
Handling Temporal Constraints in a Dynamic Environment

Malek Mouhoub
Department of Computer Science, University of Regina
3737 Waskana Parkway, Regina SK, Canada, S4S 0A2

mouhoubm@cs.uregina.ca

Abstract

Managing symbolic and metric temporal informa-
tion is fundamental for many real world applica-
tions such as scheduling, planning, data base de-
sign, computational linguistics and computational
models for molecular biology. This motivates us
to develop a temporal constraint solving system
based on CSPs for handling the two types of tem-
poral information. A main challenge when design-
ing such systems is the ability to deal with tem-
poral constraints in a dynamic and evolutive en-
vironment. That is to check, anytime a new con-
straint is added, whether a solution to the prob-
lem (consistent scenario) continues to be a solution
when a new constraint is added and if not, whether
a new solution satisfying the old and new con-
straints can be found. We talk then about on line
temporal CSP-based systems capable of reacting,
in an efficient way, to any new external information
during the constraint resolution process. In this pa-
per we will present three different techniques we
use to tackle dynamic temporal constraint satisfac-
tion problems. These three techniques are respec-
tively based on constraint propagation, randomized
local search and genetic algorithms.

Keywords:Temporal Reasoning, Constraint Satisfaction,
Planning and Scheduling.

1 Introduction
In any constraint satisfaction problem (CSP) there is a
collection of variables which all have to be assigned values
from their discrete domains, subject to specified constraints.
Because of the importance of these problems in so many dif-
ferent fields, a wide variety of techniques and programming
languages from artificial intelligence, operations research
and discrete mathematics are being developed to tackle
problems of this kind. An important issue when dealing
with a constraint satisfaction problem in the real world is the
ability of maintaining the consistency of the problem anytime
a new constraint is added. Indeed this change may affect the
solution already obtained and respecting the old constraints.
Our goal in this paper is to maintain the global consistency, in

a dynamic environment in the case of constraint restriction,
of a constraint satisfaction problem involving qualitative and
quantitative temporal constraints. This is of practical rele-
vance since it is often required to check whether a solution
to a CSP involving temporal constraints continues to be a
solution when a new constraint is added and if not, whether
a new solution satisfying the old and new constraints can
be found. In scheduling problems, for example, a solution
corresponding to an ordering of tasks to be processed can no
longer be consistent if a given machine becomes unavailable.
We have then to look for another solution (ordering of tasks)
satisfying the old constraints and taking into account the new
information.

In a previous work[Mouhoubet al., 1998], we have de-
veloped a temporal model, TemPro, based on Allen’s interval
algebra and a discrete representation of time, to express nu-
meric and symbolic time information in terms of qualitative
and quantitative temporal constraints. More precisely, Tem-
Pro translates an application involving temporal information
into a binary Constraint Satisfaction Problem1 where con-
straints are temporal relations between variables defined on
domains of numeric intervals. We call it Temporal Constraint
Satisfaction Problem (TCSP)2. Managing temporal informa-
tion consists then of maintaining the consistency of the re-
lated TCSP using constraint satisfaction techniques. Local
consistency is enforced by applying the arc consistency for
numeric constraints and the path consistency for symbolic re-
lations. Global consistency is then obtained by using a back-
track search algorithm to look for a possible solution. Note
that for some TCSPs local consistency implies global consis-
tency[Meiri, 1996].

In order to check for the global consistency of a TCSP in
a dynamic environment, we will propose three different res-
olution techniques. The first one is an exact method based
on the above constraint satisfaction techniques that we have
adapted in order to handle the addition of constraints in an ef-
ficient way. The second technique is based on stochastic local

1A binary CSP involves a list of variables defined on finite do-
mains of values and a list of binary relations between variables.

2Note that this name and the corresponding acronym was used in
[Dechteret al., 1991]. A comparison of the approach proposed in
this later paper and our model TemPro is described in[Mouhoubet
al., 1998].



search. Indeed the underlying local search paradigm is well
suited for recovering solutions after local changes (addition
of constraints) of the problem occur. The third method based
on genetic algorithms is similar to the second one except that
the search is multi-directional and maintains a list of poten-
tial solutions (population of individuals) instead of a single
one. This has the advantage to allow the competition between
solutions of the same population which simulates the natu-
ral process of evolution. The main difference between the
three methods is that the first one is a systematic search tech-
nique that guarantees the completeness of the solution pro-
vided which is not the case of the other two approximation
methods.

In order to evaluate the performance of the three methods
to deal with TCSPs in a dynamic environment, experimental
tests on randomly generated TCSPs have been performed.

The rest of the paper is organized as follows : in the next
section, we will present through an example, the different
components of our model TemPro. The three methods for
maintaining the global consistency of TCSPs in a dynamic
environment are then presented respectively in sections 3, 4
and 5. Section 6 is dedicated to the experimental evaluation
on randomly generated TCSPs of the methods we propose.
Concluding remarks and possible perspectives of our work
are then presented in section 7.

2 CSP-based Representation of Numeric and
Symbolic Constraints : the model TemPro

TemPro transforms any problem under qualitative and quanti-
tative constraints into a binary CSP where constraints are dis-
junctions of Allen primitives[Allen, 1983] (see table 1 for the
definition of the 13 Allen primitives) and variables, represent-
ing temporal events, are defined on domains of time intervals.
We call this later a Temporal Constraint Satisfaction Prob-
lem (TCSP)3. Each event domain (called also temporal win-
dow) contains the Set of Possible Occurrences (SOPO) of nu-
meric intervals the corresponding event can take. The SOPO
is the numeric constraint of the event. It is expressed by
the fourfold [earliest start, latest end, duration, step]
where :earliest start is the earliest start time of the event,
latest end is the latest end time of the event,duration is the
duration of the event andstep is the discretization step corre-
sponding to the number of time units between the start time
of two adjacent intervals belonging to the event domain.

To illustrate the different components of the model TemPro
let us consider the following scheduling problem4.

Example 1
The production of two itemsA andB requires three
mono processor machinesM1,M2 andM3. Each
of the two items can be produced using two different
ways depending on the order in which the machines

3Note that this name and the corresponding acronym was used in
[Dechteret al., 1991]. A comparison of the approach proposed in
this later paper and our model TemPro is described in[Mouhoubet
al., 1998].

4This problem is taken from[Laborie, 1995].
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Table 1: Allen primitives

are used. The process time of each machine is vari-
able and depends on the task to be processed. The
following lists the different ways to produce each of
the two items (the process time for each machine is
mentioned in brackets) :

itemA: M2(3),M1(3), M3(6) or
M2(3),M3(6), M1(3)

itemB: M2(2),M1(5), M2(2),M3(7) or
M2(2),M3(7), M2(2),M1(5)

The goal here is to find a possible schedule of the differ-
ent machines to produce the two items and respecting all the
constraints of the problem. We also assume that itemsA and
B should be produced within 25 and 30 units of time respec-
tively.

In the following we will describe how is the above prob-
lem transformed into a TCSP using our model TemPro. Fig-
ure 1 illustrates the graph representation of the TCSP cor-
responding the the scheduling problem. A temporal event
corresponds here to the contribution of a given machine to
produce a certain item. For example, the eventAM1 corre-
sponds to the use of machineM1 to produce the itemA, . . .,
etc. Seven events are needed in total to produce the two items
as follows :

itemA: AM2(3), AM1(3), AM3(6) or
AM2(3), AM3(6), AM1(3)

itemB: BM21(2), BM1(5), BM22(2), BM3(7) or
BM21(2), BM3(7), BM22(2), BM1(5)

The translation to Allen primitives of the disjunction of the
two sequences required to produce itemB needs a 3-ary rela-
tion involving BM1, BM22 andBM3. This relation states
that BM22 should occur betweenBM1 and BM3. Since
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Figure 1: TCSP corresponding to the problem presented in example 1.

our temporal network handles only binary relations, the way
we use to represent this kind of 3-ary relations is as follows :
we create an additional event (EV T1) and represent the con-
straints for producing itemB as shown in figure 1. The du-
ration X of EV T1 is greater (or equal) than the sum of the
durations ofBM1, BM22 and BM3. Figure 2 illustrates
the solution to the above problem provided by the constraint
propagation based method we have described in introduction.
Note that this solution is optimal5 but not unique.

3 Dynamic Maintenance of Global
Consistency using CSP techniques

Before we present the resolution method for maintaining the
global consistency of temporal constraints in a dynamic en-
vironment, let us introduce the notion of dynamic temporal
constraint satisfaction.

3.1 Dynamic Temporal Constraint Satisfaction
Problem (DTCSP)

A dynamic temporal constraint satisfaction prob-
lem (DTCSP) is a sequence of static TCSPs :TCSP0,
. . . , TCSPi, TCSPi+1, . . . , TCSPn each resulting from
a change in the preceding one imposed by the “outside
world”. This change corresponds to a constraint restriction
or relaxation. In this paper we will focus only on con-
straint restriction. More precisely,TCSPi+1 is obtained
by performing a restriction onTCSPi. We consider that
TCSP0 (initial TCSP) has an empty set of constraints. A
restriction can be obtained by removing one or more Allen
primitives from a given constraint. A particular case is when
the initial constraint is equal to the disjunction of the 13
primitives (we call it the universal relationI) which means
that the constraint does not exist (there is no information

5The total processing time of all machines needed to produce the
five items, 26 seconds, is minimal

about the relation between the two involved events). In this
particular case, removing one or more Allen primitives from
the universal relation is equivalent to adding a new constraint.

3.2 The Resolution Method
Given that we start from a consistent TCSP, the goal of the
resolution method we present here consists of maintaining
the global consistency (existence of a solution) anytime a new
constraint is added. The method works as follows :

1. Compute the intersection of the new constraint with the
corresponding constraint in the consistent graph.

If the result of the intersection is not an empty relation
then

(a) Replace the current constraint of the graph by the
result of the intersection.

(b) If the new constraint is inconsistent with the cur-
rent solutionthen

i. Perform the numeric→ symbolic conversion
for the updated constraint. If the symbolic re-
lation becomes empty then the new constraint
cannot be added. The numeric→ symbolic
conversion works as follows : from the numeric
information, we can extract the corresponding
symbolic relation. An intersection of this rela-
tion with the given qualitative information will
reduce the size of the latter which simplifies the
size of the original problem.
Although the exact algorithm that converts nu-
meric to symbolic time information requires
O(e(Max( supi−infi−di

si
))2) in time wheree is

the number of qualitative constraints, we have
defined a method that extracts most of the prim-
itives within a relation between each pair of
events in constant time reducing the complex-
ity to O(e). The method consists of using the
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Figure 2: Optimal solution provided by the CSP based method.

information concerning the lower bound, upper
bound and duration of the event temporal win-
dow instead of its occurrences. For example :
• if infi > supj then ei P^ ej ,
• if di > dj then E,S, F, D cannot belong to

the relation betweenei andej ,
• . . .etc.
ei andej are two events andinfi, supj , di and
dj are respectively the earliest start time ofei,
latest end time ofej , duration ofei and duration

ii. Perform dynamic path consistency (DPC) in
order to propagate the update of the constraint
to the rest of the graph. If the resulting graph
is not path consistent then the new constraint
cannot be added.

iii. Perform dynamic arc consistency (DAC) start-
ing with the updated constraints. If the new
graph is not arc consistent then the new con-
straint cannot be added.

iv. Perform the backtrack search algorithm in or-
der to look for a new solution to the problem.
The backtrack search will start here from the
point (resume point) it stopped in the previous
search when it succeeded to find a complete
assignment satisfying all the constraints. This
way the part of the search space already ex-
plored in the previous searches will be avoided.
The search will explore the rest of the search
space. If a solution is found then the point
where the backtrack search stopped is saved
as new resume point and the new solution is
returned. Otherwise the graph is inconsis-
tent (when adding the new constraint). The new
constraint cannot be added.

Else the new constraint cannot be added otherwise it
will violate the consistency of the graph.

DPC it the path consistency algorithm PC-2[van Beek
and Manchak, 1996] we have adapted to handle constraint
additions in an incremental way.DAC is the new arc con-
sistency algorithm AC-3[Zhang and Yap, 2001; Bessière and
Régin, 2001] we have adapted for temporal constraints in a
dynamic environment. A detailed description ofDAC can
be found in[Mouhoub and Yip, 2002].

4 Dynamic Maintenance of Global
Consistency using Stochastic Local Search

In this section we present the way to solve dynamic TCSPs
using stochastic local search method. The algorithm that we
will consider in the following is based on a common idea
known under the notion of local search. In local search,
an initial configuration (potential solution) is generated ran-
domly and the algorithm moves from the current configura-
tion to a neighborhood configurations until a complete solu-
tion (solution satisfying all the constraints) or a good one has
been found. When a new constraint is added, the algorithm
restarts the search from the point corresponding to the last
solution obtained, and iterates until a new solution respecting
the old constraints and the new one is found.

The pseudo-code in figure 3 illustrates the local
search strategy using the Min-Conflict-Random-Walk tech-
nique (MCRW). This technique starts by randomly generat-
ing an initial configuration (corresponding to a potential so-
lution). It then chooses randomly any conflicting event in
the configuration, i.e., the event that is involved in any unsat-
isfied constraint, and picks a value (numeric interval) which
minimizes the number of violated constraints (break ties ran-
domly). If no such value exists, it picks randomly one value
that does not increase the number of violated constraints (the



procedure MCRW(Max Moves,p)
Begin

s← random valuation of events;
while there is a new constraint to be processeddo

nb moves← 0;
while eval(s)> 0 & nb moves< Max Movesdo

if probability p verifiedthen
choose randomly an event evt in conflict;
choose randomly an interval intv for evt;

else
choose randomly an event evt in conflict;
choose an interval intv that minimizes
the number of conflicts for evt;

endif
if intv 6= current value of evtthen

assign intv to evt;
nb moves← nb moves+1;

endif
endwhile

return the solution s
endwhile

End

Figure 3: Pseudo-code of the MCRW method.

current value of the event is picked only if all the other val-
ues increase the number of violated constraints). In order to
avoid being trapped in a local minimum, a random-walk strat-
egy used, works as follows : for a given conflicting event,
this strategy picks randomly a value with probabilityp, and
apply the Min Conflict heuristic with probability1 − p. In
the worst case, the time cost required in each move corre-
sponds to the time needed to determine the value that min-
imizes the number of violated constraints. This time is of
orderO(N Max1≤i≤N ( supi−infi−di

si
)) whereN is the num-

ber of variables andsupi, infi, si anddi are respectively the
latest end time, earliest start time, duration and step of a given
eventevti. Max is the function that returns the maximum of
a list of numbers.

5 Dynamic Maintenance of Global
Consistency using Genetic Algorithms

Genetic algorithms (GAs) perform multi-directional searches
by maintaining potential solutions or scenarios (called also
population of individuals) and encouraging information for-
mation and exchange between these directions. It is an iter-
ative procedure that maintains a constant size population of
candidate solutions. Each iteration is called a generation and
it undergoes some changes.Crossoverandmutationare the
two primary genetic operators that generate or exchange in-
formation in GAs. Under each generation,good solutionsare
expected to be produced andbad solutionsdie. It is the role
of the objective (evaluation or fitness) function to distinguish
the goodness of the solution. In the case of TCSPs we define
the following concepts.

Individual (potential solution) : one possible assignment of

1. Begin
2. t ← 1
3. // P (t) denotes a population at iterationt
4. P (t) ← n randomly generated individuals
5. eval ← evaluate P (t)
6. while there is a new constraint to processdo
6. while termination condition is not satisfieddo
7. begin
8. t ← t + 1
9. selectP (t) from P (t− 1)
10. alterP (t)
11. evaluateP (t)
12. end
13. end

Figure 4: Genetic Algorithm.

numeric intervals to all events i.e set of couples
(evi, occj), whereevi is an event andoccj is a possible
interval belonging to the domain ofevi. In other words
the individual represents a potential solution to the prob-
lem.

Random individual : random assignment of intervals to all
events.

Population : a set of individuals (potential solutions).

Mutation : unary operator that returns a new individ-
ual (child) by assigning new values (numeric intervals)
to some events of a given individual (parent).

Crossover : n-ary operator that takes as arguments two or
more individuals and returns a new individual with as-
signments belonging to parent individuals.

Fitness (evaluation) function : returns a measure of an in-
dividual. The measure corresponds here to the quality
of the solution. The quality is defined by the number of
satisfied constraints.

The pseudo code of the GA based method is illustrated
in figure 4. The method starts from a population ofp ran-
dom individuals and iterates until the termination condition
is satisfied. The method maintains a population ofn in-
dividuals, P (1) = {ind1

1, . . . , ind1
n} for iteration 1, . . .

P (t) = {indt
1, . . . , indt

n} for iterationt, . . . etc. Each indi-
vidual (potential solution)indt

i is evaluated using the fitness
function. A new population at iterationt+1 is then formed by
selecting the more fit individuals (selectstep in line 9) from
the population of iterationt. Some of the selected individu-
als will be transformed (alter step in line 10) by the mutation
and crossover operators. The algorithm is executed until it
is running out of time or a solution with the best (or accept-
able) quality is found. In the same manner as for the local
search methods, when a new constraint is added, the GA al-
gorithm restarts from the state where it found the last solution
and iterates until a new solution, respecting the old and new
constraints, is obtained.



N C Dynamic CSPs MCRW GAs
20 95 0.10 0.11 0.27
40 390 0.35 0.22 0.34
60 885 1.02 0.79 0.92
80 1580 2.58 1.24 1.27
100 2475 6.10 1.89 2.01
200 9950 28 2.23 2.89

Table 2: Comparative tests on randomly generated DTCSPs.

6 Experimentation
In order to evaluate and compare the performance of the three
methods we propose we have performed experimental tests
on randomly generated DTCSPs. The criteria used to eval-
uate the three different methods is the running time needed
to maintain the global consistency of the DTCSP. The ex-
periments are performed on a SUN SPARC Ultra 5 station.
All the procedures are coded in C/C++. Each DTCSP is ran-
domly generated as follows :

• Randomly generateN temporal windows (SOPOs) cor-
responding toN variables,

• and a list ofC temporal relations (disjunction of Allen
primitives).

The resolution algorithm will then process the list of tem-
poral relations in an incremental way. For each constraint the
algorithm will check for the global consistency of the result-
ing temporal problem. If the problem is still consistent then
the constraint is added otherwise the constraint is avoided.

Table 2 presents the results of tests performed on DTC-
SPs defined by the number of variablesN and the number
of constraintsC. As we can easily see, the approximation
methods are faster than the exact one however as we said in
introduction these methods do not guarantee in general the
completeness of the solution provided at each time.

7 Conclusion and Future Work
In this paper we have presented three different ways for main-
taining the global consistency of a temporal constraint sat-
isfaction problem in an incremental way. The methods are
of interest for any application where qualitative and numeric
temporal information should be managed in an evolutive en-
vironment. This can be the case of real world applications
such as reactive scheduling and planning where any new in-
formation corresponding to a constraint restriction should be
handled in an efficient way.

One perspective of our work is to handle the relaxation
of constraints during the resolution process. For example,
suppose that during the search a given constraint is removed.
Would it be worthwhile to find those values removed previ-
ously because of this constraint and to put them back in the
search space or would it be more costly than just continuing
on with search.
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