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Abstract We present a new framework, managing Con-
straint Satisfaction Problems (CSPs) with preferences
in a dynamic environment. Unlike the existing CSP

models managing one form of preferences, ours sup-
ports four types, namely : unary and binary constraint
preferences, composite preferences and conditional pref-

erences. This offers more expressive power in represent-
ing a wide variety of dynamic constraint applications
under preferences and where the possible changes are

known and available a priori. Conditional preferences
allow some preference functions to be added dynami-
cally to the problem, during the resolution process, if

a given condition on some variables is true. A com-
posite preference is a higher level of preference among
the choices of a composite variable. Composite variables

are variables whose possible values are CSP variables.
In other words, this allows us to represent disjunctive
CSP variables. The preferences are viewed as a set of

soft constraints using the fuzzy CSP framework. Solving
constraint problems with preferences consists in finding
a solution satisfying all the constraints while optimiz-

ing the global preference value. This is handled by four
variants of the branch and bound algorithm, we pro-
pose in this paper, and where constraint propagation is

used to improve the time efficiency in practice. In or-
der to evaluate and compare the performance of these
four strategies, we conducted an experimental study on
randomly generated dynamic CSPs with quantitative

preferences. The results are reported and discussed in
the paper.
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1 Introduction

A Constraint Satisfaction Problems (CSP) consists of
a finite set of variables with finite domains, and a finite
set of constraints restricting the possible combinations

of variable values [9]. A solution tuple to a CSP is a set
of assigned values to variables that satisfy all the con-
straints. Since a CSP is known to be an NP-hard prob-

lem in general1, a backtrack search algorithm of expo-
nential time cost is needed to find a complete solution.
In order to overcome this difficulty in practice, con-

straint propagation techniques have been proposed [9,
15,18,23]. The goal of these techniques is to reduce the
size of the search space before and during the backtrack

search. In the past four decades the CSP framework,
with its solving techniques, has demonstrated its ability
to efficiently model and solve a large size real-life ap-

plications, such as scheduling and planning problems,
configuration, bioinformatics, vehicle routing and scene
analysis [21]. However, dealing with these applications

requires the consideration of their dynamic aspect since
they are usually evolving in a non static environment.
Moreover, the goal in general when tackling these ap-

plications is to find a good (if not the best) solution
(or scenario) satisfying the problem requirements while
optimizing a given objective function.

This has motivated us to propose the following ex-
tensions to the CSP framework in order to manage, in
a dynamic environment, constraints with preferences.

1 There are special cases where CSPs are solved in polyno-
mial time, for instance, the case where a CSP network is a
tree [15,19].



2 Malek Mouhoub, Amrudee Sukpan

In order to allow the addition of variables and their

related constraints dynamically to the problem to solve,
during the resolution process, we have extended the
CSP with composite variables and activity (or condi-

tional) constraints. We call Conditional and Composite
Constraint Satisfaction Problem (CCCSP) this exten-
sion. Composite variables are variables whose possible

values are CSP variables2. In other words this allows
us to represent disjunctive CSP variables. An activity

constraint has the following form X1∧ . . .∧Xp
condition→

Y where X1, . . . , Xp and Y are variables (composite

or CSP variables). This activity constraint will acti-
vate Y (Y will be added to the problem to solve) if
X1∧ . . . Xp are active (currently present in the problem

to solve) and condition holds between these variables.
condition corresponds here to the assignment of par-
ticular values to some variables. Solving a CCCSP is

a decision problem which consists in looking for an as-
signment of values to the CSP variables such that all
the constraints are satisfied. Like a CSP, a CCCSP is

in general NP-hard and in order to efficiently solve it,
we have updated the constraint propagation techniques
we mentioned earlier in order to handle the case of con-

ditional constraints and composite variables.

Preferences are handled in a dynamic environment
by augmenting the CCCSP with the following: unary
and binary constraint, composite and conditional pref-

erences. We call Conditional and Composite Constraint
Satisfaction Problem with Preferences (CCCSPP) this
augmented model. Unary (also called variable value)

and binary constraint preferences associate degrees of
preferences respectively to variables domain values and
constraints3, in order to favor some decisions. A com-

posite preference is a higher level of preference among
the choices of a composite variable. Conditional pref-
erences allow some preference functions (unary or bi-

nary constraint; or composite) to be added dynami-
cally to the problem (associated to a given CSP vari-
able, constraint or composite variable), during the res-

olution process, if a given condition on some variables
is true. Solving a CCCSPP is an optimization problem
which consists in finding the best solution according

to the preference values. This is done by a variant of
the branch a bound algorithm we propose in this pa-
per and where constraint propagation is used to prune

some inconsistent values at the early stage of the res-
olution process. Experimental tests, we conducted on
random CCCSPPs generated with the RB model [37],

2 We call CSP variables, the variables of a traditional CSP.
3 In this paper, we are assuming that the constraints are

binary and are defined in extension. For instance, the con-
straint Cij between 2 variables Xi and Xj is the subset of the
Cartesian product of Xi’s and Xj ’s domains.

favor the MAC principle [9,15] as the constraint propa-

gation strategy to be used within the branch and bound
algorithm.

The remaining of the paper is structured as follows.

First, related work in the area of constraint prefer-
ences is reported in the next section. We then introduce
in Section 3, through an example, our CCCSP model

and the corresponding solving techniques. Section 4 in-
troduces the CCCSPP through unary and binary con-
straint, composite and conditional preferences. In Sec-

tion 5 we present the branch and bound algorithm for
solving CCCSPPs. Experimental tests we conducted on
randomly generated CCCSPPs are presented in Section

6. Conclusion and future work are finally listed in Sec-
tion 7.

2 Related work

Classical constraints, also called hard constraints, are

relations that can be satisfied or violated. This two lev-
els notion of satisfiability has been generalized to sev-
eral levels in order to express quantitative preferences.

This generalization is called a soft constraint. In order
to handle soft constraints, in the past decades the CSP
framework has been extended to several formalisms in-

cluding fuzzy CSPs, weighted CSPs, probabilistic CSPs
and partial CSPs [11]. The most general of these for-
malisms is the C-semiring-based Soft Constraint Satis-

faction Problems (SCSP) [6,21]. In a SCSP, constraints
have several levels of satisfiability that are totally or
partially ordered according to the C-semiring structure.

A semiring is a tuple ⟨A,+,×, 0, 1⟩ such that :

– A is a set and 0, 1 ∈ A;
– +, called the additive operation, is a commutative

and associative operation such that 0 is its unit el-

ement;
– ×, called the multiplicative operation, is an associa-

tive operation such that 1 is its unit element and 0

is its absorbing element. × distributes over +.

The set of the semiring specifies the values to be
associated with each tuple of values of the variable do-
main. The two semiring operations (+ and ×) represent

constraint projection and combination respectively. A
semiring for handling constraints is called c-semiring.
A c-semiring is a semiring with additional properties

on the two operations such that + is idempotent, × is
commutative, and 1 is the absorbing element of +. A
partial order relation ≤ is defined over A to compare

tuples of values and constraints.
Valued CSPs [5,33] are an alternative to SCSPs with

the particularity that the levels of satisfiability in a val-

ued CSP are totally ordered [4].
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Conditional Preference networks (CP-nets) [7] are a

graphical model for representing conditional and quali-
tative preferences under the ceteris paribus assumption
(with all other things being without change) . A CP-

net is a set of the cp-statements such as: “I prefer A
to B when X holds”. It is represented by a directed
dependency graph (similar to a Bayesian Network) ex-

pressing all its cp-statements. Lexicographically ordered
CSP in [12] is an another alternative framework for
preferred variables and values. In this latter model,

variable selection is the primary factor while value as-
signment is secondary. Recently, this framework has
been extended to Conditional lexicographic CSPs [36]

for conditional preferences. Qualitative (but uncondi-
tional) preferences have been addressed within the well
known propositional satisfiability (SAT) problem as re-

ported in [10]. In this latter paper, the authors propose
an extension of the Davis Logemann Loveland proce-
dure (DLL) to return an optimal solution. Soft tem-
poral constraints have been tackled in [16] using fuzzy

preferences and in [25] through utilitarian preferences.
A local search method, addressing Fuzzy CSPs where
some of the preferences are unspecified, has been pro-

posed in [13]. The goal here is to find an optimal so-
lution regardless of the missing information. In [22] a
new model has been proposed to tackle soft (called flex-

ible) constraints in a dynamic environment. The model
is called Dynamic Flexible CSP (DFCSP) and uses a
solving method based on a local repair algorithm called

Flexible Local Change. Finally, in [28] the authors pro-
pose an approach that manages CSP hard constraints,
soft constraints and CP-nets.

To our best knowledge no published work addresses

constraints with different types of preferences in a dy-
namic environment. Indeed, the difference between our
model and the works we cited earlier is that, we han-

dle both qualitative and quantitative preferences and
in a dynamic environment (as opposed to, for instance,
the work in [21] considering only the static environ-

ment). The dynamic aspect is managed through con-
ditional preferences and preferences on composite vari-
ables (that we call composite preferences). In Section 4

we will define, through examples, the different compo-
nents of our model using the Fuzzy CSP (FCSP) for-
malism [29]. Note that, since the fuzzy CSP only han-

dles quantitative preferences, we convert each qualita-
tive preference into a numeric value before processing it
as we will see through the different examples presented

in Section 4.

3 Managing Conditional Constraints and

Composite Variables

3.1 The CCCSP model

In the following, we will first define the CCCSP model
and its corresponding constraint network (graph repre-

sentation) through the dress up game example. A back-
track search method based on constraint propagation is
then presented.

Definition 1 : Conditional and Composite Constraint

Satisfaction Problem (CCCSP).

A CCCSP is CSP augmented by conditional constraints

and composite variables. More precisely, it is a tuple
⟨X,DX , Y,DY , IV, C,A⟩, where :

– X={x1, . . . xn} is a finite set of CSP variables.
– DX= {Dx1 , . . . Dxn} is the set of domains of the

CSP variables. Each domain Dxi contains the pos-

sible values that xi can take.
– Y= {y1, . . . ym} is the finite set of composite vari-

ables.

– DY ={Dy1 , . . . Dym} is the set of domains of the
composite variables. Each domain Dyi is the set of
CSP variables that the composite variable yi can

take.
– IV is the set of initial variables (including composite

variables) : IV ⊆ X
∪
Y .

– C = {C1, . . . Cp} is the set of compatibility con-
straints. Each compatibility constraint is a binary
relation 4 between variables in case these latter vari-

ables are not composite, or a set of binary relations
if at least one of the two variables involved is com-
posite.

– A is the set of activity constraints. Each activity
constraint has the following form:

Z1 ∧ . . . ∧ Zp
condition→ T

where Z1, . . . Zp and T are (CSP or composite) vari-
ables; and p ≥ 1. This activity constraint will acti-

vate T if Z1, . . . , Zp are active and condition holds
on these variables. condition corresponds here to
the assignment of particular values to the variables

Z1, . . . , Zp.

Note that the CCTCSP we proposed in [26] is a par-

ticular case of the CCCSP where the CSP variables are
events defined on sets of numeric intervals and the com-
patibility constraints, representing the relative position

4 Note that we only consider here the case of binary con-
straints. Non binary constraints can actually be converted
into binary ones in polynomial time as shown in [2].
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between a pair of events, are disjunctions of Allen prim-

itives [1,14]. The CCCSP can also be considered as a
generalization of both the CCSP [24] and the composite
CSP [31] paradigms.

Like a CSP, we can represent a CCCSP by a graph
where nodes correspond to variables (CSP or composite
variables) while arcs represent compatibility or activity

constraints. Through the following example let us illus-
trate the CCCSP and its graph representation.

Example 1. Let us consider the dress up game (see

Figure 1) described as follows. This entertaining game
provides the user with sets of clothes, accessories and
shoes. The user will then use his/her free style Mix

and Match imagination to create a complete outfit. In
order to assist the user to have an appropriate outfit
and be in a fashion trend, we can enhance the dress

up game by adding tips and advices (expertise) from
fashion designers. The fashion designers knowledge can
be viewed as the set of compatible constraints, activ-

ity constraints and composite variables including the
following: “running shoes does not match with pants”,
“pantsuit with business shirt make you look elegant”,

“jacket with jeans is for a weekend look”, “set of skirt,
jacket and shirt makes you look feminine ”, and “two
piece matched suit without jewelry is an appropriate

dress for job interview”. A possible mix-match dress up
is to wear a T-shirt, short and running shoes with a
baseball cap. Another possible clothes set is a dress, a

necklace(J1) and a handbag (HB3) with pump shoes.

The dress up game is formulated in a natural way
using the CCCSP framework as follows (see figure 1 for

the CCCSP graph representation).

– Apparel and Shoes are initial active variables; the
rest are nonactive variables. Apparel is a composite

variable.
– Activity constraints:

– APPAREL
APPAREL=TOP→ BOTTOM ,

– APPAREL
APPAREL=BOTTOM→ TOP ,

– SET
SET=Dress→ JEWELRY ,

– SET
SET=Dress→ HANDBAG,

– TOP
TOP=T-Shirt→ HAT ,

– BOTTOM
BOTTOM=Pant→ BELT ,

– BOTTOM
BOTTOM=Jeans→ BELT ,

– and BOTTOM
BOTTOM=Skirt→ HANDBAG

– Compatibility constraints:
– (TOP,SHOES),
– (SET,SHOES),

– (BOTTOM,SHOES),
– (TOP,BELT),
– (HAT,BOTTOM),

– (JEWELRY,HANDBAG).

Figure 2 illustrates each of the above compatibility

constraints.

Arc Consistency for CCCSPs: AC-3-CCCSP

In order to solve the CCCSP, we propose a solving
method based on constraint propagation. The goal of
this method is to overcome, in practice, the difficulty

due to the exponential search space of the possible CSPs
generated by the CCCSP to solve in addition to the
search space we consider when solving each CSP. In-

deed, a CCCSP represents DM possible CSPs where D
is the domain size of the composite variables and M
the number of composite variables.

Constraint propagation enforces arc consistency [18,
23] before and during the actual backtrack search as we
will show later when describing the details of our solving

method. In a classical CSP, arc consistency ensures that
for each variable pair (x1, x2), each value of x1’s domain
has a value in x2’s domain such that the constraint

between the two variables hold. In the case of a CCCSP,
we have defined arc consistency as follows.

We will assume in the following that x1 and x2 are

non composite variables while y1 and y2 are composite.
After identifying four possible cases depending on the
constraint shared by the two variables, arc consistency

is enforced as follows.

1. Case 1: The constraint is (x1, x2). This is the
case in a classical CSP. Arc consistency is applied

here between (x1, x2) i.e. each value a of x1 should
have a support in the domain of x2.

2. Case 2: The constraint is (y1, x1). Arc consis-
tency is applied between x1 and each CSP variable

within y1 domain i.e. each value a, from the domain
of each variable x within y1, should have a support
in the domain of x1.

3. Case 3: The constraint is (x1, y1). Each value a,
from the domain of x1, should have a support in at
least one domain of the variables within y1.

4. Case 4: The constraint is (y1, y2). Apply case 2
between y1 and each variable x within y2.

AC-3 [18] and its variant [3] are the most known and

used arc consistency algorithms. Figure 3 illustrates the
code of the algorithm AC-3. As shown in line 2 of the
algorithm, AC-3 starts with a list of all variable pairs

(i, j) and enforces the arc consistency for each of these
pairs through the function REV ISE as follows. For
each value a from i’s domain, REV ISE looks for a

value b in j’s domain such that the constraint between
i and j holds. If no such value b is found, value a is
removed from i’s domain (as it has no value in j’s do-

main supporting it). This change will be propagated to
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Fig. 1 The dress up game.
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JEWELRYHAND_BAG SET SHOES BOTTOM SHOES HANDBAG SET

J1 HB2 Skirt_Suit Pump Pant Casual HB2 Dress

J2 HB2 Skirt_Suit Boot Pant Pump HB1 Skirt_Suit

J3 HB3 Dress Pump Jean Running HB4 Pant_Suit

J3 HB4 Pant_Suit Pump Skirt Boot HB3 Dress

J3 HB1 Pant_Suit Casual Skirt Pump HANDBAG SHOES

J4 HB1 HAT BOTTOM Capri Sandal HB1 Sandal

J4 HB2 Bucket Skirt Short Sandal HB2 Pump

J4 Hb3 Visor Capri Short Running HB3 Pump

TOP BOTTOM Visor Short TOP BELT HB4 Casual

Blouse Pant Baseball Short Jacket B4 HB3 Boot

Blouse Skirt Baseball Jean Tank B3 HB4 Sandal

Shirt Pant Toyo Skirt Tank B4

Shirt Skirt TOP SHOES T-Shirt B3

T-Shirt Jean Blouse Pump Blouse B2

T-Shirt Capri Shirt Casual Blouse B3

T-Shirt Short T-shirt Sandal Shirt B2

Tank Short T-shirt Running Shirt B4

Tank Capri Tank sandal

Jacket Jean

Fig. 2 Compatibility constraints for the dress up game.

all the variables sharing a constraint with variable i.
For that, we reconsider all variable pairs (k,i) where k
is a variable sharing a constraint with i. This is done in

line 6 of the algorithm AC-3.

To enforce arc consistency on a CCCSP we have ex-
tended AC-3 by considering the four cases above. We

call the new algorithm AC-3-CCCSP. Figure 4 illus-
trates the pseudo-code of this algorithm. AC-3-CCCSP
starts with a list of pairs of variables to revise (the list

Q containing all the pair of variables sharing a con-
straint) and goes through this list until this latter is
empty. Each pair (i, j) is then processed (revised) ac-

cording to the above 4 cases as follows.

– Case 1. If i and j are CSP variables, we apply
the traditional REV ISE function of AC-3 [18] pre-

sented in Figure 3.
– Case 2. If i is a CSP variable and j is a composite

variable, each value a of Di (where Di is the domain

of variable i) should have a support in at least one
domain Dk (where k is a CSP variable within the
composite variable j). In other words, a is removed

from Di if it does not have any support in any do-

main Dk. This is implemented by computing the
union of the sets respectively obtained by revising
Di with each of the CSP variables within j.

– Case 3. If i is a composite variable and j is a CSP
variable, the function REV ISE is applied here on
each pair of variables (k, j) where k is a CSP variable

within i.
– Case 4. Both i and j are composite variables. Here

we apply case 2 on each CSP variable within i, and

j.

Note that AC-3-CCCSP is a generalization of the
arc consistency algorithm we proposed in [26] in the

particular case of temporal constraints (that we called
CCTCSP).

3.2 Backtrack Search for CCCSPs

Based on AC-3-CCCSP, our solving method is described
in two stages as follows.

1. Preprocessing Stage. The goal here is to enforce

AC-3-CCCSP before the backtrack search in order
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Function REV ISE(i, j)
1. REV ISE ← false
2. For each value a ∈ Domaini Do
3. If there is no b ∈ Domainj such that compatible(a, b) Then
4. remove a from Domaini

5. REV ISE ← true
6. End-If
7. End-For

Algorithm AC-3
1. Given a constraint network CN = (E,R)

(E: set of variables, R: set of constraints between variables)
2. Q← {(i, j) | (i, j) ∈ R} (list initialized to all relations of CN)
3. While Q ̸= Nil Do
4. Q← Q− {(i, j)}
5. If REV ISE(i, j) Then

6. Q← Q ⊔ {(k, i) | (k, i) ∈ R ∧ k ̸= j}
7. End-If
8. End-While

Fig. 3 Pseudo code of the algorithm AC-3.

to reduce the size of the search space. Starting from

an initial problem containing a list of initially acti-
vated variables (including composite variables), AC-
3-CCCSP is enforced on these initial variables in

order to reduce some inconsistent values which will
reduce the size of the search space. If the initial
problem is arc inconsistent (in the case of an empty

domain) then the method will stop and returns that
the CCCSP is inconsistent.

2. Backtrack Search. In the same way as reported

in [24,32], we use arc consistency during the search
in order to detect, at the early stage of the search
process, any subset containing conflicting variables.

Based on the forward check (FC) principle [15], we
pick an active variable v, assign a value to it and
perform AC-3-CCCSP between this variable and the
non assigned active variables. If one domain of the

non assigned variables becomes empty then we as-
sign another value to v or backtrack to the previ-
ously assigned variable if there are no more values

to assign to v. We activate any variable v′ resulting
from this assignment and perform AC-3-CCCSP be-
tween v′ and all the active variables. If arc inconsis-

tency is detected then we deactivate v′ and choose
another value for v (since the current assignment of
v leads to an inconsistent CCCSP). If v is a compos-

ite variable then assign a variable to it (from its do-
main). Basically, this consists of replacing the com-
posite variable with one variable x of its domain. We

then assign a value to x and proceed as shown before
except that we do not backtrack in case all values
of x are explored. Instead, we will choose another

variable from the domain of the composite variable
v or backtrack to the previously assigned variable

if all values of v have been explored. This process

will continue until all the variables are assigned in
which case we obtain a solution to the CCCSP.

The flow chart of the above proposed solving method
is described in figure 5.

Note that, instead of using forward checking (FC)
in step two above, we can also use one of the following

three strategies.

– Maintaining Arc Consistency (MAC). This st-

rategy maintains a full arc consistency on the cur-
rent and future active variables (variables not as-
signed yet).

– FC+. Same as FC except that the applicability of
the arc consistency is extended to non active vari-
ables as well.

– MAC+. Same as MAC except that the applicabil-
ity of the arc consistency is extended to non active
variables as well.

Figures 6, 7 and 8 illustrate the application of the
standard backtrack search (BT, the solving method with-

out arc consistency in the second phase), FC and MAC
to the dress up game described in example 1.

Like for classical CSPs, variable and value ordering,

during search, has a significant impact on the size of the
explored space in the case of CCCSPs. For variable se-
lection, we use the heuristic method we proposed in [27]

based on Hill Climbing (HC) and Ant Colony Optimiza-
tion (ACO) and following conflict driven heuristics.

In the case of value selection, we start with the value

that leads to an easiest to solve CCCSP first since our
goal here is to find the first solution and that there is no
preference on the solution obtained. More precisely, in

the case of a composite variable x, we select the simple
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Fig. 6 BT for the dress up game

variables, within the domain of x, by decreasing number
of their degrees. For a simple variable, we select the

least constrained value first (the value that causes the
activation of the minimum number of constraints).

4 Variable Value, Constraints, Composite and
Conditional Preferences: the CCCSPP model

In the following we will present the different compo-

nents of our CCCSPP model through our dress up game
example extended to include preferences.

Example 2.
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Fig. 7 FC for the dress up game

Fig. 8 MAC for the dress up game
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AC − 3− CCCSP

Given a graph G = (X,U)
Q← {(i, j)|i, j ∈ U}
while Q ̸= Nil do

Q← Q− {(i, j)}
if i or j is composite variable (cases 2, 3 and 4)

if REV ISE COMP (Di, Dj) then
Q← ∪{(k, i)|k, i ∈ U and k ̸= j}

end if
else if REV ISE(Di, Dj) then (case 1)

Q← ∪{(k, i)|k, i ∈ U and k ̸= j}
end if

end if
end while

REV ISE(Di, Dj)
REV ISE ← false
For each value a ∈ Di do

if not compatible(a, b) for any value b ∈ Dj then
remove a from Di

REV ISE ← true
end if

end for

REV ISE COMP (Di, Dj)
REV ISE COMP ← false
if i is a single variable and j is a composite variable (case 2)

Dtmp ← ∅
For each event k ∈ Dj do

D ← Di − Dtmp

REV ISE COMP

← REV ISE COMP OR REV ISE(D,Dk)
Dtmp ← Dtmp ∪D

end for
Di ← Dtmp

end if
if i is a composite variable and j is a single variable (case 3)

For each event k ∈ Di do
REV ISE COMP

← REV ISE COMP OR REV ISE(Dk, Dj)
end for

end if
if i and j are composite variables (case 4)

For each event k ∈ Di do
REV ISE COMP (Dk, Dj)

end for
end if

Fig. 4 AC-3-CCCSP.

1. There are four occasions to consider during the dress
up: job interview, party, sport and camping. If the

occasion selected is job interview or party, we prefer
“set” instead of mix-and-match pieces (“top” and
“bottom”). If it is camping or sport, we prefer “top”

and “bottom” instead of “set”.
2. We always prefer to wear “Casual” and “Boot” in-

stead of “Sandal”, “Running” and “Pump”.

3. We like handbag “HB3” and “HB4” the most.

Initial problem

containing a

list of activated

CSP and com-

posite variables

Apply AC-3-

CCCSP to the

initial problem

Is the

initial

problem

arc con-

sistent?

Return “The

problem is

inconsistent”

Apply FC, FC+,

MAC or MAC+

to the arc con-

sistent problem

Solution

found?

Return “The

problem is

inconsistent”

Return the

solution

no

yes

no

yes

Fig. 5 Flow chart of the proposed backtrack search method.

4. For match clothes (Top&Bottom constraint), we like
“Blouse with Skirt”, “T-Shirt with Capri” and “Jacket
with Jeans” the most.

5. For Set&Shoes constraint, we prefer “Skirt-Suit with
Boot” and “Pant-Suit with Casual” to the rest.

4.1 Unary and Binary Constraints Preferences

We define two types of preferences at the traditional
CSP level. The first one is imposed on variable values
while the second concerns the pairs of values within

the binary constraints. Both preferences are defined
over a fuzzy CSP. We call the first one Soft Unary
Constraint (SUC) and the second one Soft Binary Con-

straint (SBC). As mentioned before in introduction, we



Managing Dynamic CSPs with Preferences 11

are assuming here that the binary constraints are de-

fined in extension.

Definition 2 : Soft Unary Constraint (SUC)

A Soft Unary Constraint (SUC) is a function

fsuc:xi : Dxi → A

where xi is a CSP variable and Dxi
its domain of

values.

Example 3

The information in 2 and 3 in example 2 above can be
formulated with SUCs as they concern preferences on
the values of CSP variables SHOES and HANDBAG

respectively. The SUC corresponding to 2 is the function
fsuc:SHOES defined, for example, as follows.
fsuc:SHOES(Casual) = fsuc:SHOES(Boot) = 1.0.

fsuc:SHOES(Sandal) = fsuc:SHOES(Running)
= fsuc:SHOES(Pump) = 0.5.

Definition 3 : Soft Binary Constraint (SBC)

A Soft Binary Constraint (SBC) is a function

fsc:Cij : Cij → A

where Cij is the binary constraint between the vari-
ables i and j.

Example 4

The information in 4 and 5, in example 2 above, can be
formulated with SBCs as they are related to preferences

on the constraints (Top,Bottom) and (Set, Shoes) re-
spectively. The SBC corresponding to 4 is the function
fsbc:(Top,Bottom) defined, for example, as follows.

fsbc:(Top,Bottom)((Blouse, Skirt))
= fsbc:(Top,Bottom)((T-Shirt, Capri))

= fsbc:(Top,Bottom)((Jacket, Jeans))
= 0.9.

For any other possible pair of the constraint
(Top,Bottom) the value of the SBC function is for ex-

ample equal to 0.6. Similarly, the SBC corresponding to
5 is the function fsc:(Set,Shoes) defined, for example, as
follows.

fsbc:(Set,Shoes)((skirt-suit, boot))
= fsbc:(Set,Shoes)((plant-suit, casual))
= 0.9.

For any other possible pair of the constraint

(Set, Shoes) the value of the SBC function is for exam-
ple equal to 0.6.

4.2 Composite and Conditional Preferences

Definition 4 : Composite Preference (CompP)

A Composite Preference (CompP) is a function

fc:X : DX → A

where X is a composite variable and DX its domain

of values (CSP variables).

This function allows us to favor some CSP variables

within the domain of a given composite variable.

A Conditional Preference (CP) allows a preference

function (SUC, SBC and ComP) to be added dynami-
cally to the CCCSPP when a given condition on CSP or
composite variables is true. The condition corresponds

here to the assignment of particular values to variables.

Definition 5 : Conditional Preference (CP)

Given a list of variables (CSP or composites)
X1, . . . , Xp and Y
and a preference function f ,

then a conditional preference has the following form :

X1 ∧ . . . Xp
condition→ associate f to Y .

The above conditional preference will associate f
to Y if condition holds on the variables X1, . . . , Xp.

condition corresponds here to the assignment of partic-
ular values to the variables X1, . . . , Xp. Note that the
variable Y can be associated to only one conditional

preference f .

Example 5

Information 1 in example 2 is formulated with the fol-
lowing conditional preference.

1. OCCASION
condition1→ assign the CompP f1 to the

composite variable APPAREL.

2. OCCASION
condition2→ assign the CompP f2 to the

composite variable APPAREL.

where :

– condition1 is :
OCCASION = job-interview ∨ OCCASION =

party
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– condition2 is :

OCCASION = camping ∨OCCASION = sport
– f1 = {set = 0.9, top = 0.6, bottom = 0.6}
– f2 = {top = 0.9, bottom = 0.9, set = 0.6}

4.3 Global Preferences and Optimal Solution to the

CCCSPP

In order to define the global preference of a solution to

a CCCSPP, the Consistent Binary Assignment Prefer-
ence (CBAP) is introduced in the following. A solution
to the CCCSPP is an assignment of values to all the

CSP variables of the problem such that all the compat-
ible constraints are satisfied. The global preference of a
solution can be computed by performing the min oper-

ation on all the Consistent Binary Assignment Prefer-
ences (CBAPs) defined as follows.

Definition 6 : Consistent Binary Assignment Preference (CBAP)

Given two variables xi and xj sharing a constraint

Cij and a consistent binary assignment
c = ([xi = vi], [xj = vj ]) ∈ Cij

where vi ∈ Domain(xi) and vj ∈ Domain(xj),
αi = fsuc:xi

(vi),

αj = fsuc:xj (vj),
and αc = fsc:Cij (c),

then CBAP (vi, vj) = min(αi, αj , αc).

Example 6

Let us assume that during the backtrack search we have
made the following decision (assignment) :

– OCCASION = job-interview

According to example 5 above, assigning job-interview
to OCCASION will activate the composite preference

f1 which will favor the value set over top and bottom.
set will then be the first value to assign to APPAREL.
Since there is no SUC preference on the values of SET ’s

domain, the choice for the first value to assign to SET
will be guided by the SBC of the constraint this latter
variable shares with other active variables. Since SBC of

the constraint (SET, SHOES) favors 2 pairs involving
skirt-suit and plant-suit, these latter are the first two
values to choose for SET . Let us assume that skirt-suit

is assigned to SET . SHOES will then be assigned to
boot and the CBAP of the constraint (SET, SHOES)
will then be computed as follows.

α = min(fsuc:SET (skirt-suit), fsuc:SHOES(boot))

= min(1.0, 1.0)
= 1.0.

CBAP ((skirt-suit, boot))

= min(α, fsc:(SET,SHOES)((skirt-suit, boot)))
= min(1.0, 0.9)
= 0.9.

Definition 7 : Global Preference (GP)

Given a solution s = {v1, v2, . . . , vn} to a CCCSPP,
where n is the number of variables

and each of the vi’s belongs to the

domain of the corresponding variable xi;
and a set of consistent assignments ca = {(vi, vj)
where 1 ≤ i, j ≤ n,

vi, vj ∈ s
and such that there is a constraint
between the variables xi and xj},

then GP (s) = min {CBAP (vi, vj) | (vi, vj) ∈ ca} .

An Optimal Solution (Opt) of a given CCCSPP P is
the solution having the highest global preference degree.

Definition 8 : Optimal Solution (Opt)

Given A CCCSPP P
and a set of solutions
S = {s1, . . . , sn}

where(vi, vj) ∈ ca
then Opt(P ) = max {GP (s1), . . . , GP (sn)}

5 Solving CCCSPPs

The solution method we propose here is based on Branch

and Bound (BnB) and uses constraint propagation in
order to reduce the size of the search space during the
resolution process. More precisely, our proposed algo-

rithm is described below with a flow chart presented in
figure 9.

– Step 1. The method starts with an initial prob-

lem containing a list of initially activated CSP and
composite variables. In order to ensure that domain
values are considered according to their preference

functions, all the values within each domain are
sorted in decreasing order of their SUC or CompP
values (depending whether they belong to CSP vari-

able or composite variable domains). Arc consis-
tency is then applied to the initial CSP and com-
posite variables in order to reduce some inconsistent

values which will reduce the size of the search space.
If the initial CSP is arc inconsistent (in the case of
an empty domain) then the method will stop. The

CCCSPP is inconsistent in this case.
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– Step 2. Following the forward check principle [15],

pick an active variable x, assign a value to it and
perform AC-3-CCCSP between this variable and the
non assigned active variables. If one domain of the

non assigned variables becomes empty then assign
another value to x or backtrack to the previously
assigned variable if there are no more values to as-

sign to x. Activate any preference function (through
conditional preference) and any variable x′ (through
activity constraint) resulting from this assignment

and perform arc consistency between x′ and all the
active variables. If arc inconsistency is detected then
deactivate x′ and choose another value for x (since

the current assignment of x leads to an inconsistent
CCCSPP). If x is a composite variable then assign a
CSP variable to it. Basically, this consists of replac-

ing the composite variable with one variable xi of its
domain. We then assign a value to xi and proceed
as shown before except that we do not backtrack in
case all values of xi are explored. Instead, we will

choose another CSP variable from the domain of the
composite variable x or backtrack to the previously
assigned variable if all values (CSP variables) of x

have been explored. This process will continue until
all the variables are assigned in which case we obtain
a solution to the CCCSPP. Since we are looking for

the highest global preference degree, the GP value
of this solution will be used as a lower bound (LB)
of our branch and bound algorithm. Note that any-

time a preference function f is activated (added to
the CCCSPP) through a conditional preference, the
domain of values of the variable associated to f is

sorted according to this latter.
– Step 3. The rest of the search space is then sys-

tematically explored as follows. Each time the cur-

rent variable (CSP variable or composite) is assigned
a value, an overestimation of the GP value of any
possible solution following this decision is computed

and used as an upper bound (UB). If UB < LB
then the current variable is assigned another value
or backtrack to the previous variable if all the val-

ues have been explored. The overestimated GP is
the minimum of the CBAPs of all the assigned vari-
ables and the estimated CBAPs involving non as-

signed variables (including those that can be acti-
vated during the remaining search process). An es-
timated CBAP involving a non assigned variable Xi

is calculated as follows.

If the other variableXj involved by the CBAP is

an assigned variable then the estimated CBAP
is the minimum of the following : the SUC of the
value assigned to Xj , the maximum of the SBCs

of all the pairs within the constraint between Xi

and Xj , and the maximum of the SUCs of all

the values belonging to Xi’s domain.
Else (Xj is not assigned yet) : the maximum of
the SUCs of all the values belonging to Xj ’s and

Xi’s domains, and the minimum of the SBCs of
all the pairs within the constraint between Xi

and Xj .

Note that, like in the solving method we described
in Section 2 we have also used MAC, FC+ and MAC+

instead of FC in step 2 above. An experimental com-
parative study of the four strategies is reported in the
following Section.

6 Experimentation

To evaluate and study the time performance of the four

variants of the method we propose (namely FC, FC+,
MAC and MAC+), we have performed several experi-
mental tests on consistent CCCSPPs randomly gener-

ated as shown in the next Section.

The experiments are conducted on a PC Pentium 4

computer running Linux. All the procedures are coded
in C/C++. The tests we have performed compare the
four propagation strategies used in step 2 of our branch

and bound based solving method we described in the
previous Section.

6.1 CCCSPP instances

CCCSPPs are build from CSPs randomly generated by
the model RB proposed in [37]. The choice of this model

is motivated by the fact that it has exact phase tran-
sition and the ability to generate asymptotically hard
instances. More precisely, we randomly generate each

CSP instance as follows using the parameters n, p, α
and r where n is the number of variables, p (0 < p < 1)
is the constraint tightness, and r and α (0 < α < 1) are

two positive constants used by the model RB [37].

1. Select with repetition rn lnn random constraints.
Each random constraint is formed by selecting with-

out repetition 2 of n variables.

2. For each constraint we uniformly select without rep-

etition pdk incompatible pairs of values, where d =
nα is the domain size of each variable.

Each CCCSPP instance is then generated as follows
using the parameters N , D and a respectively corre-

sponding to the number of composite variables, their
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Fig. 9 Flow chart of the proposed solving method.

domain size and the number of activity constraints.

1. Randomly generate a CSP with the parameters n,

p, α and r as shown above.

2. Generate N composite variables each containing D

simple variables.

3. Select with repetition r[(n+N) ln(n+N)− n lnn]

new random constraints (between the n + N vari-
ables), each formed by selecting without repetition
2 of the n+N variables. This will guarantee that the

total number of constraints is r(n+N) ln(n+N) as
per the requirements of the RB model. For each con-
straint we uniformly select without repetition pdk

incompatible pairs of values.

4. Select I(n + N) initial variables from n + N (0 <

I < 1).

5. Select a(nd + ND) activity constraints for each of
the n+N−I(n+N) non initial variables (0 < a < 1).

6. Preference values are finally randomly distributed
on the values of the different CSP and compos-

ite variables and also on the pair of values within
each compatibility constraint. In addition, condi-
tional preferences are randomly generated and added

to the problem.

As demonstrated in [37], when the number of vari-
ables approaches infinity the phase transition occurs

when the constraint tightness pt = 1− e−
α
r . Thus, the

phase transition is an asymptotic phenomenon since,
only for infinite number of variables, we can have sharp

phase transitions. In addition, the number of variables
and constraints of the possible CSPs, each CCCSPP
contains, is slightly different from the one of the CCC-

SPP they are generated from.

6.2 Discussion of the Experimental Results

In order to come up with a complete study, we have

conducted three sets of experiments. In each of these
cases, we first fix all the parameters needed to gener-
ate the CCCSPP instances as follows: n = 50, D = 5,

p = 0.5, α = 0.8, a = 0.2, r = 0.6 and I = 0.8. We then
vary one of these parameters in order to study its influ-
ence on the running time needed to return the optimal

solution by each of the four methods.

According to the parameters we have set, the phase
transition is computed as follows : pt = 1 − e−

α
r =

1 − e−
0.8
0.6 = 0.73. Thus, consistent instances are those

with the tightness less than 0.73. The results of the
tests are visualized through charts where the x coor-

dinate represents the values of the varying parameter
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while the y coordinate corresponds to the running time

in seconds needed to return the optimal solution. The
time here is averaged over 10 runs.

In the following, we report the experimental results

and discuss them in each of the following three subsec-
tions. Each chart reporting the results of a given test
set will have the varying parameter in the X axis and

the running time in seconds in the Y axis.

6.3 Easy versus Hard Problems

The goal here is to study the behavior of the four meth-
ods when varying the tightness p. Note that in this par-
ticular case, we changed n to 100 in order to be able to

easily distinguish between the four methods.

Figure 10 presents the results of these comparative
tests. In the case of under constrained problems (cor-

responding to low tightness values) FC and FC+ pro-
vide better results. This is due to the fact that there
are fewer inconsistent values to be removed and the ex-

tra effort done by MAC and MAC+ to remove these
values does not improve the overall running time for
finding the optimal solution. We also notice that FC+

does better than FC (and the same can be said for
MAC+ over MAC) since the former strategy extends
the propagation to non active variables and there is a

considerable number of these variables (since I = 0.8
and a = 0.2). However, when we move toward the phase
transition the extra work performed by MAC and espe-

cially MAC+ starts to pay off. Indeed, in this particular
situation fewer consistent solutions are available in the
search space and the FC and FC+ methods have more

difficulties moving from one solution to another in order
to find the optimal one.

6.4 Less versus More Dynamic Problems

The idea here is to study the behavior of the four meth-
ods when the problems become more dynamic i.e. by

increasing each of the following parameters: a, I,N and
D. The results are reported respectively in Figures 11,
12, 13 and 14. In all these four charts we can easily no-

tice that MAC and MAC+ outperform the other two
methods especially when the problems become more
dynamic (corresponding to high values of a, I,N and

D).

Note that in the case of Figure 12, while MAC+
does more efforts than MAC when I decreases (since

the difference between the two strategies is that MAC+

does the propagation to non active variables as well as

active variables), this extra effort is paying off as the
total running time of MAC+ is always better than the
MAC’s time.

6.5 Small versus Large Size Problems

In this case we increase the size of the problem by vary-
ing the number of variables from 10 to 150 as shown in
Figure 15. Here again, MAC and MAC+ are faster than

FC and FC+.

7 Conclusion and Future Work

In this paper we have proposed a unique framework

managing preferences at different levels of the constraint
network and in a dynamic environment. This frame-
work is very appealing for a wide variety of real world

applications such as reactive scheduling and planning,
logistics and configuration problems. The approach we
adopted consists in converting a given constraint prob-

lem involving all the possible change that can occur
depending on the validity of certain conditions into a
constraint network where conditional constraints and

composite variables are used to add new information
to the constraint network in a dynamic manner dur-
ing the resolution process. Preferences are associated

to variable and constraint values as well as composite
variables, in order to favor some solutions of the con-
straint problem. Finding the best solution is carried

out by a variant of the branch and bound algorithm
we propose. In order to evaluate the time performance
of our solving method, we conducted experimental tests

comparing different propagation strategies on randomly
generated CCCSPPs. The results favor the MAC prin-
ciple [9,15] over the other strategies.

In the near future, we intend to conduct more ex-
perimental study on some real life applications under

constraints and preferences such as those addressed in
[17,20,30]. This will be done especially when consid-
ering approximation methods such as Stochastic Lo-

cal Search (SLS)[34], Genetic Algorithms (GAs)[8] and
Ant Colony Algorithms (ACOs) [35]. While these tech-
niques do not always guarantee an optimal solution to

the problem, they are very efficient in time (comparing
to branch and bound) and can thus be useful if we want
to trade the optimality of the solution for the time per-

formance.
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