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Abstract

Through the design and implementation of a JVM that supports Pluggable Verifi-
cation Modules (PVMs), the idea of an extensible protection mechanism is entertained.
Link-time bytecode verification becomes a pluggable service that can be readily re-
placed, reconfigured and augmented. Application-specific verification services can be
safely introduced into the dynamic linking process of the JVM. This feature is enabled
by the adoption of a previously proposed modular verification architecture, Proof Link-
ing [16, 17], which decouples bytecode verification from the dynamic linking process,
rendering the verifier a replaceable module. The PVM mechanism has been imple-
mented in an open source JVM, the Aegis VM [14]. To evaluate the generality and
utility of the extensible protection mechanism, an augmented type system JAC (Java
Access Control) [26] has been successfully implemented as a PVM.

1 Introduction

As our society becomes increasingly aware of the need for secure computing infrastructures,
the programming language community has invested in recent years an unprecedented interest
in the interplay between software security and programming language environments. One
emerging challenge arises from the growing popularity of Dynamically Extensible Software
Systems, such as mobile code language environments [8, 37], scriptable applications, and
software systems with plug-in architectures [4, 12, 31]. In such systems, executable extensions
can be dynamically linked into the address space of a host software system, either to deliver
a short lived service, or to augment the capability of the underlying host in a permanent
manner. If adopted unchecked, malicious software extensions could compromise the security
of the host. An effective protection approach is to mandate the use of a safe language
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for programming software extensions. Such an approach forms the security foundation of
the Java Virtual Machine (JVM) [29], an archetypical platform for constructing extensible
systems. Software extensions are compiled into strongly typed intermediate code units called
classfiles, which are in turn typechecked by a bytecode verifier at the time of dynamic loading.
Since bytecode verification is an integral part of the classloading semantics, typechecking is
therefore nonbypassable.

Future applications of the JVM will likely demand additional forms of verification to
provide enhanced levels of protection. To address this need, the attention of scholarship has
turned to safety properties that go beyond simple “type safety”. These application-specific
safety properties are captured in augmented type systems [26, 6, 5], annotation languages
[22, 1], and other forms of static analyses [27]. One critique of these works is that the notion
of safety is often formulated as a compile-time property, enforced by the code producer, at
the level of the source language. In the context of the JVM, in which code units bind via dy-
namic linking, program verification that is performed against source code, or administrated
only by the code producer, cannot be trusted. What has been checked in the code producer’s
verification environment may no longer hold in the code consumer’s verification environment.
A malicious code producer may verify the target program in a liberal verification environ-
ment and then falsely claim that the program is safe. The consequence of not checking the
miscertified program against the verification environment on the code consumer side may be
devastating. Unfortunately, given the inherent complexity of Java’s dynamic linking process,
and its tight coupling with the bytecode verifier, programming alternative static analyses into
the existing bytecode verification procedure is an extremely taxing and error-prone exercise.
This explains why it is rare to see the mentioned works materialize into link-time protection
mechanisms for the JVM. That is, until now.

Through the design and implementation of a JVM that supports Pluggable Verification
Modules (PVMs), the idea of an extensible protection mechanism is entertained. Link-time
bytecode verification becomes a pluggable service that can be readily replaced, reconfigured
and augmented. Application-specific verification services can be safely introduced into the
dynamic linking process of the JVM. This feature is enabled by the adoption of a previously
proposed modular verification architecture, Proof Linking [16, 17], which decouples bytecode
verification from the dynamic linking process, rendering the verifier a replaceable module.
The PVM mechanism has been implemented in an open source JVM, the Aegis VM [14].
To evaluate the generality and utility of the extensible protection mechanism, an augmented
type system JAC (Java Access Control) [26] has been successfully implemented as a PVM.

This paper is organized as follows. Section 2 reviews the previously proposed Proof
Linking architecture, which forms the theoretical basis for the PVM mechanism. The Aegis
VM and its implementation effort is described in Section 3. Section 4 and 5 detail the design
of the PVM facility implemented in the Aegis VM. The utility of PVM is demonstrated in
Section 6, in which the implementation of the JAC type system as a PVM is described.
Related works are discussed in 7. Section 8 points out future research directions.
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Figure 1: Modular Verification

2 The Proof Linking Architecture

The lack of modularity in the verification architecture of existing JVMs is the main obstacle
to rendering bytecode verification a pluggable service. To see this, note that code safety is
in general a whole-program notion: the safety of a classfile depends not only on properties
that can be established by examining the classfile alone, but also on the compatibility of the
established properties with the runtime environment into which the classfile is linked. In the
context of typechecking, the two tasks roughly correspond to the inference of a type interface
for a code unit, and the checking of the compatiblity between this type interface and a given
type environment. Cardelli succinctly called the two tasks intrachecking and interchecking
[7]. Unfortunately, the two tasks are not cleanly separated in a typical implementation of the
bytecode verification procedure [29]. Specifically, in the course of intrachecking a classfile,
classloading is frequently initiated by the bytecode verifier in order to bring in the type
interface of other classfiles for interchecking purposes. The result is a tight coupling between
the bytecode verifier and the dynamic linking logic of the runtime environment. Under this
verification architecture, if an application-specific static analysis is to be introduced into the
dynamic linking process of the JVM, not only will the static analyzer have to possess intimate
knowledge of the VM internal, any undisciplined classloading performed by the analyzer for
the sake of interchecking may also perturb the soundness of the dynamic linking semantics.
Simply put, such a verification architecture is not designed to support extensibility.

An alternative verification architecture, Proof Linking [16, 17], was proposed to address
the need of modularity in the JVM. Intrachecking and interchecking are cleanly separated.
Intrachecking of classfiles is performed by a modular verifier, which infers for each classfile a
verification interface composed of proof obligations and commitments (Figure 1). Commit-
ments are assertions established by the verification procedure, while proof obligations are
assumptions made during the process. Proof obligations and commitments are analogous
respectively to the import and export parts of a module interface. Interchecking thus in-

3



Obligation Discharging Schedule

Run−time 

Environment

O1 O2 O3

ObligationsLinking Primitives

resolve S in X
Resolve S in X

2 Look up associated

obligations

3 Discharge obligations by

consulting commitments
Authorize4

1

Commitment

Database

Request that symbol S is

to be resolved in class X

Proof Linking

Figure 2: Incremental Proof Linking

volves the discharging of proof obligations using commitments of loaded classes. Due to the
incremental nature of dynamic loading and lazy, dynamic linking, a JVM program may not
be completely loaded or linked, and thus not all proof obligations can be discharged right
away. Consequently, also included in the verification interface is an obligation discharging
schedule, which assigns to each proof obligation a linking primitive (i.e., a linking event),
prescribing that the obligation should be discharged prior to the execution of the linking
primitive.

Incremental interchecking is achieved through a process called proof linking (Figure 2).
Whenever a linking primitive is to be executed, the JVM attempts to discharge the associated
proof obligations using commitments of classes that are already loaded. Execution of the
linking primitive is only authorized if the check succeeds. In previous works [16, 17], incre-
mental proof linking is modeled abstractly using deductive database concepts [30], whereby
proof obligations are queries, commitments are facts stored in a database, and logic pro-
grams are formulated to express interchecking logics such as type rules. Correctness of the
proof linking process is assessed through the examination of a linking strategy, which for-
mally specifies the temporal dependencies between linking primitives as a partially ordered
set. Three correctness conditions, namely, Safety, Monotonicity and Completion, have been
established with the help of the PVS specification and verification system.

3 The Aegis VM

The Proof Linking architecture was originally proposed as a means to improve the maintain-
ability and comprehensiblity of the JVM bytecode verification procedure. The main contri-
bution of this work is the novel employment of the Proof Linking architecture to create an
extensible protection mechanism for the Aegis VM. Because Proof Linking cleanly separates
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intrachecking and interchecking through the use of a verification interface, intrachecking is
decoupled from the dynamic linking process. This architectural property is exploited in
the PVM mechanism, which allows arbitrary modular verifiers to be “plugged” into the
Aegis VM for screening untrusted classfiles. Without having to perform any interchecking
and classloading, each modular verifier infers a verification interface to capture intermod-
ular dependencies. Details of the PVM facility and the design of a domain-independent
representation of verification interface is described in Section 4.

A generic proof linking mehanism is built into the Aegis VM for supporting domain-
independent interchecking. Specifically, proof obligations and commitments generated by
PVMs are tracked by the Aegis VM, which discharges proof obligations according to the
obligation discharging schedules embedded in verification interfaces. User-defined verification
domains can be specified through the creation of obligation libraries, which are used by the
generic proof linking mechanism for evaluating obligations. Details of the generic proof
linking mechanism and user-defined verification domains can be found in Section 5.

The PVM facility and the generic proof linking mechanism have been fully implemented in
the Aegis VM. The implementation effort has been administrated as an open source project
[14]. Five development releases result in a VM that supports features including dynamic
linking, access control, delegation style classloading, loading constraints, reflection, garbage
collection, native method dispatching and all aspects of bytecode interpretation. The VM
does not yet support multithreading. The Aegis VM currently runs on the GNU/Linux
(x86) platform. It provides a realistic platform on which to test the feasibility of the Proof
Linking architecture. Features described in this paper is already in the publicly accessible
CVS repository, and will be incorporated into the next release.

The PVM facility and the generic proof linking mechanism are designed to meet the
following goals:

1. Generality. The PVM facility and the generic proof linking mechanism should be
applicable to a wide range of static analyses.

2. Efficiency. Since linking events occur frequently in a Java platform, the generic
proof linking mechanism must be efficient enough so that the overhead introduced by
obligation discharging is acceptable.

3. Utility. The effort required of a programmer to incorporate an application-specific
analysis into the dynamic linking process of a JVM should be significantly reduced
when performed through the PVM facility.

Design highlights are outlined in Sections 4 and 5 to illustrate how the above design goals
are achieved. Consult [15] for low-level implementation details.

4 Pluggable Verification Modules

PVMs are dynamically loadable shared libraries on the GNU/ Linux platform. Programmers
may implement an application-specific analysis as a PVM, and subsequently use it to aug-
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ment the Aegis VM through the PVM plug-in mechanism. This section outlines the design
of the PVM mechanism.

4.1 PVM Life Cycle

The Aegis VM provides a command line option for users to specify the path of a PVM.
Multiple PVMs may be specified in the command line. When the Aegis VM bootstraps,
each of the specified PVMs are loaded. Every PVM exports a C-string identifying the
verification domain to which it belongs. As we shall see in the the following, this verification
domain identifier will be used by the generic proof linking mechanism for interpreting the
verification interfaces generated by this PVM.

Next, the initialization function exported by each PVM is invoked. From this point on,
the verification facilities of the loaded PVMs will be called into service whenever a class
is to be defined. Specifically, prior to the definition of a class, the corresponding classfile
representation is parsed into an abstract syntax tree (AST). A built-in dataflow analyzer
is then employed to typecheck the bytecode methods in the AST. The results of dataflow
analyses are passed along with the AST into the verification function of each PVM, whereby
application-specific intrachecking is conducted (Section 4.2). Successful intrachecking gen-
erates a verification interface (Section 4.3), which is then processed by the generic proof
linking mechanism. Class definition is authorized only if all PVMs endorse the safety of the
corresponding classfile representation.

When the Aegis VM shuts down, the clean-up function exported by each PVM is invoked
before the PVM is unloaded.

4.2 Verification Function

The verification function implements the core functionality of a PVM. To reduce the overhead
of user-defined intrachecking, and to facilitate PVM development, the AST of the target
classfile and the results of typechecking bytecode methods are passed as arguments to the
verification function. Specifically, the built-in dataflow analyzer of the Aegis VM generates
(1) an explicit intraprocedural control flow graph for each bytecode method (control flow
is implicit due to the presence of the notorious subroutine construct in the JVM bytecode
language [36, 32]), and (2) a type state for each program point. Each type state describes (i)
the depth of the operand stack, (ii) the type of each data item residing in the operand stack
and local variable array, and (iii) the subroutine call chain leading to the program point.
The Aegis VM provides accessor functions for traversing ASTs, control flow graphs and type
states. A verification function can exploit these to speed up verification.

4.3 Verification Interface

The verification function constructs a verification interface for each classfile passing intra-
checking. The Aegis VM provides constructors for building verification interfaces, each of
which is composed of four components — commitments (4.3.1), proof obligations (4.3.2),
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obligation ::= predicate-identifier { argument }*
argument ::= this

| super

| interface index
| field index
| method index
| literal index
| import-symbol index
| auxiliary-symbol index
| global-class index
| global-constant index

Figure 3: Abstract Syntax of Proof Obligations

an auxiliary symbol table (4.3.3), and an obligation discharging schedule (4.3.4). Verifica-
tion interfaces generated by a PVM are defined with respect to the verification domain to
which the PVM belongs. The Aegis VM stores a verification interface along with the cor-
responding class definition, indexing according to its verification domain. Unloading of a
class automatically cleans up the memory resources occupied by the associated verification
interfaces.

4.3.1 Commitments

Static properties successfully established by the verification function for a target classfile are
captured in commitments. To maximize optimization opportunities, the Aegis VM does not
mandate a particular representation for commitments. Any appropriate data structures can
be employed by a verification function to represent commitments for the verification domain
of the PVM.

4.3.2 Proof Obligations

The verification function formulates proof obligations to capture external dependencies of a
target classfile. Every proof obligation is a ground query composed of a predicate identifier
and zero or more arguments. The abstract syntax of a proof obligation is given in Figure 3.

A fixed number of predicate symbols are defined for each verification domain (Section
5.1). Every predicate symbol is uniquely identified within a verification domain by a 16-bit
unsigned integer. This number is referenced as the predicate identifier of an obligation.

Aspects of the target classfile type interface can be named as obligation arguments.
Specifically, the this, super, interface, field and method syntax are used for naming
the target class, its immediate superclass, immediate superinterfaces, declared fields and
methods respectively. The index field identifies the specific member of a given argument
type.
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A literal argument names an int, float, long, double, or UTF-8 string literal in the
constant pool. The index field refers to the index of the literal in the constant pool.

An import-symbol argument names the resolved target of a class, field, method, or
interface method reference in the constant pool. The index field refers to the index of the
symbolic reference in the constant pool. An import symbol can only be named in obligations
attached to the corresponding resolution primitive of the symbol (Section 4.3.4).

The obligation argument types described so far refer to VM data structures that are
defined independent of the verification domain. Obligation argument types global-class

and global-constant provide syntax for naming data structures specific to a verification
domain. Specifically, every verification domain may identify a fixed number of Java classes
to be instrumental to verification (e.g., java.lang.Throwable is needed for checking if a class
can be thrown as exception). These classes can be named as obligation arguments through
the global-class syntax. Every verification domain may also define a fixed number of
immutable, native data structure to represent domain constants. Such constants can be
named using the global-constant syntax. See Section 5.1 for more details.

As the Aegis VM has to explicitly track proof obligations, a compact obligation encoding
has been derived [15], whereby an obligation with k arguments can be encoded with k + 1
32-bit machine words.

4.3.3 Auxiliary Symbol Table

Obligation argument types described so far does not permit class symbols appearing in the
type signature of a constant pool field, method, or interface method reference to be named
as obligation argument. The PVM facility provides a way for referring to these auxiliary
symbols. Specifically, a verification function may construct an auxiliary symbol table in the
verification interface for identifying method argument types, method return types, and field
types as potential obligation arguments. Such auxiliary symbols may be named using the
auxiliary-symbol syntax (Figure 3). The index field identifies a specific member of the
auxiliary symbol table. When a class is prepared, all the class symbols mentioned in the
auxiliary symbol table are loaded and cached, so that they can be readily retrieved at the
time of obligation discharging (Section 5.4).

4.3.4 Obligation Discharging Schedule

Because of lazy, dynamic linking, obligation discharging proceeds in an incremental mannar.
Every proof obligation formulated by a verification function is explicitly scheduled to be
discharged when a specific linking primitive is executed. Such an obligation is said to be
attached to the target linking primitive. Specifically, the following family of linking primitives
are defined for every class C:

endorse C: Endorsement of a class C occurs when C is prepared [29, Section 5.4.2].

endorse C.F : Endorsement of a field C.F occurs prior to the first access of F , and after
the endorsement of class C.
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endorse C.M : Endorsement of a method C.M occurs prior to the first invocation of M ,
and after the endorsement of class C.

resolve S in C: This primitive coincides with the resolution of constant pool reference S.
It occurs after the endorsement of class C, and after the endorsement of the referent
of S.

When the classfile representation of a class C is examined, the verification function may
attach obligations to any of the above linking primitives1. In practice, proof obligations that
require the checking of C against the commitments of its supertypes or auxiliary symbols are
attached to endorsement primitives, while those that validate import symbols are attached
to resolution primitives.

5 Domain-Independent Proof Linking

A generic proof linking mechanism has been implemented so that Aegis VM can process the
proof obligations and commitments generated by PVMs. At the heart of this facility is a
mechanism that allows users to define new verification domain.

5.1 Obligation Libraries

Users may define an application-specific verification domain by developing an obligation li-
brary. As a dynamically loadable shared library on GNU/Linux, each obligation library
supplies the definitions for predicate symbols, global classes and global constants of a verifi-
cation domain. An obligation library developer has to program the following:

Predicate functions. A native boolean function is defined for each predicate symbol in the
verification domain2. This function will be dispatched when a corresponding obligation
is to be discharged. A predicate dispatching table, analogous to a virtual function table,
is exported.

Global classnames. An array of classnames is exported to specify the names of global
classes in the verification domain. It is assumed that the bootstrap classloader will be
used for loading these classes.

Global constants. An array of native data structures is exported as global constants for
the verification domain.

1By design, only the above family of linking primitives are accessible to the verification function when it
examines class C. This arrangement guarantees that the correctness condition Safety is satisfied [16].

2The formulation of the native predicate functions must correspond to a monotonic logic in order for
the correctness condition Monotonicity to be satisfied [16]. It is the responsibility of the obligation library
developer to take care of this requirement.
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5.2 Obligation Library API

To facilitate the evaluation of obligations, the Aegis VM provides an obligation library API,
whereby native predicate functions can examine the run-time state of the VM and look up
commitments3. A brief summary of the API facilities is given below. A complete list of
helper functions in the API can be found in [15].

Package interface interrogation. Examine the name and classloader of a loaded package.

Class interface interrogation. Examine the access control flags, package, classloader,
name, superclass, superinterfaces, declared fields, declared methods, and constant pool
entries of a loaded class.

Field interface interrogation. Examine the access control flags, declaring class, name,
and type signature of a field.

Method interface interrogation. Examine the access control flags, declaring class, name,
type signature, and exception class names of a method.

Subtyping tests. Subclassing, subinterfacing, subtyping, etc.

Contextual information. Retrieve commitments of a class for the current verification do-
main; access global classes and global constants of the current verification domain.

5.3 Life Cycle of an Obligation Library

The Aegis VM has a command line option that allows users to specify the path of an
obligation library. Multiple obligation libraries may be specified, thereby providing the Aegis
VM with vocabularies for multiple verification domain. When the Aegis VM starts up, all
the obligation libraries specified in the command line are loaded and initialized. The global
classes specified by each obligation library are loaded by the bootstrap classloader when the
Aegis VM bootstraps. After this point, the native predicate functions are made available
to the generic proof linking mechanism for obligation discharing. Obligation libraries are
properly cleaned up and unloaded before the Aegis VM shuts down.

5.4 Obligation Discharging Sequence

Whenever a linking primitive is executed, the Aegis VM attempts to discharge all the at-
tached proof obligations. To discharge a proof obligation, the following steps are followed:

1. The predicate identifier is used as an index to look up the corresponding native pred-
icate function in the predicate dispatching table of the current verification domain.
This is a constant-time operation

3The obligation library API is carefully designed so that native predicate functions only have access to
type interfaces and commitments of classes that are already loaded. This guarantees that the correctness
condition Completion is satisfied [16].
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2. Each obligation argument is resolved into a corresponding pointer to a VM data struc-
ture or a global constant of the current verification domain. The arguments are placed
in a temporary argument array. As argument resolution amounts to a constant-time
look up operation, construction of the argument array takes time linear to the number
of arguments involved.

3. The native predicate function is invoked with the argument array as input. A boolean
value is returned to indicate the result of evaluation.

Execution of the linking primitive is authorized only when all attached proof obligations are
successfully discharged.

This concludes the discussion of the PVM facility and the generic proof linking mecha-
nism. We now turn to the assessment of their utility.

6 Java Access Control

JAC (Java with Access Control) [26] was proposed as an augmented type system for con-
trolling the proliferation of side effects due to alias creation in object-oriented programs.
Rather than preventing the creation of aliases, JAC prevents undesirable side effects from
occurring when aliasing is unavoidable. Specifically, it allows a Java reference type to be
qualified as being readonly, which effectively protects the transitive state of the reference
from any write access. Unlike the C type qualifier const, which only protects the state of
the object directly accessible from a const-qualified reference/pointer, the write protection
of JAC extends to all objects reachable from a readonly-qualified reference in the underly-
ing object graph. Due to its simplicity and its relevance to access control, this verification
domain is chosen as an example application of the PVM, whereby the utility of the PVM
facility is assessed.

6.1 Motivation

To understand how the readonly qualifier works, consider the following Java linked-list class.

public class List {

public int data;

public List next;

public List(int data, List next) {

this.data = data; this.next = next;

}

}

Notice that the instance variables of List are public, and as such they can be freely modified
by client code. However, a List variable qualified as readonly cannot be used for modifying
the transitive state reachable from the variable.
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readonly List x = new List(1, new List(2, null));

x.data = 5; // Error: Writing to immediate state

x.next.data = 6; // Error: Writing to transitive state

Objects reachable from a readonly reference are readonly. Furthermore, unqualified
reference types can be converted to readonly ones, but not vice versa.

6.2 The JAC Type System

Originally designed for typing Java source programs at compile-time, the JAC type system
is recast here as an augmented type system for the JVM bytecode language. The JAC type
system defines two types, namely, readonly and ⊥. The bottom type ⊥ applies to both
mutable object references and primitive values (i.e., int, boolean, etc). The readonly type
applies to object references for which transitive states are protected.

6.2.1 Subtyping

The bottom type ⊥ is a subtype of readonly, and as such the conversion of ⊥ to readonly is
permitted. We write A <: B if type A is equivalent to or a subtype of B. Method subtyping
follows the usual contravariant rule: A → B <: A′ → B′ if A′ <: A and B <: B′.

6.2.2 Type Interface

Associated with each Java classfile is a JAC type interface, which consists of an export part
and an import part. Each part is a list of type assertions, relating symbols to their types.
The export part describes type assertions for fields and methods declared in the classfile.
The import part contains type assertions for field, method and interface method references
in the constant pool. The type assertion of a field simply assigns a JAC type to the field.
The type assertion of a method assigns a JAC type to the return value and to each formal
parameter, including this in the case of an instance method. A type assertion is well-formed
if primitive types in the standard Java type system are qualified by the ⊥ type.

6.2.3 Interchecking

Subclassing is safe only if method overriding honors the usual subtyping rule. That is, if
method C.M : T overrides method C ′.M : T ′, then T <: T ′. A similar requirement applies
to subinterfacing. This check can be performed when the class endorcement primitive is
executed.

Resolution of a constant pool (interface) method reference C.M with import type asser-
tion C.M : T is type safe if the resolved target C ′.M is defined in a classfile that exports
type assertion C ′.M : T ′ and T ′ <: T . Resolution of a constant pool field reference with
import type assertion C.F : T is type safe if the resolved target has an export type assertion
C ′.F : T . Notice that the typing requirements are different in the two cases.
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6.2.4 Intrachecking

The export type assertion of a bytecode method is valid if every program point in the method
body can be consistently assigned a JAC type state. A JAC type state is an assignment of a
JAC type to every location in the local variable array and the operand stack. Every bytecode
instruction imposes typing constraints on the JAC type states at the program points before
and after the instruction. The typing constraints for a sample of bytecode instructions are
presented below. A complete list can be found in [15]. The effect of a bytecode instruction
is presented in a notation popularized by [29]. For example, the iadd instruction pops two
integers from the top of the operand stack, and push their sum back. This can be illustrated
as follows.

. . . , i1, i2 −→ . . . , i3

where integer i3 is the sum of i1 and i2.

aastore

Operand Stack: . . . , a, i, v −→ . . .

Operation: Store reference value v into array reference a as the component at index
i.

Type Constraints: Neither a nor v is readonly.

getfield 〈fieldref 〉

Operand Stack: . . . , o −→ . . . , v

Operation: Load the value v of the instance variable 〈fieldref 〉 from object instance
o.

Type Constraints: If 〈fieldref 〉 is a reference field with a readonly import type,
then v is readonly. If 〈fieldref 〉 is a reference field, and o has a readonly type,
then v is readonly. Otherwise, v is ⊥.

putfield 〈fieldref 〉

Operand Stack: . . . , o, v −→ . . .

Operation : Store the value v into the instance variable 〈fieldref 〉 of object instance
o.

Type Constraints: The type of o must not be readonly. If 〈fieldref 〉 is a reference
field with an import type ⊥, then v must not have a readonly type.

invokevirtual 〈methodref〉

Operand Stack: . . . , o, a1, a2, . . . , ak −→ . . . , v

Operation: Invoke method 〈methodref 〉, with arguments a1, a2, . . . , ak, on object
instance o. Any return value v is pushed into the operand stack.
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Type Constraints: Let the type of o, a1, . . . , ak and v be A0, A1, . . . , Ak and A,
and the import type of 〈methodref 〉 be 〈B0, B1, . . . , Bk〉 → B. Then Ai <: Bi for
0 ≤ i ≤ k, and B <: A.

6.3 Embedding JAC Type Interface

To make JAC enforceable at link time, every classfile must carry a JAC type interface. A
compact encoding has been designed [15] for embedding a JAC type interfaces into classfiles
through the classfile attribute facility [29, Section 4.7].

A well-formed JAC attribute assigns no more than one type to an export symbol or an
import reference. It is however, not necessary for all symbols to receive a type assignment.
The symbols left untyped are said to have default types. In fact, a classfile may not even
have a JAC attribute. In such a case, all import references and export symbols are assumed
to have default types. The default type of a field is ⊥; the default type of a method is such
that the return value and all arguments have type ⊥. The provision of assuming a default
type interface for classfile not carrying a JAC attribute renders it possible to reuse legacy
classfiles not compiled for JAC typechecking. This is particularly handy in the case of the
standard Java class library — hundreds of system classes can be reused as is.

A command line utility was developed to facilitate the injection of JAC attributes into
classfiles. The program takes a classfile and a high level JAC type interface specification
as input, and generate a version of the input classfile with the corresponding JAC attribute
embedded.

6.4 Pluggable Obligation Library for JAC

An obligation library has been implemented for the JAC verification domain. The JAC
obligation library exports the following predicates:

1. Import safety predicates:

safe-field-import field import-type
safe-method-import method import-type

where field is a field, method a method, and import-type a UTF-8 literal representing
an import type signature. The predicates checks if the export type of field/method
is compatible with import-type. Implementation of the two predicate functions in-
volves the invocation of obligation library API functions to retrieve commitment data
structures.

2. Method overriding safety predicate:

safe-method-override class

For each of the method declared in class, check that its export type is a subtype
of the export type of every method it overrides. Implementation of this predicate
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function involves applying obligation library API functions to visit all superclasses and
superinterfaces of class, and to retrieve their commitment data structures.

The obligation library also exports a global constant for representing default types. No
global class is specified for the JAC verification domain.

6.5 PVM for JAC

A PVM has been implemented for JAC. When the verification function of the JAC PVM is
invoked on a classfile, it performs the following verification steps:

1. If the classfile carries a JAC attribute, then the embeded JAC type interface is checked
for well-formedness. Otherwise, a default JAC type interface is assumed. In either
case, a JAC-specific commitment data structure is generated to store the JAC type
interface.

2. An iterative dataflow analysis algorithm is applied to the bytecode methods. Type
constraints in Section 6.2.4 are verified. Notice that, if all import references have
default types, then there is no need to run the dataflow analysis on a method with
default export type. Consequently, this step can be skipped entirely for classfiles with
no JAC attribute.

3. Proof obligations are generated. Firstly, a corresponding import safety obligation is
attached to the resolution primitive of each import reference in the constant pool. For
example, an obligation of the following form will be generated for a field reference:

safe-field-import import-symbol i literal j

where i is the constant pool index of the field reference, and j is the constant pool index
of the UTF-8 string storing the import type. If the import type of the field reference
is not explicitly specified in the JAC attribute, then the reference has a default type,
and the following obligation should be generated instead:

safe-field-import import-symbol i global-constant 0

where global-constant 0 denotes the global constant representing default types. The
formulation of import safety obligations for method references is similar.

Notice that obligation attachments should still be generated for an import reference
even if it has default type. That is, although intraprocedural typechecking may be
optimized away in special cases, interprocedural typechecking must never be bypassed.

Secondly, a single method overriding safety obligation is attached to the class endorse-
ment primitive of the target class.

safe-method-override this
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4. A verification interface composed of the commitment data structure from step 1 and
the proof obligations from step 3 is constructed. No relevant symbol is needed in this
verification domain.

6.6 Example

Suppose an application class Alice needs to compute the sum of all integers in a List it
creates. The task is delegated to another class Bob, which provides a sum method that
computes the sum of all elements in a given List.

public class Alice {

public static void main(String[] args) {

List L =

new List(1, new List(2, new List(3, null)));

System.out.println(Bob.sum(L));

}

}

Suppose Alice cannot trust that Bob is side-effect free. To ensure Bob does not accidentally
or maliciously modify the values stored in the List argument, the classfile of Alice can be
annotated with a JAC attribute containing the following import type assertion.

Bob.sum : readonly → ⊥

When equipped with the JAC PVM and obligation library, the Aegis VM will reject any
implementation of Bob that does not honor this import type specification. Consequently, the
transitive state of the List reference passed into sum will be write protected.

Suppose the class Bob indeed provides a side-effect free implementation of the sum method.

public class Bob {

public static int sum(List L) {

int acc = 0;

while (L != null) {

acc += L.data;

L = L.next;

}

return acc;

}

}

To inspire trust, the classfile of Bob will need to be annotated properly. Specifically, the
following export type assertion is embedded into the classfile of Bob.

Bob.sum : readonly → ⊥
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When the class Bob is defined, the verification function of the JAC PVM will be invoked.
Dataflow analysis is conducted on the body of the Bob.sum method so as to ensure that the
implementation indeed lives up to its promise. In this case, the JAC PVM successfully verifies
the export type assertion of the method, and class definition is therefore granted. Next, when
the import reference Bob.sum is resolved in Alice, the proof obligation safe-method-import

will be dispatched to make sure that the export type of sum in Bob is compatible with its
corresponding import type in Alice. Again, the check will succeed, and resolution will be
granted.

Now, consider a version of Bob in which the sum method silently corrupts the List

argument.

public class Bob {

public static int sum(readonly List L) {

int acc = 0;

while (L != null) {

acc += L.data;

if (L.next == null) // corrupt last node

L.data = 0;

L = L.next;

}

return acc;

}

}

The sum method perturbs the integer datum stored in the last node of the List argument,
corrupting its transitive state. Without further annotation, Alice will not link with Bob due
to the incompatibility between the default export type of Bob.sum and its expected import
type in Alice. Yet, the classfile of Bob could be annotated with a JAC attribute that falsely
claims that the sum method is side-effect free.

Bob.sum : readonly → ⊥

When the Aegis VM attempts to verify this version of Bob with the JAC PVM, the dataflow
analyzer will fail to confirm the consistency of the export type assertion, and class definition
will fail. In either case, write protection is guaranteed.

Consider a more realistic example, in which the class Alice dynamically loads a user-
specified extension to carry out the summation operation.

public class Alice {

public static void main(String[] args)

throws InstantiationException,

ClassNotFoundException,

IllegalAccessException {

List L = new List(1, new List(2, new List(3, null)));

Class C = Class.forName(args[0]);
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Bob b = (Bob) C.newInstance();

System.out.println(b.sum(L));

}

}

In this example, Bob is defined as an interface specifying the invocation convention of the
summation service.

public interface Bob {

int sum(List L);

}

To protect Alice, the classfile of Bob is annotated to ensure that any implementation of
the sum service must treat the List argument as readonly. Specifically, Bob.sum has the
following export type in Bob.

Bob.sum : readonly → ⊥

Notice, however, that there is no need to annotate Alice. As such, a default import type
for Bob.sum is assumed.

Bob.sum : ⊥ → ⊥

When the interface method reference Bob.sum is resolved in Alice, the corresponding
safe-method-import obligation will be discharge successfully since the export type of the
resolved target (readonly → ⊥) is a subtype of the default import type (⊥ → ⊥).

Suppose the class Charlie provides a non-compliant implementation of Bob.sum.

public class Charlie implements Bob {

public int sum(List L) {

int acc = 0;

while (L != null) {

if (L.next == null) // corrupt last node

L.data = 0;

acc += L.data;

L = L.next;

}

return acc;

}

}

If Charlie is not annotated, then the default export type of Charlie.sum will violate the sub-
typing constraint required for type safe method overriding. The obligation
safe-method-override will thus fail to discharge when Charlie is prepared. Alternatively,
if Charlie falsely exports the following type assertion

Charlie.sum : readonly → ⊥

then the JAC PVM will detect the inconsistency when the Charlie class is defined. In both
cases, this faulty implementation of Bob will be rejected.

18



7 Related Works

The correctness of the Proof Linking architecture, especially its interaction with the lazy, dy-
namic linking, has been studied rigoriously [16]. The correctness proof has been generalized
to account for multiple classloaders [17].

The study of type-safe linking was pioneered in the work of Cardelli [7], which was
followed by works such as typed object files for TAL [20] and the comprehensive type system
of Duggan [11].

Built on their prior experience in formalizing various aspects of Java’s bytecode verifier
and dynamic linking model [21, 10, 33, 9], Qian et al [34] proposed a formal specification of the
Java classloading model, taking into account of both bytecode verification and the on-going
maintenance of loading constraints. In their specification, bytecode verification is modeled as
a modular primitive. Interchecking and classloading is avoided by the formulation of subtype
constraints to capture intermodular dependencies, a strategy similar to the formulation of
proof obligation. The subtype constraints are maintained and verified lazily in the same way
as the type equivalence constraints mandated by Liang and Bracha [28, 29]. Two points of
comparison are observed. While proof obligations can be arbitrary queries, Qian et al focus
only on Java subtyping constraints. Type consistency is modeled as a constraint problem
over semilattices. In contrast, the generic proof linking model can be applied to a wide
spectrum of verification domains. Furthermore, subtype constraints are maintained on-the-
fly , whereas proof obligations are scheduled to be discharged prior to the execution of their
target linking primitives. This scheduling element introduces an additional dimension of
complexity into the Proof Linking architecture.

Foster et al [18] developed a general framework for adding user-defined type qualifiers to a
language. The framework supports qualifier polymorphism, and handles qualifier inferences
separately from the standard type system. The framework has been successfully applied to
detect format string vulnerabilities [35]. The framework was subsequently extended to ac-
count for flow-sensitive type qualifiers [19]. The inference algorithm has been implemented in
a tool Cqual, which allows programmers to annotate C programs with application-specific
type qualifiers, and subsequently checks for type-safety statically. Although the work of
Foster et al shares with PVM the same goal of enabling users to incorporate application-
specific verification into a programming language system, the two works differ in several
aspects. Firstly, while the work of Foster et al represents an type-theoretic study of user-
defined type qualifiers, PVM is a plug-in architecture aimed at supporting a wide-range of
static verification tasks. Generality is achieved through a customizable proof linking mecha-
nism, in which verification interfaces are represented as proof obligations and commitments.
Secondly, while Cqual is a compile-time analysis tool, the PVM facility is a link-time
protection mechanism. The explicit modeling of linking primitives and the formulation of
obligation discharging schedules are essential for enforcing safety in a lazy, dynamic linking
environment.

Extensibility is achieved in this work through modularization. Alternatively, software
adaptation could be conducted in a more systematic manner through the application of
advanced programming constructs. Originally proposed as an alternative to encapsulation
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as a means for implementing separation of concern, aspect-oriented programming [23, 24]
can be seen as a high-level program extension mechanism. Specifically, aspect-oriented pro-
gramming system allows the weaving of aspect code into programmer-specified join points,
thereby modifying the behavior of the underlying program. Behavioral reflection [13] and
intercessory metaobject protocols [25] allow operations such as method invocation to be
intercepted. When an interception occurs, a metaobject will be notified of the event via
some kind of method call back facility. Programmers can customize the semantics of the
metaobject, thereby achieving the effect of software extension.

8 Future Works

This paper reports the design and implementation of an extensible protection mechanism for
the Java Virtual Machine (JVM), in which application-specific static analyses can be safely
incorporated into the dynamic linking process of a JVM as Pluggable Verification Modules
(PVMs). The plug-in mechanism has been successfully implemented in the open source Aegis
VM. As the extension API is orthogonal to the rest of the VM architecture, an interesting
endeavor is to reproduce the same extension API in other JVM implementations, thereby
making PVMs interoperable with multiple JVM implementations.

To facilate program analysis, the Aegis VM passes to the PVM verification function the
AST and type analysis results of the target classfile. The verification function can utilize
the control flow and typing information to speed up intrachecking. Further speedup may
be achievable if the dataflow structure of bytecode methods can be made explicit, and is
passed along with the classfile AST to the verification function. One promising direction is
for the Aegis VM to summarize the dataflow structure of a bytecode method in a SSA-based
representation [3] along the line of Jimple [38] or SafeTSA [2].

Proof Linking generalizes the link-time access control checks performed in a standard
JVM. An extensible protection mechanism is obtained by making these access control checks
customizable. Another set of safety checks performed by the JVM are loading constraints,
which are essentially equivalence constraints over binding of class symbols from different
namespaces [28]. An interesting direction is to generalize the idea of Qian et al [34], and
make loading constraints customizable: users may introduce application-specific constraint
systems over the binding of class symbols, and maintain binding consistency with pluggable
constraint solvers. This flexibility could yield an extensible protection mechanism for which
the subtype constraint system of Qian et al becomes a special case.

Both the the PVM facility and the extensible loading constraint system suggested in the
previous paragraph are special-purpose extension mechanisms. An existing check is identi-
fied, and customizability is introduced through some kind of special-purpose plug-in mech-
anism. An alternative is to consider the application of general-purpose software adaptation
mechanisms, such as Aspect-Oriented Programming, to extend the protection mechanism
of a JVM. In this approach, customizable join points are documented and publicized as
an Extension Programming Interface. Customization code is then weaved into these join
points as security aspects. Such an approach may reduce the probability of programming
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error, and thus simplify the process of transforming an existing protection mechanism into
an extensible one.
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