put(0,0)) and nthp(p1,1) and nthp(p2,2) and nthp(p3,3)
and nthp(p4,4) and nattack(p1,p2) and nattack(p1,p3) and nattack(p1,p4)
and nattack(p2,p3) and nattack(p2,p4) and nattack(p3,p4)];
exit

endspec

Figure 4: Global Consistency Check.



specification Queens[QUEEN1,QUEEN2,QUEEN3,QUEEN4]:exit
library Boolean endlib
type Natural is Boolean
sorts nat
opns

0 (*! constructor *): -> nat
1 (*! constructor *): -> nat
2 (*! constructor *): -> nat
3 (*! constructor *): -> nat
4 (*! constructor *): -> nat
_eq_:nat,nat-> bool
_ - _ : nat, nat -> nat

eqns
forall x:nat
ofsort bool
x eq x = true;
0 eq 1 = false; 0 eq 2 = false; 0 eq 3 = false; 0 eq 4 = false;
1 eq 0 = false; 1 eq 2 = false; 1 eq 3 = false; 1 eq 4 = false;
2 eq 0 = false; 2 eq 1 = false; 2 eq 3 = false; 2 eq 4 = false;
3 eq 0 = false; 3 eq 1 = false; 3 eq 2 = false; 3 eq 4 = false;
4 eq 0 = false; 4 eq 1 = false; 4 eq 2 = false; 4 eq 3 = false;
ofsort nat
0-x=x; x-0=x; x-x=0;
1-2=1; 1-3=2; 1-4=3; 2-1=1; 2-3=1; 2-4=2;
3-1=2; 3-2=1; 3-4=1; 4-1=3; 4-2=2; 4-3=1;

endtype

type position is Natural, Boolean
sorts position
opns

put (*! constructor *): nat,nat -> position
nattack: position, position -> bool
_neqp_: position, position-> bool

eqns
forall c1,c2:nat, r1,r2:nat
ofsort bool
(((c1-c2)eq 0)o((r1-r2)eq0))or((r1-r2)eq(c1-c2))=>
nattack(put(c1,r1),put(c2,r2))=false;
not((((c1-c2) eq 0)and((r1-r2)eq0))and((r1-r2)eq(c1-c2)))=>
nattack(put(c1,r1),put(c2,r2))=true;
put(c1,r1) neqp put(0,0) = (not(c1 eq 0)) and (not(r1 eq 0));

endtype

behaviour
QUEEN1 ? p1:position [p1 neqp put(0,0)];
QUEEN2 ? p2:position [p2 neqp put(0,0) and nattack(p1,p2)];
QUEEN3 ? p3:position [p3 neqp put(0,0) and nattack(p1,p3) and nattack(p2,p3)];
QUEEN4 ? p4:position [p4 neqp put(0,0) and nattack(p1,p4) and nattack(p2,p4)

and nattack(p3,p4)];
exit

endspec

Figure 5: Interactive Consistency Check.



- put(1, 2), put(2, 4), put(3, 1), put(4,
3)

- put(1, 3), put(2, 1), put(3, 4), put(4,
2)

If there is no solution, the simulation directly leads
to a deadlock (no progress is no more possible). In the
other hand, with the random simulation, theEUCALYP-
TUS tool generates randomly only one solution, if it ex-
ists.

In LOTOS, with the model checking, the user can ver-
ify if a given path (assignment of values to variables) is
a solution. For instance, the user can check if the fol-
lowing behavior is correct:put(2, 1), put(4, 4),
put(1, 2), put(3, 3) . In this case, the answer is
no.

The model checker can also complete a given par-
tial solution in an incremental way. This case consists
of giving values for some variables, and then the tool
generates all the possible values for the rest of the vari-
ables. For instance, after creating the following be-
havior: put(1, 1), put(4, 2) , the tool produces all
the possible solutions (depth-first search), or only one
solution (breath-first search), for instanceput(3, 4),
deadlock .

3.2 Interactive Consistency Check

In figure 5, we give the specification which fellows the
forward check principle mentioned in section 3, and il-
lustrated in figure 3. The specifier progressively enters
the positions of each of the four queens. We note that a
queen can be placed in any position in the chessboard.
A queen is placed if it is not attacked by the other al-
ready positioned queens.

The simulation of the specification can lead to a so-
lution or not. No solution means that the simulation
leads to a deadlock because the third or fourth queen can
not be placed. For example, if the user assigns the first
queen to (1, 1), the second one to (4, 2), and the third
one to (3, 4), then the specification leads to a deadlock
since the fourth queen cannot be placed.

With 4 queens, we have 6 constraints, and with
n queens, we have n*(n-1)/2 constraints. In theLO-
TOSspecifications, the constraints are specified with the
predicatenattackdefined in the data part. For instance,
nattack(p1, p2)expresses that the queen placed at posi-
tion p1 should not attack the queen at position p2. This
constraint is associated with the constraintC12given in
figure 2.

4 Conclusion

In this paper, we have shown howLOTOSspecifications
support the CSP techniques such as global consistency
and constraint propagation.

Our future work consists of:
• Comparing the efficiency, in terms of time and

memory space costs, of the C code automatically
generated from theLOTOS specifications with the
algorithms defined in CSP.

• Studying the languageE-LOTOS (Extended-
LOTOS) to describe and solve constraint satisfac-
tion problems in general and those based on tem-
poral constraints in particular.

References

[1] ISO LOTOS- A Formal DEscription Technique
Based on The Temporal Ordering of Observa-
tional Behaviour. International Organization for
Standardization- Information Processing Systems
Open Systems Interconnection, Geneve, July 1987.

[2] C. Bessìere, E. Freuder, and J. Regin. Using in-
ference to reduce arc consistency computation. In
IJCAI’95, pages 592–598, Montréal, Canada, 1995.

[3] C. Bessìere and J. C. Ŕegin. Refining the basic con-
straint propagation algorithm. InSeventeenth Inter-
national Joint Conference on Artificial Intelligence
(IJCAI’01), pages 309–315, Seattle, WA, 2001.

[4] T. Bolognesi and E. Brinksma. Introduction to
the ISO specification language LOTOS.in P.H.J.
van Eijkand, C.A. Vissers and M. Diaz, eds.,
The Formal Description Technique LOTOS (North-
Holland, Amsterdam) 303-326, 1989.

[5] H. Garavel. An Overview of the EUCALYPTUS
Toolbox. http://www.inrialpes.fr/vasy/cadp/, June
1996.

[6] R. Haralick and G. Elliott. Increasing tree search
efficiency for Constraint Satisfaction Problems.Ar-
tificial Intelligence, 14:263–313, 1980.

[7] V. Kumar. Algorithms for constraint satisfaction
problems: A survey. AI Magazine, 13(1):32–44,
1992.

[8] A. K. Mackworth. Consistency in networks of rela-
tions. Artificial Intelligence, 8:99–118, 1977.

[9] R. Mohr and T. Henderson. Arc and path consis-
tency revisited.Artificial Intelligence, 28:225–233,
1986.


