
Access Control By Tracking
Shallow Execution History

Philip W. L. Fong

Technical Report CS-2003-9
November 4, 2003

Department of Computer Science
University of Regina

Regina, Saskatchewan, S4S 0A2
Canada

ISBN 0-7731-0458-5



Access Control By Tracking Shallow Execution History

Philip W. L. Fong
Department of Computer Science

University of Regina
Regina, Saskatchewan, Canada S4S 0A2

pwlfong@cs.uregina.ca

November 4, 2003

Abstract

Software execution environments like operating systems, mobile code platforms and
scriptable applications must protect themselves against potential demages caused by
malicious code. Monitoring the execution history of the latter provides an effective
means for controlling the access pattern of system services. Several authors have re-
cently proposed increasingly general automata models for characterizing various classes
of security policies enforceable by execution monitoring. An open question raised by
Bauer, Ligatti and Walker is whether one can further classify the space of security
policies by constraining the capabilities of the execution monitor. This paper presents
a novel information-based approach to address the research problem. Specifically, secu-
rity policies are characterized by the information consumed by an enforcing execution
monitor.

By restricting the execution monitor to track only a shallow history of previously
granted access events, a precise characterization of a class of security policies enforce-
able by restricted access of information is identified. Although provably less expressive
than the general class of policies enforceable by execution monitoring, this class does
contain naturally occurring policies including Chinese Wall policy, low-water-mark pol-
icy, one-out-of-k authorization, assured pipelines, etc. Encouraged by this success, the
technique is generalized to produce a lattice of policy classes. Within the lattice, policy
classes are ordered by the information required for enforcing member policies. Such
a fine-grained policy classification lays the semantic foundation for future studies on
special-purpose policy languages.

1 Introduction

Software execution environments like operating systems, mobile code platforms and script-
able applications must protect themselves against potential demages caused by malicious

1



code. Monitoring the execution history of the latter provides an effective means for control-
ling the access pattern of system services. Execution monitoring (EM) can be implemented
either by interposing a reference monitor between system service entry points and the code
providing the services [12, 3, 10], or by injecting monitoring code into client programs at
load time [11, 22, 23, 26, 27, 17, 18]. Schneider [20] proposed an automata-theoretic char-
acterization of security policies enforceable by EM. Specifically, an EM-enforceable policy
prescribes access event sequences recognized by a Büchi automaton [1]. It is observed that
Büchi-like security automata can only enforce safety properties, but not liveness properties.
Subsequently, Bauer, Ligatti and Walker [2, 15] proposed a characterization of increasingly
general classes of security policies enforceable by insertion, suppression and editing automata.
These policy classes are provably more expressive than EM-enforceable policies.

An open question raised by the work of Bauer et al is whether or not one can further
classify the space of EM-enforceable policies by constraining the capability of the execution
monitor. Not only does such a fine-grained classification help us understand the inherent
complexity of security policies, it also has a number of practical engineering ramifications.
In an environment in which users invest a high degree of trust on the formulation of security
policies, and in which the complexity of the security policies increases with the complexity
of the software environment, one has to face the reality that policy engineering shares many
challenges once considered unique to software engineering. Characterizing security policies
as members of well-understood policy classes can facilitate policy engineering in the following
ways:

• Special-purpose policy languages can be designed for a policy class to facilitate the
correct formulation of member policies.

• Efficient decision procedures may exist for verifying the correctness of policies belonging
to policy classes with rich internal structure.

• Some policy classes may exhibit structural properties that render their member policies
decomposable into more manageable policy components. Discovery of such structural
properties enables the composition of complex policies from reusable components.

This paper presents a novel information-based approach to address the research problem
raised by Bauer et al. Instead of following their proposal, and classify security policies by
constraining computational resources available to the execution monitor, this work classifies
EM-enforceable security policies by the kind of information that needs to be tracked by the
execution monitor. Such a fine-grained policy classification lays the semantic foundation for
future studies on special-purpose policy languages.

Consider the Chinese Wall policy [7, 16, 19], a commercial policy for preventing accesses
leading to conflict of interests. As observed by Brewer and Nash in their original formulation
of the policy, successful enforcement of the Chinese Wall policy only requires the maintenance
of a shallow access history of previously granted access events. Specifically, the decision on
whether an access is to be granted is based solely on the set1 of access events that have

1Brewer and Nash used a history matrix to track this set.

2



already been granted, and not on the actual sequencing of such access events. In contrast,
a Büchi automaton could potentially have the full history of granted access events at its
disposal when an access granting decision is made. This paper presents a characterization of
security policies enforceable by tracking only the shallow access history of a system. Security
policies in this class are recognizable by shallow history automata (SHA), expressiveness of
which is provably more restrictive than that of Büchi-like security automata. Surprisingly, it
is still possible to express a wide range of well-known and realistic security policies with SHA:
Chinese Wall policy [7], low-water-mark policy [5], one-out-of-k authorization [9], assured
pipelines [6, 28], etc. This demonstrates the feasibility of defining meaningful policy classes
by constraining information accessible to execution monitors.

Motivated by the above success, the state abstraction techniques applied to characterize
shallow access history tracking is generalized. A lattice of security policy classes is obtained
as a result. At the top of the lattice is the class of policies enforceable by tracking the
full history of access events, as in the case of Büchi-like security automata. As one moves
down the lattice, one finds classes of policies that are enforceable by consuming less and
less information, with SHA-enforceable policies somewhere in the middle, and memoryless
policies at the bottom. This work has therefore laid the theoretical groundwork for studying
special-purpose subclasses of EM-enforceable security policies.

This paper is organized as follows. Related works are reviewed in Section 2. SHA are
defined in Section 3 to provide an information-based characterization of security policies
enforceable by tracking shallow access history. A number of naturally occurring security
policies are shown to be SHA-enforceable in Section 4. The SHA configuaration is generalized
in Section 5 to yield a lattice of policy classes. Discussion can be found in Section 6. Section
7 concludes the paper.

2 Related Works

Schneider [20] pioneered the characterization of security policies enforceable by execution
monitoring (EM). Specifically, an EM-enforceable policy prescribes access event sequences
recognized by a Büchi automaton [1]. It is observed that Büchi-like security automata can
only enforce safety properties, but not liveness properties. Viswanathan [24] points out
that any reasonable characterization on execution monitoring must involve a computabil-
ity constraint. Subsequently, Bauer, Ligatti and Walker [2, 15] proposed a characterization
of increasingly general classes of security policies enforceable by insertion, suppression and
editing automata, while Hamlen, Morrisett and Schneider [13] offers a characterization of
security policies enforceable by code rewriting. These policy classes are provably more ex-
pressive than EM-enforceable policies. This work is the first one to provide a fine-grained,
information-based characterization of subclasses of EM-enforceable policies.

3



3 Access Control By Shallow History Tracking

This section introduces shallow history automata, the definition of which provides an information-
based characterization of security policies enforceable by tracking shallow access history. The
class of security policies expressible by such automata is proven to be a proper subset of the
general class of EM-enforceable security policies, thereby confirming the claim that subclasses
of of EM-enforceable policies can be defined through the restriction of information accessi-
ble to the execution monitor. To fix thoughts, the notion of EM-enforceable policies and
its characterization via security automata are provided in Section 3.1 and 3.2 respectively.
Shallow history automata are then discussed in Section 3.3.

3.1 EM-Enforceable Security Policies

Let Σ be a finite or countably infinite set of access events. A policy is a set P ⊆ Σ∗ of finite
sequences of access events. An EM-enforceable policy2 is a prefix-closed policy, that is, a
policy P satisfying the following condition:

∀u ∈ Σ∗ : u 6∈ P ⇒ (∀v ∈ Σ∗ : uv 6∈ P )

Let prefix (w) be the set of all prefixes of w, including ε and w itself. That is, prefix (w) =
{u ∈ Σ∗ | ∃v ∈ Σ∗ s.t. uv = w}. It is easy to see that the following is an equivalent
characterization of prefix-closed policy:

∀w ∈ Σ∗ : w ∈ P ⇒ prefix (w) ⊆ P (1)

In the following, we consider only EM-enforceable policies.

3.2 Security Automata

A variant of Büchi automata is defined here. A security automaton (SA) is a quadruple
〈Σ, Q, q0, δ〉, where

• Σ is a finite or countably infinite set of access events,

• Q is a finite or countably infinite set of automaton states,

• q0 ∈ Q is an initial state,

• δ : Q × Σ → Q is a (possibly partial) transition function3.

2For the purpose of this work, the definition of an EM-enforceable policy as adopted here is different
from the one used by Schneider [20] in the following ways: (1) Schneider differentiates between general
security policies and a special class of policies that he calls security properties. Only those policies that are
properties are considered in this paper. (2) Schneider considers infinite sequences of access events. Following
the practice of Bauer et al [2], only finite sequences of access events are considered in this paper.

3The formulation of security automata as given here differs from that of Bauer et al: As our focus is
information rather than resource constraints, no tractability restriction is imposed on the transition function.
See, however, [24] for the need of such constraints in the general cases.

4



The notion of acceptance for a SA is different from that for a regular finite state machine,
in which a final state is explicitly identified. An access event sequence is accepted by a SA
if a transition is defined for every event in the sequence. The notion is formalized as follows.
Given a SA M = 〈Σ, Q, q0, δ〉, the following notations are defined for q, q′ ∈ Q, a ∈ Σ and
w ∈ Σ∗:

q
a

−→M q′ if δ(q, a) = q′

q
ε

−→M q

q
wa
−→M q′ if there exists q′′ ∈ Q s.t. q

w
−→M q′′ and q′′

a
−→M q′

We say that M accepts an access event sequence w if qo
w

−→M q for some q ∈ Q. The policy
P(M) recognized by the SA M is then defined as the set of all sequences accepted by M :

{w ∈ Σ∗ | ∃q ∈ Q : q0
w

−→M q}.

It is easy to see that such a set is always prefix-closed, that is, P(M) satisfies condition
(1). Conversely, given any prefix-closed policy P , there is a SA M so that P = P(M).
To see this, consider the SA 〈Σ, Σ∗, ε, δP 〉, where δP (w, a) is defined to be wa if w,wa ∈
P , and is otherwise undefined. Such a SA recognizes P . Consequently, the class of EM-
enforceable policies coincides with the class of policies recognized by a SA. We call the above
SA constructed to recognize P the canonical SA for policy P , and denote it by SA(P ).

Intuitively, the state of a SA represents the information that is tracked by the corre-
sponding execution monitor. It represents the internal data structure maintained by the
execution monitor across subsequent access granting decisions. The image of the transition
function captures the updating procedure of the internal data structure, while domain of the
transition function captures the logic of access granting decisions. Notice that the canonical
SA tracks the full history of previously granted access events.

3.3 Shallow History Automata

Let F(S) be the set of all finite subsets of a set S. A shallow access history (or simply
shallow history) is a finite subset of Σ, that is, a member of F(Σ). Our goal is to define a
class of automata that track only the shallow history of previously granted access events.

A shallow history automaton (SHA) is a SA of the form 〈Σ,F(Σ), H0, δ〉, where

• Σ is a finite or countably infinite set of access events,

• The state set F(Σ) contains all possible shallow access histories.

• H0 ∈ F(Σ) is an initial access history, and

• The transition function δ is such that δ(H, a) = H ∪ {a} if δ is defined at 〈H, a〉.

Intuitively, a SHA tracks only a shallow access history, and bases its access granting decisions
solely on this information. Sequencing information about previously granted access events
are not retained for subsequent access granting decisions.

5



Notice that the image of δ is always H ∪ {a} if it is defined at 〈H, a〉. Consequently,
defining δ amounts to specifying its domain as a subset of F(Σ) × Σ. That is, a SHA
transition function is uniquely specified by listing all the points at which it is defined.

As expected, SHA is strictly less expressive than SA:

Theorem 1 There is a SA M so that no SHA N is such that P(M) = P(N).

Proof: Let Σ = {a, b, c, d}. Consider the policy P = prefix (abcd) ∪ prefix (badc). The
policy P is prefix-closed by construction, and is thus recognizable by its canonical SA.
Suppose that P is recognized by a SHA M . Let H0 be the initial state of M . The
following transitions are valid:

H0
a

−→M {a} ∪ H0
b

−→M {a, b} ∪ H0
c

−→M {a, b, c} ∪ H0
d

−→M {a, b, c, d} ∪ H0

H0
b

−→M {b} ∪ H0
a

−→M {a, b} ∪ H0
d

−→M {a, b, d} ∪ H0
c

−→M {a, b, c, d} ∪ H0

However, with the above transitions, M also accepts abdc and bacd:

H0
a

−→M {a} ∪ H0
b

−→M {a, b} ∪ H0
d

−→M {a, b, d} ∪ H0
c

−→M {a, b, c, d} ∪ H0

H0
b

−→M {b} ∪ H0
a

−→M {a, b} ∪ H0
c

−→M {a, b, c} ∪ H0
d

−→M {a, b, c, d} ∪ H0

By way of contradiction, P is not SHA-enforceable.

3.4 Summary

A subclass of security automata, SHA, is successfully defined to capture the notion of execu-
tion monitoring by tracking only shallow access history. The separation result in Theorem
1 confirms that SHA are strictly less expressive than general SA.

4 Security Policies Enforceable By Tracking Shallow

History

Defining artificial subclasses of security policies is pointless if the classes do not correspond
to security policies found in real-life applications. This section demonstrates that the class of
SHA-enforceable policies does include nontrivial security policies such as the Chinese Wall
policy (Section 4.1), the low-water-mark policy (Section 4.2), one-out-of-k authorization
(Section 4.3), and assured pipelines (Section 4.4). The goal is to show that the defintion of
SHA yields a naturally occurring class of security policies.

4.1 Chinese Wall Policy

Set in a commercial context, in which a consultant shall not advise clients whom he or
she has insider knowledge of a competitor, the Chinese Wall security policy is designed to

6



avoid any conflict of interest that may arise due to the unchecked flow of information across
datasets belonging to competing parties. Let O be a set of data objects, S a set of subjects,
G a set of company datasets, and T a set of conflict of interest classes. Associated with
each data object o ∈ O is a permanent label group[o] ∈ G describing the company dataset
in which o belong. Similarly, a permanent label type[g] ∈ T is assigned to each company
dataset g ∈ G; the label describes the conflict of interest class in which a company dataset
belongs. A subject s may access a data object o only if one of the following holds:

• Subject s has already accessed another object o′ belonging to the same company dataset
of o, that is, group[o] = group[o′].

• Every object o′ that subject s has accessed so far belongs to a company dataset whose
conflict of interest class is different from that of the company dataset in which o belongs,
that is, type[group[o]] 6= type[group[o′]].

A reference monitor enforcing the Chinese Wall policy may do so by keeping track of the
set of objects previously accessed by each subject. The policy is therefore SHA-enforceable.
This can be demonstrated formally by the following construction. Let the set of access events
be Σ = S ×O, so that a pair 〈s, o〉 refers to the event of subject s accessing object o. Define
SHA N = 〈Σ,F(Σ), ∅, δgroup,type〉, where the SHA transition function δgroup,type is defined at
〈H, 〈s, o〉〉 whenever the following holds:

• there exists 〈s, o′〉 ∈ H s.t. group[o] = group[o′], or

• for all 〈s, o′〉 ∈ H, type[group[o]] 6= type[group[o′]]

By construction, the SHA N enforces the Chinese Wall policy.
With refinement to the above construction, it is also possible to show that the variation

of Chinese Wall policy as proposed by Lin [16] is SHA-enforceable.

4.2 Low-Water-Mark Policy (for Subjects)

The low-water-mark policy is one of the three lattice-based integrity policies proposed by
Biba [5]. Defined in the Biba’s security model are a set S of subjects, a set O of objects and
a set L of integrity levels, which are partially ordered by a binary relation ≤. At any point
of time, a label l[s] ∈ L is assigned to every subject s ∈ S, and likewise l[o] ∈ L is assigned
to every object o ∈ O. Intuitively, the label l[·] describes the trustworthiness of a subject or
an object. Three kinds of access events are defined: write(s, o), read(s, o) and exec(s, s′).
The low-water-mark policy grants accesses according to the following rules:

1. read(s, o) is always permitted, with the side effect of l[s] ← l[s]∧ l[o], where ∧ denotes
the glb between integrity levels.

2. write(s, o) is permitted if l[o] ≤ l[s].

3. exec(s, s′) is permitted if l[s′] ≤ l[s].

7



To construct an SHA for enforcing the low-water-mark policy, notice that the label of
a subject is a function of the objects it has read, while that of an objct is permanent.
Let Σ be the set of all access events. Given an initial label assignment l[·], define a SHA
Nl = 〈Σ,F(Σ), Hl, δl〉, where the initial history Hl is further specified as follows:

Hl = {read(s, o) | s ∈ S, o ∈ O, l[s] = l[o]},

and the SHA transition function δl is defined at exactly the following points:

• 〈H, read(s, o)〉 for all H ∈ F(Σ), s ∈ S and o ∈ O, and

• 〈H,write(s, o)〉 for all H ∈ F(Σ), s ∈ S and o ∈ O so that for all read(s, o′) ∈ H,
l[o] ≤ l[o′], and

• 〈H, exec(s, s′)〉 for all H ∈ F(Σ), s, s′ ∈ S so that for all read(s, o) ∈ H, there is a
read(s′, o′) ∈ H, l[o′] ≤ l[o].

By construction, the SHA Nl enforces the low-water-mark policy.

4.3 One-Out-Of-k Authorization

One-out-of-k authorization [9] classifies applications into equivalence classes based on the
kind of access rights required to complete tasks. For example, the following application
classification is given in [9]:

• A browser is a program that connects to remote sites, creates temporary local files in
a user-specified directory, reads files it has created, and displays them to the user.

• An editor is a program that creates local files in a user-specified directory, reads/modifies
files it has created, and interacts with the user.

• A shell is a program that interacts with with the user and creates subprocesses.

The goal is to dynamically classify an executing program into one of the application classes
based on the access requests it makes. Once classified into an application class, a program
is only allowed to exercise access rights granted to the class.

The one-out-of-k constraint can easily be enforced by a SHA. Let Σ be the set of all
possible accesses made by an application. An application class i is completely characterized
by the set Ci ⊆ Σ of permitted accesses. Let C = {C1, C2, . . . , Ck} be the set of all application
classes. Define SHA NC = 〈Σ,F(Σ), ∅, δC〉 s.t. the SHA transition function δC is defined
at 〈H, a〉 iff H ∪ {a} ⊆ Ci for some Ci ∈ C. By construction, NC enforces one-out-of-k
authorization.

8



4.4 Assured Pipelines

Assured pipelines [6, 28] arise in the context of ensuring data integrity when data objects are
processed by (usually linear) pipelines of transformation procedures. Let O be a set of data
objects. Let S be a set of transformation procedure. Assume that S contains a distinguished
member create. Define the set of access events to be Σ = S × O, where the member 〈s, o〉
denotes the application of transformation procedure s to data object o. An assured pipeline
policy is specified as an enabling relation e ⊆ S × S, with the following restrictions:

1. No circularity: the binary relation defines a directed acyclic graph (DAG).

2. No pair of the form 〈s, create〉 may be included: create is the sole source node of the
acyclic graph.

The intention is that 〈s, s′〉 ∈ e means that access 〈s′, o〉 is granted only if 〈s, o〉 has already
been executed. Also, each event 〈s, o〉 may occur at most once.

An assured pipeline policy can be enforced by a SHA Ne = 〈Σ,F(Σ), ∅, δe〉, where the
SHA transition function δe is defined at exactly the points 〈H, 〈s, o〉〉 satisfying the following:

• 〈s, o〉 6∈ H, and

• either one of the following holds:

– s = create, or

– for some s′ ∈ S, all of the following hold:

∗ 〈s′, o〉 ∈ H, and

∗ 〈s′, s〉 ∈ e, and

∗ there is no s′′ ∈ S s.t. 〈s′′, o〉 ∈ H and 〈s′, s′′〉 ∈ e.

By construction Ne enforces the assured pipeline policy specified by enabling relation e.

4.5 Summary

Four naturally occurring security policies have been shown to be SHA-enforceable, thereby
demonstrating that information restriction could indeed be employed to classify real-life
security policies.

5 Obtaining Policy Classes By Abstraction

Given that it is possible to define a meaningful subclass of EM-enforceable security policies,
the next question is: can the above technique be generalized to obtain other subclasses
of EM-enforceable policies? Section 5.1 offers an affirmative answer to the question, with
the help of concepts borrowed from automata theory [8, 14]. The structural properties of
EM-enforceable policy classes are then studied in Section 5.2 and 5.3.

9



5.1 Abstraction By Homomorphism

Given an arbitrary restriction on the information accessible to an execution monitor, the
following procedure can be systematically carried out to obtain an automata-theoretic char-
acterization of the policies thus enforceable:

1. An information restriction constraint is specified as a set A of abstract states, which
represents the kind of information that the execution monitor is allowed to track (e.g.,
shallow histories as finite subsets of access events).

2. An interpretation of the abstract states in A is defined, so they refer to states of the
canonical SA in a consistent manner (e.g., each shallow history documents the set of
previously granted access events in an execution sequence).

3. Under the above interpretation, a subclass of SA is defined so that member automata
behave consistently according to the interpretation (e.g., shallow history automata).

This plan is executed as follows.
Let A be a finite or countably infinite set of abstract states. A function α : Σ∗ → A is

an abstraction if it satisfies the following compatibility property:

α(w) = α(w′) ⇒ α(wa) = α(w′a)

An abstraction mashes distinct states of the canonical SA into a single abstract state, ren-
dering them indistinguishable. The compatibility property guarantees that the loss of infor-
mation does not introduce confusion.

The homomorphic image SAα(P ) of the canonical security automaton SA(P ) induced by
abstraction α is the security automaton 〈Σ,A, α(ε), δP/α〉, where

δP/α(α(w), a) = α(wa) if δP (w, a) = wa

and δP is the transition function of SA(P ). Since α satisfies the compatibility property, δP/α

is a well-defined (partial) function.
Notice that not every policy P is recognized by SAα(P ) — in general, P ⊆ P(SAα(P ))

(see Corollary 6). Those policies P recognizable by SAα(P ) are the policies that can be
enforced by consuming only information left behind by the abstraction α. A policy P is said
to be enforceable by abstraction α iff P is recognized by the security automaton SAα(P ), that
is, iff P = P(SAα(P )). Fixing the set Σ of access events, the class of all policies enforceable
by abstraction α is denoted by EMα.

In summary, given any abstraction α, it is now possible to define exactly the class of
security policies enforceable by tracking information permitted by the abstraction.

5.2 Abstractions As Congruence Relations

It turns out that the notion of information abstraction is very robust: it can be defined
independent of the choice of abstract states.

10



Every abstraction α induces an equivalence relation ≡α as follows:

For all w,w′ ∈ Σ∗, w ≡α w′ ⇔ α(w) = α(w′).

It can be shown that such an equivalence relation satisfies the following substitution property:

For all w,w′ ∈ Σ∗ and a ∈ Σ, w ≡ w′ ⇒ wa ≡ w′a (2)

Conversely, given any equivalence relation ≡ over Σ∗ that satisfies the the substitution
property, it can be shown that the mapping α≡ : Σ∗ → Σ∗/≡ defined as follows:

α≡(w) = [w]≡.

is in fact an abstraction. That is, α≡ satisfies the compatibility property. Consequently, the
notion of information abstraction can be characterized either by an abstract state mapping
satisfying the compatibility property, or by a partition of the access sequence space with an
equivalence relation satisfying the substitution property. The latter characterization has a
clear advantage over the former — it is independent of the choice of abstract states. In fact,
different abstraction mappings may induce the same equivalence relation, making the latter
a better means of capturing the essence of the notion of information abstraction.

Let us call an equivalence relation satisfying the substitution property a congruence
relation. We write SA≡(P ) as a shorthand for SAα≡

(P ). A policy P is enforceable by a
congruence relation ≡ if P is recognized by SA≡(P ). We also write EM≡ as a shorthand for
EMα≡

.
Defining abstractions in terms of congruence relations gives us a simple way of comparing

their information complexities. Intuitively, more policies are enforceable by ≡1 than by ≡2

iff ≡1 is more differentiating than ≡2.

Theorem 2 Let ≡1 and ≡2 be two congruence relations over Σ∗. If ≡1 ⊆≡2, then EM≡2
⊆

EM≡1
. Moreover, the latter containment is proper if the former is proper.

Consult the appendix for a proof of this theorem.

5.3 Lattice of Policy Classes

Define the binary operator t, the join, on the space of all congruence relations over Σ∗:

≡1 t ≡2 =≡1 ∩ ≡2

That is, the join operator combines the differentiating power of its operands. Similarly,
define the binary operator u, the meet, as follows:

≡1 u ≡2 = (≡1 ∪ ≡2)
∗

that is, the transitive closure of the union of the two operand congruence relations. In other
words, a meet captures the common differentiating power of the two operands. The following
theorem is a well-known result in automata theory:

11



Theorem 3 The binary operators t and u define a lattice on the space of all congruence
relations over Σ∗. The lattice has both a top element ≡> and a bottom element ≡⊥.

Proof: It is mechanical to check that t and u produce congruence relations and define a
lattice. The top element ≡> is the congruence relation ∅ in which all members of Σ∗

are distinct, while the bottom element ≡⊥ is the congruence relation Σ∗×Σ∗, in which
all members of Σ∗ are equivalent.

Intuitively, the top element ≡> induces the class EM≡>
of all EM-enforceable security poli-

cies. In contrast, the bottom element ≡⊥ induces the class EM≡⊥
of security policies en-

forceable by SA with only one state. Such SA are memoryless: they do not track historical
information at all, and grant access in a static manner. The rest of the congruence relations
are ordered in decreasing differentiating power as we move down the lattice. As a conse-
quence of Theorem 2, this lattice of congruence relations induces an isomorphic lattice of
EM-enforceable policy classes ordered by class containment.

5.4 Summary

This section generalizes the construction of SHA to obtain a lattice of policy classes. The
notion of an information-based characterization of security policies is shown to be more gen-
eral than shallow access history tracking. New policy classes may be characterized through
the specification of either an abstraction mapping or a congruence relation. Theorems 2 and
3 also confirm the following intuition: the more information the execution monitor is allowed
to track, the more security policies it is able to enforce.

6 Discussion

The notion of information complexity is in fact very sensitive to the choice of access events.
We have seen that, with a fixed set Σ of access events, there are EM-enforceable policies that
SHA cannot enforce. Now, if we instrument the access events so that an event is a pair of
the form 〈a, i〉, in which i is the time index of access a in the event sequence, then a SHA can
enforce every policy that a SA could enforce without the instrumentation. Consequently, one
must fix the set of access events to get a fair comparison of the expressiveness of different
abstractions. Also, one should attempt to pick the most “natural” formulation of access
events, one that conveys the least information to the security automata.

To simplify discussion, all event sequences from Σ∗ are treated as being equally plausible.
In reality, the execution environment may generate only sequences belonging to a subset of
Σ∗. For example, in the case of assured pipelines, the requirement that every access event
occurs only once is in fact a part of the behavior characteristics of the execution environment,
and not a part of the security policy per se. To focus on the essence of the security policy
rather than the idiosyncrasy of the execution environment, one could have defined a security
automaton alternatively as a 5-tuple 〈Σ, Ψ, Q, q0, δ〉, in which the newly introduced second
component Ψ ⊆ Σ∗ is the set of all event sequences that could be generated by the execution

12



environment. For an elaboration of this treatment, consult the works of Schneider [20] and
Bauer et al [2].

A number of theoretical apparatus, including that of automata homomorphism, con-
gruence relations, compatibility property, substitution property, and lattices of congruence
relations, are all borrowed from Büchi’s approach to automata theory [8, 14]. Instead of
using these tools to study the minimization and decomposition of individual automata, they
are applied to obtain a novel, information-based characterization of security policies:

1. Automata homomorphisms and their counterparts, congruence relations, are used for
defining automata classes with restricted access to history information.

2. Each automata class is then used to characterize a class of security policies enforceable
with the corresponding information constraint.

3. The well-known lattice of congruence relations is then shown to induce an isomorphic
lattice of policy classes.

An abstraction is basically a syntactic means for defining the data structure tracked by
the execution monitor. The corresponding congruence is the semantics of this syntax. Seen
in this light, the present theoretical framework offers a very precise semantic infrastructure
for defining syntactic constructs that represent the data structure tracked by an execution
monitor. A future direction is to employ the current framework to define special-purpose
policy languages for mobile code systems. Specifically, there is a close connection between
the current framework and the model checking of control flow properties [4, 25, 21]. By
bringing in automata theory into the study, it is hoped that automata decomposition results
from the theory could faciliate the development of reusable policy components. These are
lines of research the author would like to pursue in the future.

7 Conclusion

A novel approach is proposed to address the open question raised by Bauer et al. The space
of EM-enforceable security policies is classified according to the information consumed by the
execution monitor. The feasibility of this approach is demonstrated by the characterization
of security policies enforceable by tracking shallow execution history. Although the class
is provably less expressive than the general class of EM-enforceable policies, it nevertheless
contains a number of naturally occurring security policies. Generalization of the technique
allows one to define a complete lattice of security policy classes, in which member classes
are ordered by the amount of information that must be tracked by an enforcing execution
monitor.

References

[1] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2(3):117–126, 1987.

13



[2] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security policies. In
Proceedings of the Workshop on Foundations of Computer Security (FCS’02), Copen-
hagen, Denmark, July 2002.

[3] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V. Mancini. REMUS: A security-
enhanced operating system. ACM Transactions on Information and System Security,
5(1):36–61, February 2002.

[4] Frederic Besson, Thomas Jensen, and Daniel Le Metayer. Model checking security
properties of control flow graphs. Journal of Computer Security, 9(3):217–250, 2001.

[5] K. Biba. Integrity considerations for secure computer systems. Technical Report 76–372,
U. S. Air Force Electronic Systems Division, 1977.

[6] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity policies.
In Proceedings of the 8th National Computer Security Conference, pages 18–27, October
1985.

[7] David F. C. Brewer and Michael J. Nash. The Chinese Wall security pol-
icy. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 206–214, Oakland, California, May 1989. Also available at
http://www.gammassl.co.uk/topics/chinesewall.html.

[8] J. Richard Büchi. Finite Automata, Their Algebra and Grammars. Springer-Verlag,
1988.

[9] Guy Edjladi, Anurag Acharya, and Vipin Chaudhary. History-based access control for
mobile code. In Proceedings of the 5th ACM Conference on Computer and Communi-
cations Security, San Francisco, CA, USA, 1998.

[10] Anthony Edwards, Trent Jaeger, and Xiaolan Zhang. Runtime verification of autho-
rization hook placement for the Linux security modules framework. In Proceedings of
the 9th ACM Conference on Computer and Communications Security, pages 225–234,
Washington, DC, November 2002.

[11] David Evans and Andrew Twyman. Flexible policy-directed code safety. In Proceed-
ings of the 1999 IEEE Symposium on Security and Privacy, pages 32–45, Oakland,
California, May 1999.

[12] Timothy Fraser. LOMAC: Low water-mark integrity protection for COTS environ-
ments. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, Oakland,
California, 2000.

[13] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for
enforcement mechanisms. Technical Report TR 2003-1908, Computer Science Depart-
ment, Cornell University, August 2003.

14



[14] Michael A. Harrison. Introduction to Switching and Automata Theory. McGraw-Hill,
1965.

[15] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security, 2003. To
appear.

[16] Tsau Young Lin. Chinese Wall security policy — an aggressive model. In Proceedings of
the Fifth Annual Computer Security Applications Conference, pages 282–289, December
1989.

[17] Algis Rudys and Dan S. Wallach. Termination in language-based systems. ACM Trans-
actions on Information and System Security, 5(2):138–168, May 2002.

[18] Algis Rudys and Dan S. Wallach. Transactional rollback for language-based systems.
In Proceedings of the International Conference on Dependable Systems and Networks
(DSN’02), pages 439–448, Washington, D.C., June 2002.

[19] Ravi S. Sandhu. A lattice interpretation of the Chinese Wall policy. In Proceedings of the
15th NIST-NCSC National Computer Security Conference, pages 221–235, Baltimore,
MD, October 1992.

[20] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30–50, February 2000.

[21] R. Sekar, V. N. Venkatakrishnan, Samik Basu, , Sandeep Bhatkar, and Daniel C. Du-
Varney. Model-carrying code: A practical approach for safe execution of untrusted
applications. In Proceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples, Bolton Landing, New York, October 2003.

[22] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: A
retrospective. In Proceedings of the 1999 New Security Paradigms Workshop, pages
87–95, Caledon Hills, Ontario, Canada, September 1999.

[23] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of java stack inspection.
In Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 246–255,
Berkeley, California, May 2000.

[24] Mahesh Viswanathan. Foundations for the Run-time Analysis of Software systems. PhD
thesis, University of Pennsylvania, December 2000.

[25] David Wagner and Drew Dean. Intrusion detection via static analysis. In Proceedings of
the 2001 IEEE Symposium on Security and Privacy, pages 156–168, Oakland, California,
May 2001.

15



[26] Dan S. Wallach, Andrew W. Appel, and Edward W. Felten. SAFKASI: A security
mechanism for language-based systems. ACM Transactions on Software Engineering
and Methodology, 9(4):341–378, October 2000.

[27] Ian Welch and Robert J. Stroud. Using reflection as a mechanism for enforcing security
policies on compiled code. Journal of Computer Security, 10(4):399–432, 2002.

[28] W. D. Young, P. A. Telega, and W. E. Boebert. A verified labler for the secure Ada
target. In Proceedings of the 9th National Computer Security Conference, pages 55–61,
September 1986.

Appendix: Proof of Theorem 2

Observation 4 Let P be a prefix-closed policy, and ≡ be a congruence relation. Then, for
any w ∈ Σ∗ and a ∈ Σ, we have:

w
a

−→SA(P ) wa ⇒ [w]≡
a

−→SA≡(P ) [wa]≡ (3)

and
[w]≡

a
−→SA≡(P ) [wa]≡ ⇒ ∃ w′ ∈ [w]≡ : w′ a

−→SA(P ) w′a (4)

and also
w

a
−→SA(P(SA≡(P ))) wa ⇒ [w]≡

a
−→SA≡(P ) [wa]≡ (5)

Proposition 5 Let P be a prefix-closed policy, and ≡1 and ≡2 congruence relations such
that ≡1 ⊆≡2. Then

P(SA≡1
(P )) ⊆ P(SA≡2

(P )).

Proof: The statement can be easily demonstrated by induction with the help of the following
lemma.

Lemma: Denote SA≡1
(P ) and SA≡2

(P ) by M1 and M2 respectively. For any w ∈ Σ∗

and a ∈ Σ, we have:

[w]≡1

a
−→M1

[wa]≡1
⇒ [w]≡2

a
−→M2

[wa]≡2
.

Proof:

[w]≡1

a
−→M1

[wa]≡1

⇒ w′ a
−→SA(P ) w′a for some w′ ∈ [w]≡1

, by (4)

⇒ [w′]≡2

a
−→M2

[w′a]≡2
by (3)

⇒ [w]≡2

a
−→M2

[wa]≡2
∵ ≡1 ⊆≡2 and w′ ≡1 w and (2)

16



Corollary 6 Let P be a prefix-closed policy, and ≡ a congruence relation. Then

P ⊆ P(SA≡(P )).

Proof: Let ≡>= ∅ be the congruence relation in which every sequence belong to a distinct
equivalence class. Then P = P(SA(P )) = P(SA≡>

(P )). The result follows from
Proposition 5.

Proposition 7 Let P1 and P2 be prefix-closed policies so that P1 ⊆ P2, and let ≡ be a
congruence relation. Then

P(SA≡(P1)) ⊆ P(SA≡(P2)).

Proof: The statement can be demonstrated easily by induction with the help of the following
lemma.

Lemma: Denote SA≡(P1) and SA≡(P2) by M1 and M2 respectively. Then for w ∈ Σ∗

and a ∈ Σ, we have

[w]≡
a

−→M1
[wa]≡ ⇒ [w]≡

a
−→M2

[wa]≡

Proof:

[w]≡
a

−→M1
[wa]≡

⇒ w′ a
−→SA(P1) w′a for some w′ ∈ [w]≡, by (4)

⇒ w′ a
−→SA(P2) w′a ∵ P1 ⊆ P2

⇒ [w′]≡
a

−→M2
[w′a]≡ by (3)

⇒ [w]≡
a

−→M2
[wa]≡ ∵ w ≡ w′ and (2)

Proposition 8 Let P be a prefix-closed policy, and ≡1 and ≡2 congruence relations such
that ≡1 ⊆≡2. Then

P(SA≡2
(P(SA≡1

(P )))) = P(SA≡2
(P )).

Proof: By Corollary 6 and Proposition 7, we already have P(SA≡2
(P )) ⊆ P(SA≡2

(P(SA≡1
(P )))).

It therefore suffices to show that P(SA≡2
(P(SA≡1

(P )))) ⊆ P(SA≡2
(P )). The inclusion

can be demonstrated easily by induction with the help of the following lemma:

Lemma: Denote SA≡1
(P ) and SA≡2

(P ) by M1 and M2 respectively. Denote SA≡2
(P(M1))

by M2,1. Then, for any w ∈ Σ∗ and a ∈ Σ, we have:

[w]≡2

a
−→M2,1

[wa]≡2
⇒ [w]≡2

a
−→M2

[wa]≡2
.

17



Proof:

[w]≡2

a
−→M2,1

[wa]≡2

⇒ w′ a
−→SA(P(M1)) w′a for some w′ ≡2 w, by (4)

⇒ [w′]≡1

a
−→M1

[w′a]≡1
by (5)

⇒ w′′ a
−→SA(P ) w′′a for some w′′ ≡1 w′, by (4)

⇒ [w′′]≡2

a
−→M2

[w′′a]≡2
by (3)

⇒ [w]≡2

a
−→M2

[wa]≡2
∵ ≡1 ⊆≡2 and w ≡2 w′ ≡1 w′′ and (2)

Corollary 9 Let P be a prefix-closed policy and ≡ a congruence relation. Then

P(SA≡(P(SA≡(P )))) = P(SA≡(P )).

Therefore, P(SA≡(P )) ∈ EM≡.

Proof of Theorem 2

Suppose ≡1 ⊆≡2. From Proposition 5 and Corollary 6, we have:

P ⊆ P(SA≡1
(P )) ⊆ P(SA≡2

(P )).

It follows that P = P(SA≡2
(P )) implies P = P(SA≡1

(P )). Therefore, EM≡2
⊆ EM≡1

.
Now, suppose further that ≡1 ⊂≡2. We want to show that there is a policy in EM≡1

that is not in EM≡2
.

Let w be a shortest sequence in Σ∗ such that [w]≡1
⊂ [w]≡2

. Let w′ be a shortest sequence
in [w]≡2

\[w]≡1
. We then also have [w′]≡1

⊂ [w′]≡2
.

Let a ∈ Σ be an arbitrary access event. Define prefix-closed policy P = prefix (wa) ∪
prefix (w′). Define also prefix-closed policy P ′ = P(SA≡1

(P )). We claim that, although P ′

is obviously a member of EM≡1
(Corollary 9), it does not belong to EM≡2

, that is, P ′ 6=
P(SA≡2

(P ′)). To demonstrate this, we show that (1) w′a 6∈ P ′, but (2) w′a ∈ P(SA≡2
(P ′)).

1. w′a 6∈ P ′: If w′a ∈ SA≡1
(P ), then there must be some u ∈ P , so that u ∈ [w′]≡1

and
ua ∈ P . The following case analysis demonstrates that this is impossible.

• u 6= w′, for w′a 6= P .

• u 6= wa, for waa 6= P .

• u 6= w, or else w ≡1 w′, contradicting the definition of w′.

• u 6∈ prefix (w′)\{w′}, or else u would be a sequence in [w]≡2
\ [w]≡1

strictly shorter
than w′, a contradiction.

• u 6∈ prefix (w) \ {w}, or else u would be a sequence strictly shorter than w so that
[u]≡1

⊂ [u]≡2
, again a contradiction.

18



2. w′a ∈ P(SA≡2
(P ′)): Notice that, as P ⊆ P ′, it follows from Proposition 7 that

P(SA≡2
(P )) ⊆ P(SA≡2

(P ′)). Consequently, it suffices to show w′a ∈ P(SA≡2
(P )).

As w,wa ∈ P , we have [w]≡2

a
−→SA≡2

(P ) [wa]≡2
. Also, w′ ∈ P implies that [ε]≡2

w′

−→SA≡2
(P )

[w′]≡2
. Since w ≡2 w′, [w]≡2

and [w′]≡2
are the same equivalence class, and, by

the substitution property, so are [wa]≡2
and [w′a]≡2

. Therefore, [ε]≡2

w′

−→SA≡2
(P )

[w′]≡2

a
−→SA≡2

(P ) [w′a]≡2
.

19


