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Despite some success of Genetic Algorithms (GAs) when tackling Constraint Satisfaction
Problems (CSPs), they generally su®er from poor crossover operators. In order to overcome this
limitation in practice, we propose a novel crossover speci¯cally designed for solving CSPs
including Temporal CSPs (TCSPs). Together with a variable ordering heuristic and an inte-
gration into a parallel architecture, this proposed crossover enables the solving of large and hard
problem instances as demonstrated by the experimental tests conducted on randomly generated
CSPs and TCSPs based on the model RB. We will indeed demonstrate, through these tests, that
our proposed method is superior to the known GA-based techniques for CSPs. In addition, we
will show that we are able to compete with the e±cient MAC-based Abscon 109 solver for
random problem instances as well as those instances taken from Lecoutre's CSP library. Finally,
we conducted additional tests on very large consistent and over constrained CSPs and TCSPs
instances in order to show the ability of our method to deal with constraint problems in real
time. This corresponds to solving the CSP or the TCSP by giving a solution with a quality
(number of solved constraints) depending on the time allocated for computation.

Keywords: Parallel genetic algorithms (PGA); constraint satisfaction; evolutionary techniques.

1. Introduction

A Constraint Satisfaction Problem (CSP) consists of a ¯nite set of variables with

¯nite domains, and a ¯nite set of constraints restricting the possible combinations of

variable values.1 A solution tuple to a CSP is a set of assigned values to variables that

satisfy all the constraints. A binary CSP is a CSP where each constraint involves at

most two variables. A binary CSP is often represented by a graph where vertices

correspond to variables while edges represent the constraints between these vari-

ables. In this paper, we focus on the case of binary CSPs (and TCSPs) using the

graph representation. Note that our work can be easily generalized to nonbinary

CSPs. We can in this case adapt our proposed techniques to handle nonbinary

constraints or simply convert nonbinary CSPs into binary ones using dual encoding

or hidden variables encoding methods.2
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Many real-life applications under constraints can be e±ciently represented and

solved with CSPs.3–7 In some of these applications such as scheduling and planning,

the constraints correspond to numeric and symbolic temporal information. This has

motivated us to develop a CSP-based model, TemPro, for managing CSPs involving

numeric and symbolic temporal constraints.8,9 More formally, TemPro translates an

application involving temporal information into a binary CSP where variables are

temporal events de¯ned on domains of numeric intervals and binary constraints

between variables correspond to disjunctions of Allen primitives.10 This latter is

called a Temporal CSP (TCSP).a A CSP is known to be an NP-complete problem in

general,b a backtrack search algorithm of exponential time cost is needed to ¯nd a

complete solution. In order to overcome this di±culty in practice, systematic solving

methods based on constraint propagation techniques have been proposed in the

literature.1 The goal here is to reduce the size of the search space before and during

the backtrack search. While these proposed techniques have a lot of merits when

tackling small and medium size problems, their combination with the backtracking

algorithm su®ers from the exponential time cost of this latter especially for large size

problems. An alternative is to use approximation methods such as Genetic Algo-

rithms (GAs). Despite some success of GAs for solving CSPs,12–15 they generally

su®er from poor crossover operators in solving constraint problems. The main reason

for such a phenomenon is that in CSPs, changing the value of a variable can have

direct e®ects on other variables that are in constraint relation with the changing

variable and indirect e®ect on other variables. As a result, performing a random

crossover can often reduce the quality of the solution.

In this paper, we propose a novel crossover, that we call Parental Success

Crossover (PSC), specially designed for solving CSPs using GAs. PSC is integrated

into a parallel architecture where our Genetic Modi¯cation (GM) function injects

at the beginning of each cycle good individuals generated based on information

(constraints violations) gathered at previous cycles. More precisely, at the end of

each cycle GM gathers the information about constraint violations and order the

variables accordingly before generating good individuals through backtracking with

constraint propagation.

In order to assess the performance of our proposed crossover over the basic one-

point crossover, Asexual Crossover for CSP (ASXC), Multi-Parent Crossover

(MPC) as well as well-known heuristic-based GAs for CSPs,12,13 we conducted

several experiments on CSP and TCSP instances randomly generated using the

model RB.16 This model is a revision of the standard Model B,17 has exact phase

transition and the ability to generate asymptotically hard instances. The test results

aNote that this name and the corresponding acronym was used in Ref. 11. The TCSP, as de¯ned by

Dechter et al., is a quantitative temporal network used to represent only numeric temporal information.

Nodes represent time points while arcs are labeled by a set of disjoint intervals denoting a disjunction of

bounded di®erences between each pair of time points.
bThere are special cases where CSPs are solved in polynomial time, for instance, the case where the related

constraint network is a tree.1
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clearly show that our proposed crossover outperforms the considered GA methods on

all problem instances in terms of success rate and time needed to reach the solution.

In addition, we evaluated the performance of an integration of our crossover, to-

gether with a variable ordering heuristic,18 within our Hierarchical Parallel GA

(HPGA) architecture we have proposed for solving graph coloring problems

(GCP).19 The results are very appealing especially when dealing with hard problem

instances. Moreover, our proposed method is able to compete with the e±cient

MAC-based Abscon solver for CSPs20 as demonstrated by the comparative experi-

ments conducted on random CSPs with di®erent sizes as well as those instances

taken from Lecoutre's library.21 Finally, our GA-based solving method incorporates

many greedy principles and has the ability to solve a CSP by giving a solution with a

quality (number of solved constraints) depending on the time allocated for compu-

tation. This is clearly demonstrated through several tests we conducted both on

consistent and inconsistent (over constrained) random CSPs and TCSPs. This

\anytime behavior" is very relevant in practice especially for real-time applications

where a solution needs to be returned within a given deadline. The user can,

for instance, get a solution with a given quality at a particular time point or let the

program run for another amount of time, if this can be a®orded, to get a better

quality.

The rest of the paper is structured as follows. The next section summarizes the

di®erent CSP solving techniques. Our proposed GA-based method and its integra-

tion into the HPGA architecture is then covered in Sec. 3. Section 4 reports the

results of comparative experiments we conducted on randomly generated CSPs and

TCSPs. Finally, concluding remarks and future directions are listed in Sec. 5.

2. CSP Solving Techniques

2.1. Backtrack search and constraint propagation

The backtrack search method is a depth-¯rst search technique that extends a partial

solution to a complete and consistent one. More precisely, at each step one variable

will be assigned a value from its domain and the partial solution gets checked for

consistency. This standard method is not e±cient due to thrashing; that is the search

repeatedly failing due to the same reason which could be identi¯ed earlier in the

search. In order to overcome this di±culty in practice, local consistency techniques

have been proposed.1 The aim of these constraint propagation techniques is to en-

force the consistency on a subset of CSP variables before and during the backtrack

search. One of the most known forms of local consistency is called Arc Consistency

(AC).22 More formally and in the case of binary CSPs, for each pair of variables

ðx1;x2Þ sharing a constraint, AC removes from the domain of x1 any value that is

inconsistent with all the values of x2 domain. When used before the search, the goal

of AC is to reduce the size of the search space before Backtracking takes place. When

used during the search, AC helps to detect later failure earlier following a lookahead

technique such as Forward Checking (FC) or Maintaining Arc Consistency
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(MAC).23 Each time we assign a value to a variable, FC enforces AC on this latter

variable and all future active variables (variables not assigned yet). MAC extends

this constraint propagation technique to the subset containing all the nonassigned

variables. Abscon 10920 the solving platform we used for our comparative experi-

mental tests in Sec. 4 uses a variant of MAC procedure.

2.2. Metaheuristics

The goal of the constraint propagation techniques we presented in the previous

section is to reduce the size of the search space before and during the backtrack

search. While these techniques have lots of merits when tackling small and medium

size problems, their combination with the backtracking algorithm su®ers from the

exponential time cost of this latter especially for large size problems. An alternative,

in practice, is to use approximation methods. While these randomized algorithms do

not always guarantee to ¯nd a consistent solution, they are in general faster than

backtrack search. Following a greedy approach, in most of these metaheuristic

methods such as local search and evolutionary algorithms, the search starts with one

or more complete assignments and then changes are made to make the assignments

satisfy more and more constraints until reaching the solution. The problem with

these algorithms is that because of their randomness, they cannot be used to prove

the inconsistency of a CSP. In cases where the problem does not have a solution,

these algorithms would run forever without success. In practice, a time limit should

be set after which the algorithm returns no solution. To use these algorithms, we

need to de¯ne a representation of the potential solution and a ¯tness function to

measure the quality of a solution. In CSPs, the representation is an array of variables

and the value in each index of the array represents the value of the corresponding

variable. The ¯tness function measures the number of unsatis¯ed constraints or if

constraints have weights, the sum of the weights of the unsatis¯ed constraints.

2.3. Variable ordering heuristics

The ordering of the variables in a backtrack search has a tremendous e®ect on the

size of the search space. Following a given criterion, a heuristic is used to choose what

variable to assign next at each step of the search. The well-known ¯rst-fail principle

is a criterion that has been suggested for evaluating di®erent heuristics. This prin-

ciple consists of picking, at each time, the most constrained variable and supposes

that the best search order is the one that minimizes the length or the depth of each

branch. Variable ordering heuristics can be de¯ned into two categories: Static

Variable Ordering (SVO) and Dynamic Variable Ordering (DVO). SVO heuristics

use the initial structure of the constraint network and maintain the same variable

ordering during the search to decide the next variable to assign a value to. Smallest

Domain First (SDF), is a SVO in which variables are sorted based on their domain

size so that variables with smaller domain are checked ¯rst. The reasoning behind

this is that with all other factors being equal, the variable with the least number of
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values would have less sub trees rooted at those values. Another method for SVO is

maximum degree (deg)24 which chooses the variable that has the maximum degree in

the constraint graph. DVO use the information about the current state of the search

to decide on the next variable to assign. A very well-known heuristic of this type,

known as dom,25 selects the next variable that has the least remaining values in its

domain and thus constrains the remainder of the search space the most. The dynamic

version of deg, called ddeg, chooses the variables that are involved in the least

amount of constraints with unassigned variables. dom/ddeg26 is derived from com-

bining these two heuristics. More precisely, it selects a variable that has the mini-

mum ratio of the current domain to the current dynamic degree. Impact-based

heuristics27 focus on the search tree size as a criterion for variable ordering. They

measure the importance of each variable in reducing the size of the search space by

considering the changes its value assignments can make to the size of the search tree.

Con°ict driven variable ordering28 is a technique that uses MAC to gather the

information about constraints violations. More precisely, each constraint has a

weight that is incremented every time the constraint causes a domain wipe out

during the constraint propagation phase. In the wdeg technique, the variable with

the largest weight is then selected. Here the variable weight is the sum of the weights

of the constraints that the variable is involved in. The combination of wdeg and dom,

called dom/wdeg, prefers the variable that has the least ratio of current domain size

to the current weighted degree. The obvious drawback to the wdeg technique is that

for the ¯rst few choices which are also the most important ones, the search does not

have enough information to choose the best variables, and that can tremendously

a®ect the size of the search space. To address this issue, Weighted Information

gathering (WNDI) and RANDom Information gathering (RNDI) have been pro-

posed in Ref. 29 using the dom/wdeg heuristic. However, they do a number of search

restarts to gather information from di®erent parts of the search space before starting

the main search process. Having this information makes it possible to make better

choices for ¯rst variables. In RNDI, a variable is selected randomly at each variable

selection point during the search for the ¯rst R� 1 runs. On the ¯nal restart, dom/

wdeg is used in the normal way. However, the weights are not initialized to zero but

they are set to the weights that the search learnt from previous random probes. This

would enable the search to make better early decisions. In WNDI the search updates

the weights consequently in all runs and uses the information gathered from each run

at the start of the next run. Experiments in Ref. 30 show that RNDI can perform

better as it learns from more diverse parts of the search space and therefore can give a

better approximation of the areas of global contention. In Ref. 18 two SVO hybrid

methods combining systematic and heuristic techniques are proposed. The ¯rst one is

an iterative algorithm based on Hill Climbing (HC) while the second is a constructive

approach based on Ant Colony Optimization (ACO).31 Both methods tackle the

CSP by ¯rst using HC or ACO to gather information about the search space during

the search. Then, the information gained is used to sort the variables before the

backtrack search. Abscon 109 uses dom/wdeg as a variable ordering heuristic.
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3. Proposed GA-Based Method for CSPs and TCSPs

3.1. Background: Parallel genetic algorithms

In GAs, there is a population of potential solutions called individuals. The GA

performs di®erent genetic operations on the population, until the given stopping

criteria are met. The Parallel Genetic Algorithm (PGA) is a parallel architecture

allowing several GAs to run in parallel.

There are mainly three di®erent types of PGAs.32 First, the Master-Slave PGA

(MSPGA) in which, there is only one single population divided into fractions.

Each fraction is assigned to one slave process on which genetic operations are

performed.33 Second, the Multi-Population PGA which contains a number of

subpopulations, which can occasionally exchange individuals. The exchange of

individuals is called migration. Migration is controlled using several parameters.

Multi-population PGAs are also known as Island PGAs (IPGAs), since they re-

semble the \island model" in population genetics that considers relatively isolated

demes. Finally, the Fine-Grained PGA which consists of only one single population,

that is designed to run on closely linked massively parallel processing systems. In this

paper we use a Master-Slave architecture for designing the PGA, called HPGA, that

we have proposed in Ref. 19 for solving GCP. Section 3.8 provides a detailed de-

scription of HPGA and its related procedure.

3.2. Individual representation in CSPs

In GAs each possible solution to the given problem is represented using an encoding

known as the chromosome (or individual). Each chromosome contains a number of

genes. To represent a potential solution to a CSP in GAs, we normally use an array

structure. Each index of the array is considered as a gene that corresponds to a

variable in the CSP. The data that each gene carries is from the domain value of the

variable it represents. Moreover, each individual has a ¯tness corresponding to the

total number of constraint violations. An individual with a ¯tness equal to zero is a

solution to the problem. For instance, Fig. 1 illustrates the GCP modeled as a CSP

and its representation using GAs. The GCP consists of coloring the graph vertices

such that no two adjacent nodes (nodes linked by an edge) have the same color.

3.3. Individual representation in TCSPs

TemPro8 transforms a temporal problem under qualitative and quantitative con-

straints into a binary CSP where constraints are disjunctions of Allen primitives

(see Fig. 2 for the de¯nition of the Allen primitives) and variables, representing

temporal events, are de¯ned on domains of time intervals. Each event domain (called

also temporal window) contains the Set of Possible Occurrences (SOPO) of numeric

intervals the corresponding event can take. The SOPO is the numeric constraint of

the event. It is expressed by the fourfold: [earliest start, latest end, duration, step]

where: earliest start is the earliest start time of the event, latest end is the latest end

R. Abbasian & M. Mouhoub
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time of the event, duration is the duration of the event and step is the discretization

step corresponding to the number of time units between the start time of two ad-

jacent intervals. In order to better understand TemPro and its related components,

let us consider the following temporal constraint problem.

Example 1.

(1) John, Mary and Wendy separately rode to the soccer game.

(2) It takes John 30min, Mary 20min and Wendy 50min to get to the soccer game.

John

Mary

Soccer

Wendy

 E S Si M

O
D Di

{(0 30),   ..              .. (10 40)}

{(0 50) ..                     }  {(35 55) ..               ,(40 60)}

F Fi

(30 135)}{

(39 59)

(6 36)

(10 60)

Population

random
individual

(fitness=3)

conflict conflict

conflict

 E S Si M

X precedes Y

X equals Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

Relation Symbol Inverse Meaning

X Y
P P-

E E
X

YM M- X

Y

O

D

S

F

O-

D-

S-

F-

YX

YX

YX

Y X

Fig. 2. GA representation of the TCSP in Example 1.

X1

X2

X4

X3

        {b  ,     }

               {r ,     , g}                     {r ,       ,  y}

   g,r{ }

        g

   y

      y

Population

random
individual

Conflict

Conflict

(fitness = 2)

<> <>

<> <>

Fig. 1. GA representation of the GCP.
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(3) John either started or arrived just as Mary started.

(4) John left home between 7:00 and 7:10.

(5) Mary arrived at game between 7:55 and 8:00.

(6) Wendy left home between 7:00 and 7:10.

(7) John's trip overlapped the soccer game.

(8) Mary's trip took place during the game or else the game took place during

her trip.

(9) The soccer game starts at 7:30 and lasts 105min.

(10) John either started or arrived just as Wendy started.

(11) Mary and Wendy arrived together but started at di®erent times.

Figure 2 shows a graph corresponding to the TCSP of Example 1. There are four

main events: John, Mary and Wendy are going to the soccer game respectively and

the soccer game itself. Some numeric constraints specify the duration of the di®erent

events, e.g., \20min is the duration of Mary's event ". Other numeric constraints

describe the temporal windows in which the di®erent events occur. For instance the

earliest start time of John's event is 7:00 and the latest start is 7:10. Given these

two information and the fact that the duration of John's trip is 30min we can

produce the domain of John's event which will correspond to the following set of

possible intervals (given that the discretization step is 1min): fð0 30Þ;
ð1 31Þ; . . . ; ð10 40Þg.

Finally, symbolic constraints state the relative positions between events. For

instance, the relation between John's and Wendy's events, \John either started or

arrived just as Wendy started ", can be represented with the following disjunction of

Allen primitives: John ðE _ S _ S^ _MÞc Wendy.

An individual corresponds to a given temporal scenario and represents a complete

assignment of intervals to all the events of the problem. For each individual, the

¯tness function is computed by counting the number of con°icts (constraint viola-

tions) due to the complete assignment. An individual with a ¯tness equal to zero is a

solution to the TCSP (since all the temporal constraints are satis¯ed). For example,

the ¯tness of the individual shown in Fig. 2 is equal to 3.

3.4. Crossovers for GAs

Several crossovers have been proposed in the literature. The simplest one is the One

Point Crossover (OPC) that works as follows. First, we randomly choose a crossing

point. All the genomes (individuals) from the ¯rst parent that are before the crossing

point will be included in the o®spring. In addition, all the genomes in the second

parent that are after the crossing point, will be included as well in the o®spring.

The ASXC is proposed by Eiben et al.13,14 The idea here is as follows. To produce the

o®spring we use an asexual crossover that selects, from the chromosome, a group of

cNote that the inverse of a given Allen primitive, S for instance, can also be denoted as Si.
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variables having the largest number of violated constraints and change their re-

spective value such that the number of violations (or con°icts) are minimized. The

group size should be determined at the beginning, but was suggested to be 1=4 of the

individual size.13,14 As per the description in Refs. 13 and 14, the MPC for CSPs

operates by scanning the genes of the parents consecutively. It then chooses a value

that has occurred the most for that gene (CSP variable) amongst the parents and

assigns it to the corresponding gene of the o®spring. The value selection can also be

performed randomly or based on the ¯tness of the parents.

3.5. Proposed PSC

Our goal here is to develop a new crossover that minimizes the number of constraints

violations as much as possible. Unlike the well known methods described in the

previous Section, our proposed technique relies on the past crossover history of

the di®erent individuals, in addition to their respective constraint violations. The

intuition here is that learning from both parents past history in terms of constraints

violations can be very useful when deciding on how to cross them. In this regard,

we propose the following crossing technique. When choosing two parents p1 and p2
for a crossover, the o®spring is produced as follows. For each gene (corresponding to

an assignment of a given value to a variable) in parent p1 (respectively p2) we

compute the number of con°icts due to this assignment. We then select the gene with

the minimum number of con°icts. If both genes (from p1 and p2) have the same

number of con°icts then we rely on past success history of p1 and p2 and choose the

gene from the parent with a better \parental success ratio". This parental success

ratio is computed as follows. For each parent pi in the population we maintain two

numbers: the number of times pi has participated in a crossover and the number of

times pi produced a ¯tter o®spring. The parental success ratio is the ratio of these

two numbers.

3.6. Reproduction and mutation

Reproduction is performed amongst a number of ¯ttest individuals in the population.

To generate new o®springs using our proposed crossover, we randomly chose two

individuals among the ¯ttest ones in the population as the parents. We then pass

them to the PSC. Also, every I iterations, we pick the parents totally random as a

means to preserve the diversity in the population.

The goal of the mutation operator is to reduce the number of con°icts. Therefore,

we perform the mutation as follows. Given a constraint graph representing a CSP,

Nmutation random vertices (corresponding to the CSP variables) of the individual are

selected and the numbers of con°icts between the chosen vertices and their adjacent

vertices are minimized. This can be done by picking, for each variableX, a value that

minimizes the number if con°icts X has with its neighbors. This can of course lead to

a local minimum. In order to preserve the diversity of the population and to avoid

A New Parallel GA-Based Method for CSPs
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being trapped in this local minimum, from time to time we also use a random value

change for Nmutation vertices.

3.7. The GM operator

The GM operator runs concurrently with the PGA to generate good individuals

outside the scope of the GA. The PGA then incorporates these newly generated, near

optimal individuals to its population to give them a chance to participate in repro-

duction. Whenever the GM produces a population of individuals, the PGA keeps

them until the next reproduction. Then, just before the reproduction, the PGA

distributes them between the subpopulations. The GM uses a variable ordering for

individual generation. Whenever the GM needs to create a new individual, it starts

from the ¯rst variable in the ordering and generates a random value for each variable

in turn. Following a look ahead principle, when a variable is assigned a value, the GM

propagates this change by removing the values that would result in con°icts from the

domain of its neighbors. This way, it is guaranteed that at each time, the chosen

value for a variable will not cause a con°ict. However, at the end of initializing

variables, we might end up with some variables that have empty domains. In this

case, the GM randomly chooses a value for them. The GM generates PGM individuals

and signals the PGA's master process. The master process will then distribute the

generated individuals amongst the subpopulation for the next reproduction.

Algorithm 1 MSPGA Integrated with HC
1: generationNumber= 0
2: In Parallel: generate a random population of size P .
3: Calculate the fitness of each individual.
4: if a consistent solution is found or generationNumber = maxValue then
5: signal the CP and wait for a task from the CP.
6: else, go to the next step.
7: end if
8: if (generationNumber mod k = 0) then
9: Pick the best solution found by slaves.

10: Calculate new weights for constraints (based on HC).
11: Create a new ordering based on new weights.
12: Pass the new ordering to GM.
13: end if
14: Before entering the reproduction, check if the GM process has created a modified

population. If so, distribute them amongst sub populations.
15: In Parallel: perform reproduction, mutation, and fitness calculation.
16: Increment generationNumber by 1. Go to step 3.

R. Abbasian & M. Mouhoub
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We used the heuristic proposed in Ref. 18 for variable ordering. This heuristic is

based on HC for weighing constraints and works as a SVO algorithm as it runs prior

to the actual backtrack search algorithm. More precisely, HC is run for a given

number of cycles, during which, the constraints gain weight. After this information

gathering phase, each variable gets a weighted degree, which is the sum of the

weights of the constraints that the variable is involved in. Variables are then sorted

based on their weights and those with larger weight get more priority in the ordering.

We converted this heuristic into a DVO one by adapting it into each of the PGAs'

master process. The idea is that HC will operate as part of each PGA and continues

to run through the whole runtime of the PGAs. At the end of each k generations,

the master process picks the best solution found by the slaves and calculates new

weights for the constraints. It then creates an ordering based on the weights and

passes it to the GM. The GM would then use this new ordering to create new

individuals. The integration of our DVO into PGA's master process is described in

the next section (see Algorithm 1).

3.8. Hierarchical PGA (HPGA)

The known advantage of PGAs is their ability to evolve in diverse directions

simultaneously.32–34

Fig. 3. Architecture of the HPGA.

A New Parallel GA-Based Method for CSPs
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It has been shown that PGAs speed up the search process when tackling hard

problems.35,36 Our proposed GA-based method is integrated into a parallel archi-

tecture, called HPGA, we have proposed for GCP.19

Figure 319 illustrates the HPGA architecture where M islands (that we call

IPGAs) are coordinated through a Coordinator Process (CP) and executed in par-

allel looking for a solution to a given CSP instance. These IPGAs communicate using

a given Inter-Process Communication (IPC) technique. Each IPGA is a MSPGA

involving a set of K GAs running in parallel and communicating through a shared

memory. The MPi and SPi stand respectively for Master and Slave processes.

Algorithm 1 illustrates the MSPGA procedure.

4. Experimentation

4.1. Experimentation environment

All the algorithms are implemented in Java programming language. We used a

machine with 2.5GHz Core 2 Duo CPU, 4GB of RAM running JDK 1.6. The

mutation is implemented as described in Sec. 3.6. The number of variables to change

(Nmutation) is also determined randomly from ½2, individualLength/10] where indi-

vidualLength is the length of each individual. For all the tests reported in this

section, each problem instance is solved 20 times by the given method and the

average running time needed to return the solution is computed together with the

standard deviation. Table 1 lists the operator con¯guration used for PSC and OPC.

4.2. Problem instances

Following the model RB,16 we generate each CSP instance in two steps as shown

below and using the parameters n, p, � and r where:

– n is the number of variables,

– p ð0 < p < 1Þ is the constraint tightness which can be measured, as shown in

Ref. 37, as the fraction of all possible pairs of values from the domain of two

variables that are not allowed by the constraint,

– and r and � ð0 < � < 1Þ are two positive constants (respectively set to 0.5 and 0.8).

(1) Select with repetition rn lnn random constraints. Each random constraint is

formed by selecting without repetition 2 of n variables.

Table 1. PSC and OPC con¯gurations.

Operator PSC OPC

Selection Truncation Truncation
Mutation Random Random

Crossover Parental Success One Point

Replacement Worst Individuals Worst Individuals

R. Abbasian & M. Mouhoub
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(2) For each constraint we uniformly select without repetition pd 2 incompatible

pairs of values from the domains of the pair of variables involved by the

constraint. d ¼ n� is the domain size of each variable.

4.3. Evaluation of the performance of PSC

First, we compared our proposed PSC against the OPC, the Asexual Crossover

(ASXC) and the MPC proposed in Ref. 13. The population size is ¯xed here to 2000

and the mutation chance to 0.2. Tables 2 and 3 show the results of running these

methods respectively without and with mutation. Consistent CSP instances are

randomly generated with 100 variables and tightness p-values ranging from 0.05 to

0.6. For each test we report the running time (in seconds) together with the Success

Table 2. Comparing di®erent crossovers in a sequential GA (no mutation).

ASXC MPC OPC PSC

T SR,BF SR,BF Time SR,BF Time SR,BF Time

0.05 0.2 100%,0 2.98 100%,0 3.32 100%,0 1.97
0.1 0.8 21%,0 55.72 100%,0 13.18 100%,0 2.18

0.15 0.16 0.4 ��� 86%,0 21.72 100%,0 2.75

0.2 0.24 0.14 ��� 23%,0 54.9 100%,0 5.78
0.25 0.38 0.19 ��� 0.5 ��� 100%,0 7.5

0.3 0.43 0.27 ��� 0.8 ��� 100%,0 7.98

0.35 0.54 0.37 ��� 0.16 ��� 100%,0 11.84

0.4 0.67 0.45 ��� 0.23 ��� 58%,0 46.77
0.45 0.79 0.58 ��� 0.29 ��� 0.5 ���
0.5 0.91 0.71 ��� 0.33 ��� 0.14 ���
0.55 0.103 0.79 ��� 0.47 ��� 0.17 ���
0.6 0.114 0.86 ��� 0.65 ��� 0.24 ���

Table 3. Comparing di®erent crossovers in a sequential GA.

MPC OPC PSC

T SR,BF Time SR,BF Time SR,BF Time

0.05 100%,0 2.448 100%,0 2.57 100%,0 1.88

0.1 100%,0 57.13 100%,0 11.46 100%,0 2.11
0.15 0.4 ��� 100%,0 16.43 100%,0 3.18

0.2 0.9 ��� 27%,0 51.03 100%,0 4.1

0.25 0.17 ��� 0.3 ��� 100%,0 6.92

0.3 0.25 ��� 0.5 ��� 100%,0 7.26
0.35 0.28 ��� 0.10 ��� 100%,0 13.86

0.4 0.37 ��� 0.12 ��� 62%,0 44.56

0.45 0.45 ��� 0.27 ��� 0.5 ���
0.5 0.53 ��� 0.30 ��� 0.9 ���
0.55 0.69 ��� 0.42 ��� 0.15 ���
0.6 0.78 ��� 0.62 ��� 0.17 ���

A New Parallel GA-Based Method for CSPs
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Rate, SR (for reaching a complete solution) and the best ¯tness, BF (number of

violated constraints, in the case where a complete solution is not obtained). When

the timeout (60 s) is reached for a particular case, \�" is displayed. Note that for the

ASXC method, the time is not reported in Table 3 as this method fails to solve all the

problem instances in the allocated runtime limit in the case where mutation is used.

From the two tables it is obvious to see that our PSC-based GA method is the only

one that is successful for solving under constrained and middle constrained problems

(when the tightness is less than 0.4). Moreover, for hard instances (tightness between

0.4 and 0.6) our method returns better quality solutions (BF values) than all the

other techniques.

Finally, we compared our proposed PSC to the best heuristic-based GA, called

Sawing GA, for solving a particular case of CSPs called TCSPs.12 The TCSPs

instances have 80 variables each and are generated as described in Sec. 4.2. The

Sawing GA38 is one of the adaptive ¯tness algorithms where the search is guided by

changing the way the ¯tness is computed so that individuals are evaluated based on

some special characteristics they may have. The Sawing GA is based on the Sawing

mechanism where the idea is that constraints that are not satis¯ed or variables

causing constraint violations after a certain number of steps must be hard, thus must

be given a high weight (penalty). The results of this comparison are listed in Table 4.

Our proposed algorithm obviously outperforms OPC and Sawing GA both in terms

of running time and SR.

4.4. Evaluation of the performance of GM within the HPGA

The parallelism provides the ability to investigate di®erent regions of the search

space simultaneously. In order to assess the performance of the integration of our

PSC within the HPGA, we conducted more tests on consistent CSPs as follows.

As we mentioned in Secs. 3.1 and 3.8, our PGA is implemented using the Master-

Slave architecture. Within the HPGA, two islands (IPGAs) are used with the

number of slaves for each ¯xed to 10 and the population size per slave equal to 200.

Table 5 reports the results of the tests we conducted on the same instances used

for the sequential methods. We evaluate the performance of two methods: our PSC

within the HPGA (HPGA+PSC) and the PSC with the proposed GM within the

HPGA (HPGA+GM+PSC). It is clear from Table 5 that the parallelization of our

method allows us to successfully solve all the instances up to 0.5 tightness value

Table 4. PSC, OSC and sawing GA for consistent TCSPs.

PSC OPC Sawing GA

T Success rate Time (s) BF Success rate Time (s) BF Success rate Time (s) BF

0.24 100% 0.959 0 100% 2.817 0 20% 50 0

0.16 100% 0.213 0 100% 0.595 0 90% 18 0

0.05 100% 0.118 0 100% 0.310 0 100% 3 0

R. Abbasian & M. Mouhoub
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without the GM and up to 0.55 when GM is used. In addition, with GM we can even

solve the hardest instances (tightness of 0.6) with a high SR.

Figure 4 reports the results comparing our HPGAþGMþPSC method and

Abscon 10920 for solving randomly generated consistent CSPs with tightness equal to

0.35 and the number or variables varying from 100 to 1000.

In the case of HPGA+GM+PSC, we have used the following parameters tuned to

their best values. For instances with less than 600 variables, the number of islands is

4 with 5 slaves per island and 100 individuals per slave. For instances with 600 and

more variables, the number of islands is 8 with 5 slaves per island and 100 individuals

per slave.

Table 5. Comparing di®erent crossovers in

a parallel GA.

HPGAþPSC HPGAþGMþPSC

(R,BF) Time (s) (SR,BF) Time (s)

100%,0 0.31 100%,0 0.24
100%,0 0.42 100%,0 0.26

100%,0 0.77 100%,0 0.40

100%,0 0.97 100%,0 0.43

100%,0 1.09 100%,0 0.47
100%,0 1.14 100%,0 0.49

100%,0 1.28 100%,0 0.50

100%,0 1.54 100%,0 0.51
100%,0 1.72 100%,0 0.52

100%,0 2.03 100%,0 0.56

73%,0 37.46 100%,0 1.72

0.3 ��� 79%,0 31.29

Fig. 4. Running time comparison of HPGA+GM versus AbsCon 109 on randomly generated instances.
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From Fig. 4 it is clearly shown that our method is better than Abscon 109 for

all problem instances in terms of running time needed to return a complete

solution.

In addition to randomly generated instances, we conducted further comparative

experiments on the following CSP instances from Lecoutre's library.21

. Real-world instances: driverlogw instances. This is a logistic planning prob-

lem where the goal is to move a subset of drivers, trucks and packages to given

locations.

. Instances with regular pattern: e0ddr1 instances corresponding to the Job-

Shop problem.

. Nonrandomly generated instances from the academia: queens instances

corresponding to the N-Queens problem.

The results of these experiments are reported in Fig. 5 and again show the superiority

of our solver over AbsCon 109. These comparative results have been validated with

the statistical analysis we conducted. In this regard, Table 6 lists the details of the

results reported in Figs. 4 and 5 including the standard deviation.

Our GA-based solving method incorporates many greedy principles and has the

ability to solve a CSP by giving a solution with a quality (number of solved con-

straints) depending on the time allocated for computation. This can be shown using

the results of tests that we have performed with our HPGA+GM+PSC on a random

consistent CSP instances of size 1000 and with tightness equal to 0.35. The \anytime

curve" reporting the results is presented in Fig. 6. This curve is based on the number

of constraint violations found after each period of time. More precisely, the y-axis

corresponds to the number of constraints violations (¯tness) while the x-axis shows

the di®erent time points in seconds. A complete solution (corresponding to 0 con-

straint violations) is obtained at 48.96 s.

Finally, Fig. 7 shows the \anytime curve" corresponding to tests conducted on a

random inconsistent CSP of size 1000. As we can see from the ¯gure, it took 315

seconds for the parallel method to reach a quality of the solution equal to 200

constraint violations.

The anytime behavior reported in Figs. 6 and 7 is very relevant in practice es-

pecially for real-time applications where a solution needs to be returned within a

given deadline. The user can, for instance, get a solution with a given quality at a

particular time point or let the program run for another amount of time, if this can be

a®orded, to get a better quality.

Similar tests have been conducted on TCSP instances and the results are reported

respectively in Fig. 8 (for consistent TCSPs) and Fig. 9 (for over constrained

TCSPs). Consistent TCSPs have tightness set to 0.35 while inconsistent TCSPs have

tightness equal to 0.65.

The number of variables is ranging from 100 to 1000 (values on the x-axis of the

¯gure). Note that with the tightness ¯xed to 0.35 these are hard to solve problems

R. Abbasian & M. Mouhoub
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Fig. 5. Running time comparison of HPGA+GM versus AbsCon 109 on instances from Lecoutre's

CSP library.
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especially for large size variables. Thanks to the PSC and parallelism, the algorithm

is able to solve completely all the instances in a reasonable time. For consistent

TCSPs with 1000 variables for example, a complete solution is returned in less than a

minute which is very impressive.

Table 6. Running time comparison of HPGA+GM versus

AbsCon 109 with standard deviation.

Problem instance Abscon HPGA (avg) HGPA (�)

queens-4 0.30 0.30 0.00

queens-8 0.33 0.34 0.00

queens-10 0.36 0.35 0.00
queens-12 0.37 0.37 0.00

queens-15 0.41 0.43 0.00

queens-20 0.43 0.42 0.00
queens-30 0.56 0.51 0.00

queens-50 0.78 0.63 0.00

queens-80 1.38 0.88 0.00

queens-100 1.64 0.95 0.04
queens-120 2.73 1.40 0.05

queens-150 5.18 2.90 0.10

queens-180 6.16 3.40 0.10

queens-200 14.51 6.18 0.34
driverlogw-01c 0.37 0.33 0.00

driverlogw-02c 1.26 0.86 0.02

driverlogw-04c 1.01 0.77 0.02

driverlogw-05c 0.90 0.75 0.02
driverlogw-08cc 3.66 1.84 0.10

driverlogw-08c 3.80 1.88 0.32

driverlogw-09 20.71 6.95 0.56
e0ddr1-10-by-5-1 1.54 0.66 0.05

e0ddr1-10-by-5-2 1.34 0.55 0.05

e0ddr1-10-by-5-3 3.21 1.01 0.23

e0ddr1-10-by-5-4 1.30 0.63 0.02
e0ddr1-10-by-5-5 1.36 0.52 0.03

e0ddr1-10-by-5-6 1.40 0.61 0.05

e0ddr1-10-by-5-7 1.30 0.73 0.05

e0ddr1-10-by-5-8 2.95 1.22 0.08
e0ddr1-10-by-5-9 1.40 0.63 0.00

e0ddr1-10-by-5-10 1.41 0.74 0.02

RB-100 0.80 0.50 0.00
RB-200 1.37 0.89 0.02

RB-300 2.73 1.44 0.38

RB-400 5.47 2.03 0.63

RB-500 9.07 4.31 0.61
RB-600 14.37 6.31 0.77

RB-700 21.75 10.26 1.12

RB-800 29.18 21.73 0.92

RB-900 40.06 28.30 1.35
RB-1000 53.44 42.91 1.33
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Fig. 6. Anytime curve for consistent CSPs with 1000 variables.

Fig. 7. Anytime curve for inconsistent CSPs with 1000 variables.

Fig. 8. Anytime curve for a consistent TCSP with 1000 variables.
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5. Conclusion and Future Work

In order to overcome the di±culty when solving CSPs, we have proposed in this

paper a novel crossover operator namely the PSC and its integration within a

Hierarchical PGA (HPGA). Through di®erent experiments on randomly generated

CSPs as well as TCSP instances, we demonstrated that our proposed crossover is

superior than the well-known crossovers, both in terms of time e±ciency as well as

the quality of the returned solution. In addition, a comparison of our HPGA to

the well-known Abscon solver on random as well as real-world instances, show the

superiority of our method in terms of running time.

These promising results motivated us to follow this work further into exploring

variants of CSPs such as dynamic CSPs,8,39 probablistic CSPs40 as well as CSPs

under preferences and change.41,42 These latter problems are optimization problems

where the goal is to come up with a solution maximizing some objective functions.

In this case, the use of weighted CSPs43 will be the option we are going to explore.

We also intend to extend our solving system to nonbinary CSPs. This can be done

by converting the nonbinary CSP into a binary one and then use our solving ap-

proach on the latter. Nonbinary CSPs can be converted into binary ones using dual

encoding or hidden variables encoding methods.2
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