
Open Source and Intellectual
Property

Presenter: David Elliott

Contents
Introduction
Forms of Intellectual Property
 Main Forms of Intellectual Property (IP)
 What is Computer Software?
 Trade Secrets
 Copyrights
 Patents
 There are 4 tests for a patent
 Connection between Patents and Copyrights
 Open Source v. Proprietary Software
 Different Kinds of Open Source Licenses
Main Moral Arguments for IP (Property)
 Common Arguments for Open Source
 Examples of Moral Arguments
 Two Steps in a Moral Argument for Open Source

Introduction
In this talk I want to:

Review main forms of "intellectual property".

Review how software development might be (and has been) conceived as a
form of intellectual property.

Consider what "open source" means, and various forms of "open source"
compatible devices are in terms of intellectual property.

Consider whether, apart for standard economic, business, and efficiency
arguments, there is any strong moral argument which would favor open
source software production over proprietary development.

Caveat: I am NOT a lawyer, nor do I have any legal credentials. I am an amateur
viewing an area that is huge in scope, but nevertheless relevant to what I have to
talk about. So I have tried to do my best to be accurate, but I do not claim to be
absolutely correct about these matters. I therefore welcome and comments or
corrections that people might have about my comments about the legal aspects of
intellectual property.

Forms of Intellectual Property
The term "intellectual property" is bit misleading. The main forms of intellectual

property--patents and copyright-do not permit someone to own ideas; they only
permit people to either have a monopoly on their particular expression or
manifestation in the form of a useful device or process.

Exception: Trade secrets. This does permit, it seems, the ownership of (particular)
ideas indirectly at least. It means simply that certain things cannot be
communicated to other people. This is very restrictive, but there are conditions, as
we'll see on what can legitimately be a "trade secret".

Main Forms of Intellectual Property (IP)

Copyrights

Patents

Trade Secrets

Trade-Marks

Integrated Circuit Topographies

Note: The latter two are not of primary interest to me in this talk.

Note: Canadian Copyright and Patent law is similar to the US, but has differences.
(E.g., the "Harvard" Mouse is patentable in the US, but not in Canada. The
Canadian Supreme Court has ruled that "higher" life forms cannot be patented. But
in the US, apparently higher life forms can be patented.)

Note: An Integrated Circuit Topography is basically a microchip, and the Act
provides protection against copying of registered topographies, but does not
prevent others from developing integrated circuit products which use other
topographies to provide the same electronic functions. The point here is that this is
mainly a hardware issue.

Traditionally:

1. Copyright law protects literary expression.

2. Patent law protects mechanical inventions.

3. Contract Law protects trade secrets.

In the US, at some point in time, computer software has been protected under ALL
three of these forms of IP law.

Up to early 60s: US computer industry relied on trade secret regulations to
protect its software.

1964: US Copyright Office began to accept computer programs for
registration.

1976: US Copyright Act was passed-but did not explicitly provide for
software.

1980: US Copyright Act is amended to include computer programs as
"literary works". The US Courts begin to extend copyright protection by (1)
considering a program's source code to include the object code, and then
later (2) including the logic and sequence of the program as well.

1982: Second Circuit Court of Appeals (New York) judged in Computer
Associates v. Altai that the basic structure of a program is not copyrightable.

1983: US Patent Office issues a memorandum encouraging software
developers to patent their work.

1986: Third Circuit Court of Appeals (New Jersey, Pennsylvania and
Delware) in Whelan v. Jaslow declared that copyright protection included the
basic structure of a program-its lines of written code, and the nonliteral
aspects of a program (e.g., the screen design, commands, etc.)-can be
copyrighted.

Point: Given that all three kinds of IP law have been used-and at least two
(copyright and patent) are still in use for software-it is not unreasonable to ask
which of these forms of IP law really fit best for software.

What is Computer Software?

Simple definition: A computer program is a procedure for solving a problem-i.e.,
getting the computer to something in the right way. (Deborah Johnson, "Should
Computer Programs Be Owned?" 2000)

This procedure has at least three basic levels:

Algorithm: the solution idea conceived as a sequence of (logical) steps.

Source: the solution expressed in a particular computer language.

Object: the solution compiled into machine language.

Now, if a computer program is to be considered property, it is reasonable to ask
which of these features of a program should, and which, if any, should not be
regarded as something which could be owned.

Note: I am taking a philosophical perspective on this issue; not a strictly factual
or legal one. I am asking which body of existing or new law can reasonably be
applied to software--not which body actually has been.

Consider now each of the three main forms of IP:

Trade Secrets

Trade secret law standardly applies to "any formula, pattern, device, or compilation
of information which is used in one's business and which gives him an opportunity
to gain an advantage over competitors who do not use it."

Problems:

1. All three levels of computer programs are kept out of the public.

2. Hence this is only useful for internal programming, not software developed
for the market.

3. Very difficult to maintain trade secrecy.

4. Prevents others from being able to use the idea to produce other inventions
which build on and improve the idea in non-competitive ways.

Copyrights

Copyright confers on the holder the rights to reproduce the copyrighted work, to
prepare other works derived from it, and to distribute copies of it to the public by
sale or transfer of ownership by lease/rent.

Problems:

1. Traditionally, copyright law forbids the ownership of ideas, but permits

ownership of the expression of ideas. (Hence the algorithm cannot really be
protected-without distortion of the original idea of copyright. If, however, I
grasp the underlying structure of a program, I can easily express it in
another language.)

2. Generally, it is very difficult to track individual violations; mass produced
unauthorized copying is much easier. But, arguably, it is at the individual
level where concern about software copying is located.

Also, it is not clear how effective copyright is in a context where:

1. An exact (or near exact) copy of the original expression is possible.

2. The copy can be made for virtually no cost.

3. It can be widely distributed for virtually no cost and very little effort.

This seems true of software, but not "hardware" or other physical, mechanical
inventions.

Note: The expression of ideas is perhaps always susceptible to this sort of problem
(cf. physical objects). But software seems particularly susceptible to it. This alone
does not mean, of course, that it is morally permissible to make illegal copies of
copyrighted software. It does, however, raise the moral question about what
obligation individual might have to obey a law which is virtually unenforcable.

Patents

A patent is "...any new and useful process, machine, manufacture or composition of
matter, or any new and useful improvement thereof..." (US Patent Law).

There are 4 tests for a patent:

Novelty: The invention must be new relative to the "prior art"-all the existing body
of technology that could reasonably be known to someone working in the field. This
is true for inventions which are essentially the same as some other patented
invention OR some other invention widely in use without patent. Also, any invention
described in a printed publication or offered for sale more than a year before the
date of application for patent is NOT consider to have passed novelty.

Originality: The applicant must be the actual inventor (idea: ensures that a
dishonest person cannot take credit for another person's work. Hence patents are
granted in the name of a particular person or persons (including corporations).

Utility: The invention must be able to do what its inventor claims it can do. And
this purpose or function cannot be illegal or immoral. A perpetual motion machine
once put in motion, chemical compounds of no known use, and methods of
manufacturing illegal drugs are not allowed.

Non-obviousness: If someone with "ordinary" skill in the area and had access to
all existing prior art is likely to consider the invention "obvious," then it cannot be
patented. (This test is the on which seems open to the greatest honest
disagreement.)

POINT: Patent system can be viewed as a uniform social contract worked out
between inventors and society. Both benefit:

Inventor: makes a full disclosure of the workings of the invention and
agrees to it entering the public domain after a period of time (e.g., 20 years)
in exchange for a monopoly over its use and distribution.

Society: gains by having a useful product which others can learn from and

design other products in ways that are not covered by the original patent.
Technological progress is apparently advanced.

Connection between Patents and Copyrights

Copyright: Holder does not have a proprietary right to an idea, only a
particular, concrete expression of it.

Patent: Holder does not have a proprietary claim to the useful ideas behind
the invention, only to their practical application.

Reason: The rules of IP must not interfere with the freedom of thought and
speech. This is (practically) the doctrine/idea of fair use.

Open Source v. Proprietary
Software
See http://www.opensource.org/docs/definition.php for a full definition.

A Simple Definition of Open Source: Open source software is distributed with
access to the source code and some set of restrictions/privileges of use.

Proprietary software is typically distributed typically with only the object
code, and hence only the right to use the function under some specified set
of conditions.

Note: Both can involve a cost-open source does not mean "free", without cost.

Open source software does two things (generally):

1. Provides the holder with a copyright.

2. The copyright stipulates the terms of distribution and use of the software-
i.e., sets out the terms of a license.

Different Kinds of Open Source Licenses

1. Reciprocal Licensing: The copyright stipulates that any redistribution or
significant derivation of the work be distributed under the terms of the
original license.

2. Non-Reciprocal: redistribution or significant derivation of the work need not
be re-distributed under the same terms as the original license.

Examples (1): GPL* and LGPL.*

Examples (2): BSD license. *

GPL (GNU Public License) is fairly restrictive (in this sense) and requires the
propigation of the same license for copying and derivation.

Exception: "if identifiable sections [of derivative work] are not derived from the
[original software] and can reasonably be considered independent and separate
works in themselves, then the GPL and its terms, do not apply to those sections
when one distributes them as separate works.

LGPL: the "Lesser GNU Public License" is less strict in that it explicitly allows non-
free software (non-GPL or LGPL) to link to the LGPL'd software.

Both GPL and LGPL, however, allow one to download, use, modify, share, and

redistribute it-under the condition that the license cannot be altered and the source
code must be available. Given these two conditions, it is free for both personal and
commercial purposes.

BSD-like, non-reciprocal licenses focus more generally, not only replicating the
licensing conditions, but encouraging the wide adoption of the software. Hence far
fewer restrictions.

Main Moral Arguments for IP
(Property)

Deontological: Property Rights derive from a principle of justice that
requires a return for one's labor.

Utilitarian: A person is entitled to own something when this entitlement
maximizes good consequences.

Ownership can mean different things, but the sense in which it seems to matter
here is the right to exclude others from use of the program and the right to
regulate the buying/selling/renting of others who use it.

Common Arguments for Open Source

1. Economic/Business

2. Efficiency

3. Ethical/Political

The most interesting moral argument for open source will, I think be one which
shows that even if 1 and 2 are not sound, 3 still is. That is, even if (counter-
factually, of course, since there are arguably fairly good arguments for each of
these claims) the open source model were not optimal in terms of software
productivity and did not stand up well in economic/business terms with the
proprietary model, it would still be the best ethical choice.

Examples of Moral Arguments

1. Free Press: Even if a non-free press were considerably more efficient at
distributing information and were more economically efficient, we would
probably still prefer a free press over a non-free press. (Richard Stallman
has used this example.*)

2. Selling Babies: To take an even more stark example, suppose we were to go
into the baby "selling" business. We set up baby "farms," hire large numbers
of surrogate mothers to reproduce children, and then sell the babies for large
sums of money. Suppose this were to have hugely positive effects on the
economy, and could easily become an enormously effective business, helping
all sorts of people in economically deprived areas, etc. Most people would
nevertheless say that this would simply be wrong: We should not be selling-
in any sense of this term-persons.

Is there an ethical argument of this nature (although perhaps not as dramatic as
the "baby-selling" example!) which might give us reason to support open source
development over proprietary development.

Two Steps in a Moral Argument for Open

Source

1. Negative: Software is not properly conceived as a form of IP.

(The problems of viewing software as a proprietary form of IP
have been considered earlier. Additional support for this
comes from the rather ridiculous patents that have recently
been awarded recently for software. E.g., Amazon's "one-
click" web procedure for conducting business transactions.
See Tim O'Reilly's discussion for more information.)

2. Positive: Software development is best conceived as more like the
development of "pure" science rather than "applied".

Claim 2. can be supported by both standard ethical approaches mentioned
previously:

1. Deontological: It is inappropriate in "pure" science (it is against the whole
process of knowledge acquisition) to not share results of one's work with
others. So to the extent that software production is more like the workings of
pure science-i.e., mathematical or logical research, then the proprietary
model will equally be morally inappropriate.

2. Utilitarian: Sharing results and knowledge in "pure" science is justified, not
only because it maximizes the utility of the scientific community, but
society's well-being is best promoted by a policy of sharing the knowledge
and results of scientific inquiry. Again, if, as I have argued, software
development is more like pure rather than applied science, it will equally
follow that the open source rather than the (closed) proprietary model will
promote social utility.

Note: If it is also true, as is often claimed,. that open source software production is
more economical, a better resource for business, and much more socially efficient
than proprietary production, then this will only add more to the utilitarian argument
just outlined.

