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Abstract

Secure cooperation is the problem of protecting mutually suspicious code units within the
same execution environment from their potentially malicious peers. A statically enforceable
capability type system is proposed for the JVM bytecode language to provide fine-grained
access control of shared resources among peer code units. The design of the type system
is inspired by recent advances in alias control type systems for object-oriented programming
languages. The exercise of access rights and the propagation of capabilities are given a uniform
interpretation as alias creation events. Each capability type assigns to a reference a dataflow
trajectory, prescribing the set of aliases that is allowed to be created fromthe reference. An
orthogonal and complementary type system for controlling object creation and downcasting
is also designed to avoid a class of capability spoofing attacks. The combinedtype system
successfully addresses a number of classical protection problems recast in a programming
language context. This work therefore demonstrates the need and the feasibility of a language-
based approach to enforce application-level security among peer codeunits.

1 Introduction

Secure cooperation [35] is the problem of protecting mutually suspicious code units within the
same execution environment from their potentially malicious peers. Genuine cooperation is pred-
icated on the establishment of trust between collaboratingcode units, so that access to shared
resources can be precisely controlled. Secure cooperationis therefore an enabling infrastructure
for dynamically extensible software systems such as mobilecode language environments [7, 40],
scriptable applications, and software systems with plug-in architectures [5, 13, 33].
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1.1 Limitations of Existing Language-Based Approaches to Secure Cooper-
ation

The language-based approach has become a leading security paradigm in the development of dy-
namically extensible software systems. Strongly typed language environments supporting dynamic
loading of code units, such as the JVM [29] and the CLR [11], areprototypical platforms for host-
ing dynamically extensible applications. Language-basedprotection mechanisms such as stack
inspection [44, 20], SASI/IRM [41, 42], Model-Carrying Code [38], and history-based access con-
trol [12, 1, 17] take the perspective of a software system protecting its resources and privileged
services against untrusted software extensions. Essential as it is for infrastructure protection, such
a bipartite perspective does not address the need of protection for peer code units that are suspicious
of each other.

A bipartite, or more generally, a hierarchical perspectiveof secure cooperation sees the under-
lying software system as a collection of application layers. The emphasis is on the protection of
an application layer from being abused by an adjacent clientlayer. In the context of extensible
systems, such a perspective protects an application core from untrusted software extensions. Yet,
the protection interest of an extensible system developer may go further than what a hierarchical
perspective can offer. For instance, the developer may wishto impose specific communication
protocols among collaborating software extensions. Likewise, the developer may need to promote
structure and resource sharing between mutually suspicious software extensions by assuring them
that abuse will not occur. Existing literature on language-based protection is relatively silent on
this need of peer-to-peer security.

1.2 A New Approach: Capabilities as Alias Control

In this work, a novel capability type system is proposed for the JVM bytecode language. The
design goal is to provide a fine-grained access control mechanism for capturing application-level
security. Specifically, every object reference can be protected by a capability type, thereby allowing
peer code units to precisely control the way shared structures are accessed. The caller of a method
may control the way arguments are to be accessed by the callee, and, likewise, the callee may
control the way the return value is to be accessed by the caller. When coupled with subtyping
rules, an application core may impose communication patterns on collaborating concrete classes
through the definition of abstract classes (or interfaces) in terms of capability types.

Inspired by recent advances in alias control type systems for object-oriented programming lan-
guages [24, 31, 3, 34, 8, 43, 6, 2], our type system offers a fresh interpretation of the notion of
capability, which is traditionally understood as a reference plus a set of access rights [10, 9]. In a
language-based environment, method invocation and field setting inevitably create aliases. Con-
trolling alias creation therefore provides an effective means for restricting access to class members.
Such an insight allows us to reinterpret a capability as a reference plus a dataflow trajectory, pre-
scribing the set of aliases that is allowed to be created fromthe reference. This reinterpretation
produces an extremely fine-grained access control mechanism for language-based systems. An
orthogonal and complementary type system for controlling object creation and downcasting is also
designed to avoid a class of capability spoofing attacks. Thecombined type system successfully
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interface Prisoner {
void send(Prisoner p, Guard g);
void receive(Mail m);

}

interface Guard {
void deliver(Mail m, Prisoner p);

}

public final class Mail {
public Mail(string m) { msg = m; }
public string read() { return msg; }
private string msg;

}

Figure 1: The Prisoner Mail System Problem

addresses a number of classical protection problems [9] recast in a programming language context.

2 The Prisoner Mail System Problem

We motivate the discussion of our capability type system by examining a toy problem originally
proposed in an early work of Ambler and Hoch [4] for studying protection in programming lan-
guages. This so called Prison Mail System Problem is simplified and recast here in an object-
oriented flavor without diluting the essense of its originalchallenges. The protection challenges
presented by the revised toy problem are then categorized according to a scheme inspired by the
seminal paper of Cohen and Jefferson [9].

In the Prisoner Mail System are three types of objects —Prisoners, Guards andMails
(Figure 1).

1. Instances of thePrisoner interface are forbidden from direct communication with each
other. All message exchanges must be mediated by the Prison Mail System.

2. Instances of theGuard interface are responsible for delivering messages.

3. Instances of theMail class are message carriers.

Classes implementing thePrisoner andGuard interfaces are dynamically loaded software
extensions, and their integrity are not to be trusted. While theGuards are ever suspicious of con-
spiracies, thePrisoners resent any form of censorship. To their mutual agreement, the Prison
Mail System application core imposes the following mail delivery protocol: The application core
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Figure 2: Processing of Type Annotations

randomizes the schedule of mail delivery and the assignmentof Guard responsible for delivery.
It schedules a delivery by invoking thesend method of aPrisoner object, specifying which
fellow Prisoner the sender is allowed to correspond with, and whichGuard is to be responsible
for the delivery. ThePrisoner.send method will then create aMail object, and pass it along
with the addressee to thedeliver method of the assignedGuard. Guard.deliver will in
turn invoke thereceive method of the receivingPrisoner, passing theMail object as the
argument. This completes one mail delivery.

The following security constraints must be enforced.

1. Safe Invocation. Prisoners want to be assured thatMail messages passed to thede-
liver method are not read by the mediatingGuard objects.

2. Capability Amplification. When aMail is delivered to a receivingPrisoner, the pre-
vious restriction on read access should be lifted so that theembedded message can be con-
sumed.

3. Limiting Propagation of Capability. Mail objects that are in transit must not be leaked to
any party other than aPrisoner.

4. Mediated Communication. The sendingPrisonermay not contact the receivingPris-
oner directly. All communications must be mediated by the assignedGuard.

5. Flexible Control of Capability Storing. The sendingPrisoner may not store away the
addressee reference for future use. The receivingPrisoner, however, may save theMail
for future reading.

As we shall see in Section 4, all these protection problems are fully addressed by our capability
type system.

3 A Capability Type System

This section provides a high-level overview of our capability type system. The type system is
intended to be used for annotating Java source files. Type annotations will be extracted by the
compiler frontend, and subsequently injected into the classfiles generated by the compiler (Figure
2). Type checking, inter- and intra-modular, will be conducted by the JVM at link time, against
classfiles, at the bytecode level. This is to ensure dynamic linking is type-safe with respect to our
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capability type system. The following description therefore focuses on typing Java classfiles at
the bytecode instruction level. Syntactic issues such as the concrete syntax for annotating Java
source programs with capability types, or the encoding scheme for embedding type annotations in
classfiles, do not concern us in this paper.

3.1 An Intuitive Description

We begin the discussion of our capability type system with aninformal account that highlights the
intuitions behind the technicalities that follow.

Capability Types. A reference to an instance of classA offers indiscriminate access to the
public interface of the object. When an object reference is passed from one context to another (i.e.,
argument passing or method value returning), the owner of the reference may want to selectively
disable certain operations from being applied to the objectin the receiver context (e.g., the sending
Prisoner desires that thedeliver method does not invoke theread method on theMail
argument). Essentially, the owner may want to present an alternativeviewof classA that is more
restrictive than its public interface. More than that, depending on the context, different views may
need to be presented for different receivers (e.g., mediating Guard vs receivingPrisoner).
Such a need is traditionally filled by the use of capabilities. A capability is a reference plus a set
of access rights, prescribing what operations can be performed on the underlying reference. In
the context of a language-based environment, one may model capabilities with a type system by
assigning to each object reference a type that prescribes access rights. Well-typed programs are
those that only exercise rights permitted by the typing discipline. Our capability type system is an
instance of this general approach.

The Priority of Method Invocation. In a language-based extensible system, the prime liability
is code execution. Undisciplined execution of untrusted code is to be avoided. In the context of
Java, this boils down to controlling method invocation. Thechief goal of our capability type system
is therefore the regulation of method invocation pattern.

Capabilities for Argument Passing. The core insight behind our type system is that method
invocation coincides with alias creation events. Specifically, when a method is applied to its ar-
guments, aliases of the arguments are created through the binding of actual arguments to formal
parameters. Controlling the creation of aliases caused by argument binding effectively restricts
method invocation. A capability can therefore be interpreted as a reference plus a set of alias
control constraints, prescribing the argument binding events that may occur to the underlying ref-
erence. A capability type is thus a compact specification of such constraints.

Controlling Capability Propagation. In our type system, a capability type constrains not only
a single aliasing event, but rather it specifies the set of allfuture aliasing events that may occur to a
reference. Specifically, every capability type corresponds to some finite automaton, specifying the
set of all call chains the reference may traverse. This effectively outlines a dataflow trajectory for
the object reference, and provides precise control on the way a capability may be propagated.

Controlling Capability Sharing. A capability type may also specify if the underlying refer-
ence can be stored into fields, which again coincides with an alias creation event. Such a feature
may be used to control if a capability can be shared after it ispassed as an argument to a method.
This in turns constrains structure sharing.
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A,B ∈ JavaReferenceTypes

M ∈ JavaMethodTypes

F ∈ JavaFieldTypes

mA,M ∈ JavaMethodSignaturesA,M

fA,F ∈ JavaFieldSignaturesA,F

M ::= (A1, . . . , Ak)B

| (A1, . . . , Ak)void

F ::= A

Figure 3: Abstract Syntax for Java Types

3.2 Assumptions and Notations

Figure 3 defines syntactic categories related to the standard Java type system. They will be assumed
in the following discussion. In this work, a Java reference type (A, B) is either a class or interface
type in Java (e.g.,Mail, Prisoner). We assume in the following that the types of fields, for-
mal parameters and method return values are all reference types; primitive (e.g.,int) and array
types (e.g.,Mail[]) are ignored for notational economy. Similarly, although our scheme applies
equally well to static methods and fields, we consider only instance methods and fields in this pa-
per. A Java method type (M ) is a list of parameter types, not including that of the implicit formal
parameterthis, plus a return type (e.g.,(Prisoner,Guard)void). A Java field type (F ) is
simply a Java reference type (e.g.,string). A Java method signaturemA,M with Java method
typeM is defined for Java reference typeA if a method with that signature is declared inA or one
of its supertypes. For example, “void send(Prisoner, Guard)” is a method signature
defined for Java reference typePrisoner. Its Java method type is(Prisoner,Guard)void.
A Java field signaturefA,F with Java field typeF is defined for a Java reference typeA if a field
with this signature is declared inA or one of its supertypes. For example, “string msg” is a
field signature defined for the Java reference typeMail, and has a Java field typestring.

3.3 Capability Types

A capability typeT A defines a set of sequences of aliasing events that may occur toan underlying
Java reference typeA. The abstract syntax of capability types is given in Figure 4, the exposition
of which is given below. A capability type is constructed from primitive capabilitiesandcapbility
type constructors.
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CA ∈ PrimitiveCapabilitiesA

T A,UA,VA ∈ CapabilityTypesA

XA ∈ CapabilityTypeVariablesA

T A ::= >A | ⊥A | CB → T A | [T A] | T A
1 u T A

2 | XA

Figure 4: Abstract Syntax for Capability Types

3.3.1 Primitive Capabilities

A primitive capabilityCA for a Java reference typeA is a namedsubset of method signatures
defined for Java reference typeA. A primitive capabilityCA specifies the signaturesmA,M of a set
of methods that can be applied to an object reference (possibly through virtual method invocation).
In short, it denotes a set of argument binding events. Primitive capabilities arenotcapability types.

Example.The following set named READ defines a primitive capability for theMail class.

READ = {string read()}

It represents the event of passing an object reference as an argument to theread method de-
clared inMail. Since the method has onlythis as its formal parameter, the primitive capability
represents the right to invokeread on aMail reference.

3.3.2 Capability Type Constructors

A capability type can be built by recursively applying the following type constructor.
Top. Top (>) is the most restrictive capability type. No aliasing of the underlyingobject

reference is permitted.
Bottom. Bottom(⊥) is the leastrestrictive capability type. Arbitrary aliasing is permitted of

the underlying object reference.
Propagation. If CB is a primitive capability for some Java reference typeB, andT A is a

capability type for Java reference typeA, then thepropagation typeCB → T A is a capability type
for Java reference typeA. Intuitively, one may readCB → T A as “grant T A to CB”, meaning
that the underlying object reference can be passed as an argument to methods with signatures
belonging to primitive capabilityCB. Moreover, the result of binding the argument reference to
the corresponding formal parameter is that the reference will acquire capability typeT A inside
the body of the invoked method. Note that the propagation type also applies to the binding of a
reference to the formal parameterthis of an instance method.

Example.A Mail reference with capability type

READ → ⊥
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T

[.] *

READ
R

Figure 5: LTS for capability typeR

can be passed to the formal parameterthis of theread method. In short, theMail reference is
readable. Inside theread method, thethis parameter can be accessed without restriction (⊥).

Sharing. If T A is a capability type for Java reference typeA, then thesharing type[T A] is
also a capability type for Java reference typeA. Intuitively, an object reference with capability
type [T A] can be stored into a field of Java reference typeA. Moreover, the stored reference will
acquire the capability typeT A.

Example.A Mail reference with the capability type

[READ → ⊥]

can be saved into a field and subsequently retrieved for reading.
Choice. If T A

1 andT A
2 are capability types for Java reference typeA, then thechoice type

T A
1 u T A

2 is also a capability type for Java reference typeA. Intuitively, the resulting capability
denotes the right to exercise eitherT A

1 or T A
2 , but not both. Theu operator is commutative,

associative, and idempotent.
Example.A Mail reference with the capability type

(READ → ⊥) u [READ → ⊥]

can either be read rightaway, or be saved into a field for future reading.
Abstraction. As we shall see below, recusive definition of capability types is supported. This

feature requires the use of type variables to name capability types. An occurrence of a type variable
XA names the capability type that defines the type variable. With recursive definitions, every
capability type in fact specifies alabelled transition system (LTS)[14], each transition of which is
labelled by either a primitive capabilityCB or a sharing type constructor[ · ].

Example.A Mail reference with a capability type satisfying the following recursive definition

R = (READ → ⊥) u [R]

can be read rightaway, or be saved into a field for both future reading and further sharing. The LTS
for this capability type is shown in Figure 5.

3.3.3 Subtyping

Subtyping permits the binding of more capable object references to variable names with less ca-
pable types. Formally, given capability typesT A1

1 andT A2

2 , T A1

1 is a subtype ofT A2

2 , denoted
T A1

1 <: T A2

2 , if (1) the Java reference typeA1 is a subtype of the Java reference typeA2, and (2)
there is a homomorphism from the LTS represented byT A2

2 to the LTS represented byT A1

1 . As
usual, the subtyping relation (<:) is reflexive and transitive.
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MA,M ∈ MethodAnnotationsA,M

FF ∈ FieldAnnotationsF

MA0,M ::= T A0

0 (T A1

1 , . . . , T Ak

k )T B if M = (A1, . . . , Ak)B

| T A0

0 (T A1

1 , . . . , T Ak

k )void if M = (A1, . . . , Ak)void

FF ::= T A if F = A

Figure 6: Abstract Syntax for Capability Types of Reference Type Members

3.4 Typing Members of Reference Types

The members (i.e., fields or methods) of a Java reference typecan be typed in our capability type
system. The abstract syntax for capability types for reference type members is given in Figure 6.
The capability annotation for a method defined for Java reference typeA0 with Java method type
M = (A1, . . . , Ak)B is of the formT A0

0 (T A1

1 , . . . , T Ak

k )T B, whereT A0

0 is the capability type of
this, T Ai

i the capability type of formal parameteri, andT B the capability type of the return value.
The capability annotation for a field of Java reference typeF = A is simply a capabilitiy typeT A.
Subtyping of method types follows the usual contravariant rule (i.e.,UA0

0 (UA1

1 , . . . ,UAk

k )UA <:
VB0

0 (VB1

1 , . . . ,VBk

k )VB if VBi

i <: UAi

i andUA <: VB).

3.5 Capability Type Interfaces

Every Java class (or interface) is endowed with a capabilitytype interface, the abstract syntax of
which is provided in Figures 7. A capability type interfaceSA for a class (or interface)A is com-
posed of three sections, namely, (1)primitive capability definitions, (2) capability type variable
definitions, and (3)capability type annotations.

Primitive capability definitions. Every primitive capability definition associates a set of
method signatures defined for Java reference typeA to a primitive capabilityCA. Primitive ca-
pabilities defined for the supertypes ofA are implicitly inherited byA.

Capability type variable definitions. Each definition binds a capability typeT A to a type
variableXA. (Mutually) recusive definition of capability type variables is supported, so long as
the recursive definition is properly guarded [14]. Variables defined in the capability type interfaces
of supertypes are implicitly inherited.

Capability type annotations. A capability type annotation for a fieldfA,F assigns a capability
typeT F to the field. The underlying Java type of the field must match the underlying reference
type of the capability type. A capability type annotation for methodmA.M assigns a capability type
to every formal parameter and also the return value (in the case of non-void method). Again, the

9



PA ∈ PrimitiveCapabilityDefinitions A

QA ∈ CapabilityTypeVariableDefinitionsA

RA ∈ CapabilityTypeAnnotationsA

SA ∈ CapabilityTypeInterfacesA

SA ::= classA { PA
1 . . .PA

m QA
1 . . .QA

n RA
1 . . .RA

k }

PA ::= capability CA = {mA,M1

1 , . . . ,m
A,Mk

k }

QA ::= defineXA = T A

RA ::= methodmA,M : MA,M

| field fA,F : FF

Figure 7: Abstract Syntax for Capability Type Interfaces

underlying Java type of the annotation must match the Java type of the method.
Method overriding must follow the usual subtyping requirement. That is, if the annotations

of the overriding method and the overridden method areMA1,M
1 andMA2,M

2 respectively, then
MA1,M

1 <: MA2,M
2 .

Methods that are not annotated explicitly inherit their annotations from supertypes, or else,
if no such annotation is available, then a default annotation is assumed. Specifically, the default
annotation for a field is simply⊥, where the default annotation for a method assigns⊥ uniformly
to all formal parameters and the return value.

3.6 Type Checking

Type rules must be in place for checking if the implementation of a Java reference type conforms
to a given capability type interface. Our type system controls the creation of aliases caused by
passing arguments and setting fields. Accordingly, type rules should be in place for bytecode
instructionsputfield, getfield, putstatic, getstatic, invokevirtual, invokespecial, invokeinterfaceand
invokestatic. We give an informal account of the type rules forputfieldandinvokevirtual. The rest
are analogous1.

putfieldfA,F

Operand Stack:
. . . ,o, v −→ . . .

1The treatment ofinvokespecialis in fact nontrivial, for it is the instruction by which class constructors and private
methods are invoked. Details can be found in an upcoming technical report.
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Operation: Store the valuev into the fieldfA,F of object instanceo.

Type Constraints: The capability type ofv isUA andfA,F is annotated with capability type
VB then it must be true thatUA <: [VB].

invokevirtualmA,M

Operand Stack:
. . . ,o, a1, a2, . . . ,ak −→ . . . ,v

Operation: Invoke instance methodmA,M , with argumentsa1, a2, . . . , ak, on object in-
stanceo. Any return valuev is pushed into the operand stack.

Type Constraints: Suppose that the capability types ofo, a1, . . . , ak andv areUA0

0 , UA1

1 ,
. . . , UAk

k and U
Ak+1

k+1
respectively, and that mA,M has annotation

VB0

0 (VB1

1 , . . . ,VBk

k )V
Bk+1

k+1
, then it must be the case thatUAi

i <: {mA,M} → VBi

i for

0 ≤ i ≤ k, andVBk+1

k+1
<: U

Ak+1

k+1
.

4 Solving Protection Problems

In this section, we will look at how the above capability typesystem may be applied to address a
number of classical protection problems recast in the programming language context. According to
[9], “a protection problemis simply a description of some class of restricted behaviors. A protec-
tion problem can be solved in aprotection systemif the system provides some set of mechanisms
which, when invoked, guarantee that the behavior of the system will be appropriately restricted.”
We present a solution to the Prison Mail System Problem, and discuss how the solution addresses
the five protection problems highlighted in Section 2.

Our solution to the Prison Mail System Problem consists of the capability type interfaces for
Mail, Prisoner andGuard as presented in Figure 8.

Safe Invocation. The right to access theMail.read is captured in the primitive capabil-
ity READ. TheMail parameter ofGuard.deliver is not granted this right, because its ca-
pability annotation is RECV→ [READ → ⊥], meaning that theMail argument received by
Guard.deliver may only be passed to thePrisoner.receive method. Guard.de-
liver is therefore forbidden to read the content ofMail.

Capability Amplification. WhenGuard.deliver passes theMail reference toPrison-
er.receive, capability amplification occurs. Specifically, as an argument ofPrisoner.re-
ceive, theMail reference acquires the capability type[READ → ⊥], which allows the reference
to be stored and subsequently be used for accessingMail.read. TheMail message can there-
fore be consumed by the receivingPrisoner.

Limiting Propagation of Capability. Since theMail argument ofGuard.deliver has
capability type RECV→ [READ → ⊥], propagation of the reference to otherGuard is not
permitted.

Mediated Communication. When thePrisoner.send method is invoked by the applica-
tion core, it receives the identity of the addressee as aPrisoner argument. This argument has
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classMail {
capability READ = { string read() }
methodMail(string) : ⊥ (⊥) void
methodstring read() : ⊥ () ⊥
field string msg : ⊥
}

classPrisoner {
capability SEND ={ void send(Prisoner, Guard) }
capability RECV ={ void receive(Mail) }
methodvoid send(Prisoner, Guard)

: ⊥ (DLVR → RECV→ ⊥, DLVR → ⊥) void
methodvoid receive(Mail)

: ⊥ ([READ → ⊥]) void
}

classGuard {
capability DLVR = { void deliver(Mail, Prisoner) }
methodvoid deliver(Mail, Prisoner)

: ⊥ (RECV→ [READ → ⊥], RECV→ ⊥) void
}

Figure 8: Solution to the Prison Mail System Problem
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capability type DLVR→ RECV→ ⊥, and as such it can only be passed toGuard.deliver and
subsequently toPrisoner.receive. The sendingPrisoner is therefore disallowed from in-
vokingPrisoner.receive directly. Mediation throughGuard.deliver is mandatory.

Flexible Control of Capability Storing. Notice also that, having capability type DLVR→
RECV → ⊥, thePrisoner argument received byPrisoner.send cannot be stored into a
field. Access to the addressee is therefore transient. In contrary, theMail argument passed to
Prisoner.receive has capability type[READ → ⊥], and as such it can be stored by the
receivingPrisoner for future consumption.

In summary, our capability type system is expressive enoughto address all the protection prob-
lems exemplified in the Prison Mail System2.

5 Preventing Capability Spoofing

The above capability type system does not prevent a class of capability spoofing attacks. For in-
stance, aGuard object may create a collaboratingPrisoner who impersonates the receiving
Prisoner, and subsequently leaks a readable reference ofMail to the maliciousGuard. Down-
casting may also be exploited for the same purpose. Capability spoofing may also be launched
indirectly through the invocation of static methods or exposing access to static fields. To prevent
capability spoofing, an orthogonal type system for controlling object creation and downcasting is
designed to complement our capability type system. Detailsof the mentioned attack and this com-
plementary type system will be given in an upcoming technical report. The main ideas are outlined
below.

5.1 Subsystem Annotations

The Java reference type hierarchy is decomposed into atree of subsystems. Every Java reference
type isownedby a unique subsystem. A Java reference typeA is amemberof a subsystemS if A

is owned byS or a descendant subsystem ofS. System classes such asObject andString are
owned by theroot subsystem.The following restrictions are imposed.

Subtyping. If a Java reference typeA is a subtype of another Java reference typeB, andB is
owned by subsystemS, thenA must be a member ofS.

Static members access.A static member declared in Java reference typeB may be accessed from
a Java reference typeA only if B is owned by a subsystem of whichA is a member.

Object instantiation. A Java classA may create an instance of another Java classB only if B is
owned by a subsystem of whichA is a member.

Downcasting. Downcasting of an object reference to Java reference typeB can be performed in
a Java classA only if B is owned by a subsystem of whichA is a member.

2Due to space constraints, we are not able to demonstrate how the choice operator (u) can be employed to solve
the Confused Deputy problem [22]. Details can be found in an upcoming technical report.
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Enforcing these restrictions involves the annotation of classfiles with subsystem ownership in-
formation, and the specification of type rules for JVM bytecode instructionsnew, checkcast, in-
stanceof, getstatic, putstaticandinvokestatic, both of which are straightforward.

5.2 The Prison Mail System Revisited

Subsystem annotations can be applied to avoid capability spoofing in the Prison Mail System ap-
plication. Specifically, three subsystems are defined:AppCore, PrisonerSysandGuardSys. The
subsystemsPrisonerSysandGuardSysare children of theAppCoresubsystem, which in turn is a
child of the root subsystem. ThePrisoner andGuard interfaces are owned by thePrisonerSys
andGuardSyssubsystems respectively, while theMail class is owned by subsystemAppCore.
BecausePrisonerSysandGuardSysare sibling subsystems, instances ofGuard are not permit-
ted to create or downcast instances ofPrisoner, and vice versa. This effectively removes the
possibility of capability spoofing.

There is, however, one subtlety. How can Java code owned byAppCorecreates instances
of Prisoner andGuard in the first place? As in any extensible Java application, software
extensions are always loaded and instantiated by the Java Reflection API, which is accessible
only to trusted classes (e.g., the application core), and isnot accessible to untrusted code (e.g.,
dynamically loaded extensions).

6 Implementing Capability Types

This section presents an implementation strategy we plan toundertake to realize our capability type
system. The goal of this section is to convince readers that such an implementation is feasible.

Frontend. The frontend component in Figure 2, which extracts capability type interfaces from
Java source files, can be implemented in the framework of thejavadoc tool of the Java SDK.
Custom doclets and taglets will be designed, so that capability type interfaces can be embedded in
Java source files as comments.

Backend. The Prelude library [15] is a set of C functions for preprocessing Java classfiles. It
can be employed to build the backend component of Figure 2 forinjecting capability type annota-
tions into Java classfiles.

Link-time Typechecker. The Aegis VM [15] is an open source JVM supporting a Pluggable
Verification Module architecture [16, 18]. Static analyzers can be incorporated into the dynamic
linking process of the Aegis VM with ease. Intrachecking canbe performed with a typical itera-
tive dataflow analysis algorithm, while interchecking can be performed in the framework of proof
linking [19, 18]. Prior experience [16, 18] with employing the Pluggable Verification Module ar-
chitecture to implement the JAC type system [27] demonstrates the feasbility of such an approach.
We do however anticipate a nontrivial technical challenge:checking for subtyping of capability
types amounts to solving a subgraph isomorphism problem. Without the support of empirical data,
one cannot be sure of how intensive such computation is in practice. An interesting approach to
address the problem is to adopt the spirit of Proof-Carrying Code [33, 32], and request the code
producer (i.e., the backend) to precompute the homomorphisms involved in all subtyping checks.
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7 Related Work

Secure cooperation [35] and its variations such as the Mutual Suspicion Problem [37], the Con-
fused Deputy [22], the Safe Invocation Problem [35], and Layered Protection [18] have been stud-
ied in the security literature.

The limitations of various language-based protection mechanisms such as stack inspection,
execution monitoring and code rewriting have been formallystudied in recent years [36, 28, 21,
20, 17].

The notion of capabilities was first proposed by Dennis and Van Horn [10]. An archetypical
capability-based operating system kernel is Hydra [9]. A capability-based security kernel for Java
is J-Kernel [25], which is implemented as a class library, and relies on a combination of bytecode
rewriting, dynamic checks and avoidance of structure sharing to enforce protection. Our type
system is statically enforceable, and supports secure structure sharing.

Previous type systems for modelling access control are deeply influenced by stack inspection,
and thus usually take a hierarchical perspective on protection [39, 20, 23]. To the best knowledge
of the authors, our capability type system is the first of its kind to adopt a peer-to-peer perspective
on access control.

Side effects make it difficult to reason about the behavior ofa program. Alias control type
systems [24, 31, 3, 34, 8, 43, 6, 2] were originally proposed to control the proliferation of aliases
in object-oriented programming systems. The intent is thatselective elimination of aliasing reduces
the scope of side effects. Vitek and Bokowski’s work on confined types [43] is a first attempt of
applying alias control to address security issues. Our work, however, is the first to offer a uniform
reinterpretation of capabilities as alias control.

8 Concluding Remarks

Summary. We have presented a capability type system designed for addressing the protection
needs of dynamically extensible software systems. Not onlyhave we proposed a novel protection
mechanism in which an application core can impose communication protocols among untrusted
software extensions, our capability type system also offers a fresh reinterpretation of capability in
terms of alias control.

Future Work. A number of future directions are suggested by this work. Firstly, we would like
to study the soundness of our capability type system formally in the framework of Featherweight
Java [26]. Secondly, our capability type system can be seen as a lightweight partial specification
language. We would therefore like to provide tool support for developers of extensible systems to
articulate and validate capability type interfaces. Thirdly, we would like to employ our capability
type system to demonstrate that there is a close connection between access control and software
architecture. Our conjecture is that the notion of communication integrity [30] in software archi-
tecture can be understood as protection problems [9], and thus cross-pollination between the study
of software architecture and that of software security should be attempted.
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