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Abstract. Motivated by the need of application-level access control in
dynamically extensible systems, this work proposes a static annotation
system for modeling capabilies in a Java-like programming language.
Unlike previous language-based capability systems, the proposed anno-
tation system can provably enforce capability confinement. This confine-
ment guarantee is leveraged to model a strong form of separation of duty
known as hereditary mutual suspicion. The annotation system has been
fully implemented in a standard Java Virtual Machine.

1 Introduction

Dynamic extensibility is a popular architectural feature of networked or
distributed software systems [1]. In such systems, code units originating
from potentially untrusted origins can be linked dynamically into the core
system in order to deliver a short-lived service, or to augment the feature
set of the core system in a more permanent manner. The protection infras-
tructure of a dynamically extensible system is often language based [2].
Previous work on language-based access control largely focuses on infras-
tructure protection via various forms of history-based access control [3–9].
The security posture of infrastructure protection tends to divide run-time
principals into a trusted “kernel” vs untrusted “extensions”, and focuses
on controlling the access of kernel resources by extension code. This secu-
rity posture does not adequately address the need of application-level
security , that is, the imposition of collaboration protocols among peer
code units, and the enforcement of access control over resources that are
defined and shared by these peer code units. This paper reports an effort
to address this limitation through a language-based capability system.

The notion of capabilities [10, 11] is a classical access control mecha-
nism for supporting secure cooperation of mutually suspicious code units
[12, 13]. A capability is an unforgeable pair comprised of an object refer-
ence plus a set of access rights that can be exercised through the reference.
In a capability system, possession of a capability is the necessary and suf-
ficient condition for exercising the specified rights on the named object.
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This inherent symmetry makes capability systems a natural protection
mechanism for enforcing application-level security.

Previous approaches to implement language-based capability systems
involve the employment of either the proxy design pattern [14] or load-
time binary rewriting [15] to achieve the effect of interposition. Although
these “dynamic” approaches are versatile enough to support capability
revocation , they are not without blemish. Leaving performance issues
aside, a common critique [14, 16] is that an unmodified capability model
fails to address the need of capability confinement : once a capability
is granted to a receiver, there is no way to prevent further propagation.

An alternative approach is to embed the notion of capabilities into
a static type system [17]. In a capability type system [18, 19], every
object reference is statically assigned a capability type, which imposes on
the object reference a set of operational restrictions that constrains the
way the underlying object may be accessed. When a code unit delegates
a resource to an untrusted peer, it may do so by passing to the peer a
resource reference that has been statically typed by a capability type,
thereby exposing to the peer only a limited view of the resource.

The class hierarchy of a Java-like programming language [20, 21] pro-
vides non-intrusive building blocks for capability types. Specifically, one
may exploit abstract types (i.e., abstract classes or interfaces in Java)
as capability types. An abstract type exposes only a limited subset of
the functionalities provided by the underlying object, and thus an object
reference with an abstract type can be considered a capability of the un-
derlying object. A code unit wishing to share an object with its peer may
grant the latter a reference properly typed with an abstract type. The
receiver of the reference may then access the underlying object through
the constrained interface. This scheme, however, suffers from the same
lack of capability confinement. The problem manifests itself in two ways.

1. Capability Theft. A code unit may “steal” a capability from code
units belonging to a foreign protection domain, thereby amplifying
its own access rights. Worst still, capabilities can be easily forged by
unconstrained object instantiation and dynamic downcasting.

2. Capability Leakage. A code unit in possession of a capability may
intentionally or accidentally “push” the capability to code units re-
siding in a less privileged protection domain.

This paper proposes a lightweight, static annotation system called
Discretionary Capability Confinement (DCC), which fully sup-
ports the adoption of abstract types as capability types and provably
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prevents capability theft and leakage. Targeting Java-like programming
languages, the annotation system offers the following features:

– While the binding of a code unit to its protection domain is performed
statically, the granting of permissions to a protection domain occurs
dynamically through the propagation of capabilities.

– Inspired by Vitek et al [22–25], a protection domain is identified with
a confinement domain . Once a capability is acquired, it roams
freely within the receiving confinement domain. A capability may only
escape from a confinement domain via explicit capability granting.

– Following the design of Gong [26], although a method may freely ex-
ercise the capabilities it possesses, its ability to grant capabilities is
subject to discretionary control by a capability granting policy .

– Under mild conditions, capability confinement guarantees such as no
theft and no leakage can be proven. Programmers can achieve these
guarantees by adhering to simple annotation practices.

– An application-level collaboration protocol called hereditary mutual
suspicion is enforced. This protocol entails a strong form of sepa-
ration of duty [27, 28]: not only is the notion of mutually-exclusive
roles supported, collusion between them is severely restricted because
of the confinement guarantees above.

The contributions of this paper are the following:

– A widely held belief among security researchers is that language-based
capability systems adopting the reference-as-capability metaphor can-
not address the need of capability confinement [14, 16]. Employing
type-based confinement, this work has successfully demonstrated that
such a capability system is in fact feasible.

– The traditional approach to support separation of duty is through the
imposition of mutually exclusive roles [29, 28]. This work proposes a
novel mechanism, hereditary mutual suspicion, to support separation
of duty in an object-oriented setting. When combined with confine-
ment guarantees, this mechanism not only implements mutually ex-
clusive roles, but also provably eliminate certain forms of collusion.

This paper is organized as follows. Sect. 2 motivates DCC by an exam-
ple. Sect. 3 outlines the type constraints of DCC. Sect. 4 establishes the
formal properties of DCC. Sect. 5 discusses extensions and variations.
Sect. 6 reports implementation experiences. The paper concludes with
related work and future work.
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2 Motivation

The Hero-Sidekick Game. Suppose we are developing a role-playing game.
Over time, a playable character, called a hero (e.g., Bat Man), may ac-
quire an arbitrary number of sidekicks (e.g., Robin). A sidekick is a non-
playable, AI-controlled character whose behavior is a function of the state
and behavior of the hero to which it is associated. The intention is that
a sidekick augments the power of its hero. For example, when the health
of the hero is low, or when the hero is attacked by a villain of incompa-
rably higher hit points, then a defensive sidekick may attempt to block
the movement of the villain and take the hit points for the hero. Alter-
natively, when the hero is attempting a long-range offense, then a scout
sidekick may automatically move towards the target to improve visibility.
A group of scout sidekicks may also establish a defense perimeter when
the hero is regenerating. Along the same vein, when the hero is attack-
ing, an offensive sidekick may augment the fire power of the hero . . . .
The maximum number of sidekicks that may be attached to a hero is a
function of the hero’s type and experience. A hero may adopt or orphan
a sidekick at will. New sidekick and/or hero types may be introduced in
future releases of the game.

A possible design of the game is to employ the Observer pattern [30]
to capture the dynamic dependencies between heros and sidekicks, as is
shown in Fig. 1, where sidekicks are observers of heros. The GameEngine

class is responsible for creating instances of Hero and Sidekick, and
managing the attachment and detachment of Sidekicks1.

The set up in Fig. 1 would have worked had it not been the following
complication: a requirement of the game is such that users may dynami-
cally download new hero or sidekick types from the internet during a game
play. The introduction of dynamic software extensions significantly com-
plicates the security posture of the application. Specifically, the developer
must now actively ensure fair game play by eliminating the possibility of
cheating through the downloading of malicious characters. Two prototyp-
ical cheats are the following.

Cheat I: Capability Theft. A Sidekick reference can be seen as a ca-
pability, the possession of which makes a Hero instance more potent. A
malicious Hero can augment its own power by creating new instances
of concrete Sidekicks, or stealing existing instances from unprotected
sources, and then attaching these instances to itself.

1 Although Java syntax is adopted here, the example is applicable to other languages
that share a similar object model with Java.
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public interface Character { /* Common character behavior ... */ }
public interface Observable {

State getState();

}
public abstract class Hero implements Character, Observable {

protected Sidekick observers[];

public final void attach(Sidekick sidekick) { /* Attach sidekick */ }
public final void detach(Sidekick sidekick) { /* Detach sidekick */ }
public final void broadcast() {

for (Sidekick observer : observers)

if (observer != null)

observer.update(this);

}
}
public interface Sidekick extends Character {

void update(Observable hero);

}
public class GameEngine { /* Manage life cycle of characters ... */ }

Fig. 1. A set up of the hero-sidekick game

Cheat II: Capability Theft and Leakage. A Hero exposes two type in-
terfaces: (i) a sidekick management interface (i.e., Hero), and (ii) a state
query interface (i.e., Observable). While the former is intended to be used
exclusively by the GameEngine, the latter is a restrictive interface through
which Heros may be accessed securely by Sidekicks. This means that a
Hero reference is also a capability from the perspective of Sidekick. Upon
receiving a Hero object through the Observable argument of the update

method, a malicious Sidekick may downcast the Observable reference
to a Hero reference, and thus exposes the sidekick management interface
of the Hero object (i.e., capability theft). This in turn allows the malicious
Sidekick to attach powerful sidekicks to the Hero object, thereby turning
the Hero object into a more potent character (i.e., capability leakage).

Solution Approach. To control the capability propagation, DCC assigns
the Hero and Sidekick interfaces to two distinct confinement domains
[22], and restricts the exchange of capability references between the two
domains. Specifically, capability references may only cross confinement
boundaries via explicit argument passing. Capability granting is thus pos-
sible only under conscious discretion . Notice that the above restrictions
shall not apply to GameEngine, because it is by design responsible for
managing the life cycle of Heros and Sidekicks, and as such it requires
the rights to acquire instances of Heros and Sidekicks. This motivates
the need to have a notion of trust to discriminate the two cases above.
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To further control the granting of capabilities, a static capability
granting policy [26] can be imposed on a method. For example, a capa-
bility granting policy can be imposed on the broadcast method so that
the latter passes only Observable references to update, but never Hero

references.

Our goal is not only to prevent capability theft and leaking between
the abstract types Hero and Sidekick, but also between the subtypes of
Hero and those of Sidekick. In other words, we want to treat Hero and
Sidekick as roles, prescribe capability confinement constraints between
the two roles, and then require that their subtypes also conform to these
constraints. DCC achieves this via a mechanism known as hereditary
mutual suspicion .

3 Discretionary Capability Confinement

In the Java platform, code units bind via dynamic linking, program ver-
ification that is performed against source code, or administrated only by
the code producer, cannot be trusted. Therefore, if DCC is to be used
for enabling secure cooperation, then it must be formulated at the byte-
code level, so that it may be enforced by the code consumer. This section
presents the DCC annotation system for the JVM bytecode language.
The threat model is reviewed in Sect. 3.1, the main type constraints are
specified in Sect. 3.2, and the utility of DCC in addressing the security
challenges of the running example is discussed in Sect.3.3.

3.1 Threat Model

As the present goal is to restrict the forging and propagation of abstractly
typed references, we begin the discussion with an exhaustive analysis of
all means by which a reference type A may acquire a reference of type
C. We use metavariables A, B and C to denote raw JVM reference types
(i.e., after erasure). We consider class and interface types here, and defer
the treatment of array types and genericity till Sect. 5.1.

1. A reference type B grants a reference of type C to reference type A

when B invokes a method2 declared in A, passing an argument via a
formal parameter (including pseudo-parameter this) of type C.

2 To simplify discussion, we adopt the following shorthand in this paper. By a method
we mean either an instance or static method, or an instance or class initializer. By
a field we mean either an instance or static field.
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2. A reference type B shares a reference of type C with reference type
A when one of the following occurs: (a) A invokes a method declared
in B with return type C; (b) A reads a field declared in B with field
type C; (c) B writes a reference into a field declared in A with field
type C.

3. A reference type A generates a reference of type C when one of the
following occurs: (a) A creates an instance of C; (b) A dynamically
casts a reference to type C; (c) an exception handler in A with catch
type C catches an exception.

3.2 Type Constraints

We postulate that the space of reference types is partitioned by the pro-
grammer into a finite number of confinement domains, so that every
reference type C is assigned to exactly one confinement domain via a
domain label l(C). We use metavariables D and E to denote confinement
domains. The confinement domains are further organized into a domi-
nance hierarchy by a programmer-defined partial order ◮. We say that
D dominates E whenever E ◮ D. The dominance hierarchy induces a
pre-ordering of reference types. Specifically, if l(B) = E , l(A) = D, and
E ◮ D then we write B ⊲ A, and say that B trusts A. By definition ⊲ is
reflexive and transitive (but not antisymmetric). We thus write A ⊲⊳ B iff
both A⊲B and B⊲A. The binary relation ⊲⊳ is an equivalence relation, the
equivalence classes of which are simply the confinement domains. If C ⊲A

does not hold, then a reference of type C is said to be a capability for A.
Intuitively, capabilities should provide the sole means for untrusted types
to access methods declared in capability types. The following constraint
is imposed to ensure that an untrusted access is always mediated by a
capability:

(DCC1) Mediated access. Unless B ⊲ A, A shall not invoke a static
method declared in B.

It is harmless for A to acquire a non-capability reference C (i.e., C⊲A).
Capability acquisition, however, is restricted by a number of constraints,
the first of which is the following:

(DCC2) Discriminatory capability confinement. Capability granting
is the sole means by which a domain acquires capabilities:

1. A can generate a reference of type C only if C ⊲ A. [That is, no
capability generation is permitted.]
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2. B may share a reference of type C with A only if C ⊲ A ∨ A ⊲⊳

B. [That is, capability sharing is not permitted across domain
boundaries.]

In other words, capability acquisition only occurs as a result of explicit
granting. Once a capability is acquired, it roams freely within the re-
ceiving confinement domain. Escape from a confinement domain is only
possible when the escaping reference does not escape as a capability, or
when it escapes as a capability via argument passing.

We also postulate that there is a root domain ⊤ so that ⊤ ◮ D for
all D. All Java platform classes are members of the root domain ⊤. This
means they can be freely acquired by any reference type3.

Capability granting is regulated by discretionary control. We postulate
that every declared method has a unique designator, which is denoted by
metavariables m and n. We occasionally write A.m to stress the fact that
m is declared in A. Associated with every method m is a programmer-
supplied label l(m), called the capability granting policy of m. The
label l(m) is a confinement domain. (If l(n) = E , l(m) = D, and E ◮ D,
then we write n ⊲ m. Similarly, we write m ⊲ A and A ⊲ m for the obvious
meaning.) Intuitively, the capability granting policy l(m) dictates what
capabilities may be granted by m, and to whom m may grant a capability.

(DCC3) Discretionary capability granting. If A.m invokes4 B.n, and
C is the type of a formal parameter of n, then C ⊲ B ∨ A ⊲⊳ B ∨ (B ⊲

m ∧ C ⊲ m).

That is, capability granting (¬ C ⊲ B) across domain boundaries (¬ A ⊲⊳

B) must adhere to the capability granting policy of the caller (B ⊲ m ∧
C ⊲m). Specifically, a capability granting policy l(m) ensures that m only
grants capabilities to those reference types B satisfying B ⊲ m, and that
m only grants capabilities of type C for which C ⊲ m.

A method may be tricked into (directly or indirectly) invoking another
method that does not honor the caller’s capability granting policy. This
classical anomaly is known as the Confused Deputy [31]. The following

3 Notice that the focus of this paper is not to protect Java platform resources. Instead,
our goal is to enforce application-level security policies that prescribe interaction
protocols among dynamically loaded software extensions. The organization of the
domain hierarchy therefore reflects this concern: platform classes and application
core classes belong respectively to the least and the most dominating domain.

4 In the case of instance methods, if A.m invokes B.n, the actual method that gets
dispatched may be a method B′.n′ declared in a proper subtype B′ of B. Constraints
(DCC3) and (DCC4) only regulate method invocation. Dynamic method dispatching
is regulated by controlling method overriding through (DCC6).
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constraint ensures that capability granting policies are always preserved
along a call chain.

(DCC4) No Amplification of Rights. A method m may invoke another
method n only if n ⊲ m.

We now turn to constraints that capture how capability confinement
interacts with subtyping. We write A <: B whenever A is either B itself
or one of B’s subtypes. A subtype exposes the interface of its supertypes.
Specifically, if a reference type A has acquired a reference of type B, then
A has effectively acquired a reference of every type B′ that is a supertype
of B. This is because implicit widening conversion is not considered a
reference acquisition event in our threat model (for efficiency concern).
The following constraint is imposed to ensure that widening conversion
is safe: i.e., widening does not turn a non-capability into a capability.

(DCC5) Safe widening. If A <: B then B ⊲ A.

Dynamic method dispatching presents a second point of interaction
between capability confinement and subtyping. When an instance method
B.n is invoked, the method that actually gets dispatched may be a method
B′.n′ declared in a subtype B′ of B. This allows B′.n′ to “impersonate”
B.n, potentially allowing B′.n′ to (i) grant capabilities in a way that
violates the capability granting policy of B.n, (ii) return a capability to
a caller with whom B′ is not supposed to share capabilities, or (iii) accept
a capability argument that is originally intended for B rather than B′.
To avoid these anomalies, the following constraints are imposed.

(DCC6) Impersonation Avoidance. Suppose B.n is overridden by B′.n′.
The following must hold:
1. n′⊲n. [That is, overriding never relaxes capability granting rights.]
2. If the method return type is C, then C ⊲ B ∨ B ⊲⊳ B′. [That is,

a method that returns a capability may not be overridden by a
method declared in a different domain.]

3. If C is the type of a formal parameter, then C ⊲ B′ ∨ B ⊲⊳ B′.
[That is, a method may be granted a capability only if it does not
override a method declared in a different domain.]

Notice the intentional asymmetry between constraints 2 and 3 above. This
asymmetry reflects the fact that the two constraints are used differently
in the proof of our confinement results.

If reference types A and B do not trust each other (i.e., neither A⊲B

nor B⊲A hold), they are said to be mutually suspicious. The following
constraint requires that mutual suspicion is preserved by subtyping.
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GameEngineDomain
GameEngine

CharacterDomain
Character
Observable

HeroDomain
Hero

SidekickDomain
Sidekick

Fig. 2. Dominance hierarchy for the hero-sidekick application. Arrows represent “dom-
inated-by” relationships (◮)

(DCC7) Hereditary mutual suspicion (1st form). Suppose A and B

are mutually suspicious. If A′ <: A and B′ <: B, then A′ and B′ are
also mutually suspicious.

This constraint results in a strong form of static separation of duty [28].
Firstly, as the trust relation ⊲ is reflexive, no reference type can be simul-
taneously a subtype of both A and B. This renders A and B mutually
exclusive roles. Secondly, as we shall see in Sect. 4.4, a class of collusion
between A and B can be completely eliminated under mild conditions.
This constraint will be reformulated in Sect. 5.2 to facilitate modular
enforcement.

3.3 Addressing the Security Challenges

The challenge of capability theft and leakage described in our running
example (Sect. 2) can be fully addressed by DCC. A simple solution is
described here, and a more sophisticated solution, involving controlled
capability exchange, is described in Sect. 5.3.

The confinement domains and dominance hierarchy as shown in Fig. 2
can be defined for the hero-sidekick game application. Because HeroDo-

main and SidekickDomain are incomparable in the dominance hierar-
chy, Hero and Sidekick are capabilities for each other. Consequently,
not only are Sidekicks not allowed to downcast an Observable refer-
ence to a Hero capability (i.e., Cheat II), Heros are also forbidden to
create new Sidekick capabilities or to steal such capabilities through
aliasing (Cheat I). Furthermore, the dominance hierarchy also renders
GameEngineDomain the most dominating confinement domain, thereby
allowing GameEngine to have full access to the reference types declared
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A, B, C ∈ C raw reference types
m, n ∈ M method designators

p, q, r ∈ O object references
S, T ::= 〈Π, Γ ; Φ, A.m, σ〉 VM states

Π ::= ∅ | Π ∪ {r : C} object pools
Γ ::= ∅ | Γ ∪ {B ; q : C} | Γ ∪ {p : B ; q : C} link graphs
Φ ::= ∅ | Φ ∪ {r : C} stack frames
σ ::= ⋄ | push(Φ, A.m, C, σ) proper stacks

Fig. 3. FJVM states

in the rest of the confinement domains. We also annotate every method
A.m displayed in Fig. 1 with a capability granting policy of l(m) = l(A):
e.g., l(update) = l(SidekickDomain). Consequently, even if a Sidekick

obtains a Hero reference, it is still not allowed to attach any sidekick to
that Hero instance (Cheat II). Lastly, hereditary mutual suspicion allows
us to turn Hero and Sidekick into mutually suspicious roles, so that their
subtypes cannot conspire to communicate capabilities.

4 Confinement Properties

The problem of capability confinement is a major challenge in capability-
based systems [14, 16]. As in other discretionary access control mecha-
nisms, safety analysis [32–34] must be conducted to characterize the con-
ditions under which capabilities are not propagated to unintended parties.
This section establishes such confinement guarantees for DCC. The results
are formalized in a lightweight model of the JVM called Featherweight
JVM (FJVM) [35], which is introduced in Sect. 4.1. Sect. 4.2 embeds the
DCC typing rules into FJVM. The main confinement theorem is then
established in Sect. 4.3. The corollaries of the confinement theorem are
discussed in Sect. 4.4.

4.1 Featherweight JVM

The FJVM model (Figs. 3 and 4) is a nondeterministic production system
that describes how the JVM state evolves over time in reaction to access
events. Nondeterminism is employed because we are not modeling the
execution of a specific bytecode sequence, but rather all possible access
events that may be generated by the JVM when well-typed bytecode
sequences are executed.
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Φ ⊢ r : C C <: B

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ; Φ ∪ {r : B}, A.m, σ〉
(T-Widen)

r is a fresh object reference from O
new〈B〉 ∈ Σ[A.m]

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π ∪ {r : B}, Γ ; Φ ∪ {r : B}, A.m, σ〉
(T-New)

Φ ⊢ r : C Π ⊢ r : C′ C′ <: B

checkcast〈B〉 ∈ Σ[A.m]

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ; Φ ∪ {r : B}, A.m, σ〉
(T-CheckCast)

Γ ⊢ B ; q : C

getstatic〈B : C〉 ∈ Σ[A.m]

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ; Φ ∪ {q : C}, A.m, σ〉
(T-GetStatic)

Φ ⊢ q : C

putstatic〈B : C〉 ∈ Σ[A.m]

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ∪ {B ; q : C}; Φ, A.m, σ〉
(T-PutStatic)

Φ ⊢ p : B0 B0 <: B Γ ⊢ p : B ; q : C

getfield〈B : C〉 ∈ Σ[A.m]

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ; Φ ∪ {q : C}, A.m, σ〉
(T-GetField)

Φ ⊢ p : B0 B0 <: B Φ ⊢ q : C

putfield〈B : C〉 ∈ Σ[A.m]

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ∪ {p : B ; q : C}; Φ, A.m, σ〉
(T-PutField)

Φ ⊢ r : C

invokestatic〈B.n : C → C〉 ∈ Σ[A.m]

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ; Φ′, B.n, σ′〉
where Φ′ = {r : C} and σ′ = push(Φ, A.m, C, σ)

(T-InvokeStatic)

Φ ⊢ r0 : C0 C0 <: B Φ ⊢ r : C

Π ⊢ r0 : B′′ B′′ <: B′ B′ <: B

invokemethod〈B.n : C → C〉[B′.n′] ∈ Σ[A.m]

〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ; Φ′, B′.n′, σ′〉
where Φ′ = {r0 : B′, r : C} and σ′ = push(Φ, A.m, C, σ)

(T-InvokeMethod)

Φ′ ⊢ r : C

〈Π, Γ ; Φ′, B.n, push(Φ, A.m, C, σ)〉 →Σ 〈Π, Γ ; Φ ∪ {r : C}, A.m, σ〉
(T-Return)

Fig. 4. FJVM transitions
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Object References. The JVM model manipulates object references. Every
object reference r is an instance of exactly one class. An instance of C

may contain an arbitrary number of typed fields, each of which is declared
either in C one of its supertypes. Each field in turn stores an object
reference. A field may only be instantiated once but never updated. The
null reference is modeled by the absence of link.

VM State. A configuration of the form 〈Π, Γ ; Φ, A.m, σ〉 represents the
global state of the JVM (Fig. 3). The components to the left of the semi-
colon model the heap, while those to the right model the execution stack.

Heap. The object pool Π is a finite set of allocations r : C. Intuitively, Π

records all the objects that have been created by the VM, together with
their class membership. The link graph Γ is a finite set of links. A global
link B ; q : C records that some static field declared in B, with field
type C, stores the object reference q. An object link p : B ; q : C records
that the object p contains a field declared in B, with field type C, storing
the object reference q. Together Π and Γ models the global state of the
heap.

Stack. The VM state components Φ, A.m, σ model the stack of the
current thread of execution. At the top of the stack is a stack frame
Φ and an execution context A.m. A stack frame is a finite set of labeled
references r : C. The set Φ models the references accessible in a JVM stack
frame. Each reference r is associated with a type label C. The type label is
an instrumentation that allows us to track the part of a reference’s type
interface that is visible to an execution context. The execution context
A.m is the currently executing method. The last component σ models the
call chain that leads to the current VM state. Specifically, a proper stack
σ is either an empty stack, ⋄, or a non-empty stack, push(Φ, A.m, C, σ),
where Φ is the caller stack frame, A.m is the execution context of the
caller, C is the declared return type of the callee method, and σ is another
proper stack.

Notations. In the following, we write x for a list x1, . . . , xk. We also write
X ⊢ x if x ∈ X. Obvious variations shall be clear from the context. For
example, we write Φ ⊢ r : C for the conjunction of the list Φ ⊢ r1 : C1,
. . . , Φ ⊢ rk : Ck.

Transitions. The transition rules in Fig. 4 define the state transition re-
lation →Σ . The production T-Widen “promotes” the type label of an
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object reference in the stack frame. The transition rule T-New creates
a fresh object reference in the object pool, and makes that reference ac-
cessible in the top stack frame. The rule T-CheckCast models dynamic
type casting, and tags an object reference in the stack frame with an
alternative type label consistent with the class of the object reference.
The production T-GetStatic models static field getting, and makes the
content of a static field accessible in the current stack frame. The pro-
duction T-PutStatic models static field setting, and introduces a global
link into the link graph. The production T-GetField models instance
field getting, and makes the target of an existing object link accessible in
the top stack frame. The production T-PutField models instance field
setting, and creates a link between two object references. The transition
rule T-InvokeStatic models the invocation of static methods. The caller
invokes a static method B.n, saves the caller stack frame (Φ), creates a
new stack frame (Φ′) for the callee, passes the arguments (r : C) from the
caller stack frame (Φ) to the callee stack frame (Φ′), and constrains the
return type (C). The transition rule T-InvokeMethod models instance
method invocation. The rule works in similar way as T-InvokeStatic,
except for two points: (i) although the method signature B.n is invoked,
the actual method that gets dispatched is the method B′.n′; (ii) the re-
ceiver object (r0 : C0) is passed as an implicit argument, and assumes
a type of B′ when it is in the callee stack frame. The transition rule T-

Return pops the top stack frame (Φ′), resurrects the stack frame (Φ) of
the caller (A), and makes the return value (r : C) available in the caller
stack frame.

Safety Policy. The transition relation →Σ is parameterized by a safety
policy Σ. Intuitively, a safety policy Σ specifies for each execution context
A.m the set Σ[A.m] of permitted events. An event e has the following
structure.

e ::= new〈B〉
| checkcast〈B〉
| getstatic〈B : C〉
| putstatic〈B : C〉
| getfield〈B : C〉
| putfield〈B : C〉

| invokestatic〈B.n : C → C〉

| invokemethod〈B.n : C → C〉[B′.n′]

The transition rules in Fig. 4 ensure that the production relation →Σ

observes the parameter policy Σ.
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B ⊲ A

new〈B〉 ∈ Σ[A.m]
(P-New)

B ⊲ A

checkcast〈B〉 ∈ Σ[A.m]
(P-CheckCast)

C ⊲ A ∨ A ⊲⊳ B

getstatic〈B : C〉 ∈ Σ[A.m]
(P-GetStatic)

C ⊲ B ∨ A ⊲⊳ B

putstatic〈B : C〉 ∈ Σ[A.m]
(P-PutStatic)

C ⊲ A ∨ A ⊲⊳ B

getfield〈B : C〉 ∈ Σ[A.m]
(P-GetField)

C ⊲ B ∨ A ⊲⊳ B

putfield〈B : C〉 ∈ Σ[A.m]
(P-PutField)

n ⊲ m B ⊲ A

C ⊲ A ∨ A ⊲⊳ B

(∀i . Ci ⊲ B) ∨ A ⊲⊳ B ∨ (B ⊲ m ∧ ∀i . Ci ⊲ m)

invokestatic〈B.n : C → C〉 ∈ Σ[A.m]
(P-InvokeStatic)

n ⊲ m n′ ⊲ n

C ⊲ A ∨ A ⊲⊳ B

C ⊲ B ∨ B ⊲⊳ B′ (∀i . Ci ⊲ B′) ∨ B ⊲⊳ B′

(∀i . Ci ⊲ B) ∨ A ⊲⊳ B ∨ (B ⊲ m ∧ ∀i . Ci ⊲ m)

invokemethod〈B.n : C → C〉[B′.n′] ∈ Σ[A.m]
(P-InvokeMethod)

Fig. 5. A safety policy for DCC

4.2 Modeling DCC in FJVM

We model the type rules of DCC by the safety policy depicted in Fig. 5.
(DCC1) is captured in P-InvokeStatic as the premise B ⊲ A. (DCC2)
is encoded in P-New, P-CheckCast, P-GetStatic, P-PutStatic,
P-GetField, P-InvokeStatic and P-InvokeMethod as the premise
C ⊲ A ∨ A ⊲⊳ B, and in P-PutField as the premise C ⊲ B ∨ A ⊲⊳ B.
(DCC3) is enforced by P-InvokeStatic and P-InvokeMethod via the
premise (∀i . Ci ⊲ B) ∨ A ⊲⊳ B ∨ (B ⊲ m ∧ ∀i . Ci ⊲ m). (DCC4) is en-
forced by P-InvokeStatic and P-InvokeMethod via the premise n⊲m.
(DCC6) is captured in P-InvokeMethod by the three premises n′ ⊲ n,
C ⊲ B ∨ B ⊲⊳ B′, and (∀i . Ci ⊲ B′) ∨ B ⊲⊳ B′. (DCC5) and (DCC7) are
not explicitly modeled: (DCC5) is implicitly assumed in our proofs, and
(DCC7) is orthogonal to the confinement results to be proven below.
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SafeStack(A.m, ⋄)
n ⊲ m C ⊲ A ∨ A ⊲⊳ B SafeStack(A.m, σ)

SafeStack(B.n, push(Φ, A.m, C, σ))

Fig. 6. A stack safety judgment

l(B) = D Γ ⊢ B ; q : C

Accessible [D](q : C | Γ )

l(B) = D Γ ⊢ p : B ; q : C

Accessible [D](q : C | Γ )

Φ ⊢ r : C′ C′ <: C

Accessible [D](r : C | Φ)

Accessible [D](r : C | Φ)

Accessible [D](r : C | push(Φ, A.m, C′, σ))

Accessible [D](r : C | σ)

Accessible [D](r : C | push(Φ, A.m, C′, σ))

Accessible [D](r : C | Γ )

Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, σ〉)

Accessible [D](r : C | Φ)

Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, σ〉)

Accessible [D](r : C | σ)

Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, σ〉)

Fig. 7. Accessibility judgments

4.3 Confinement Theorem

A number of judgments are defined to help articulate the main confine-
ment theorem. The SafeStack judgment defined in Fig. 6 asserts that the
call chain represented by a VM stack has increasingly restrictive capabil-
ity granting policies, and that capabilities are only returned to callers in
the same domain as the callees. The family of Accessible judgments de-
fined in Fig. 7 asserts that a labeled reference (r : C or q : C) is accessible
from a domain (D) in a given VM state.

Our first lemma asserts that stack safety is preserved by the DCC
safety policy in Fig. 5.

Lemma 1. Suppose 〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Then
SafeStack(A.m, σ) implies SafeStack(A′.m′, σ′).

Proof. Only the following cases are relevant.

Case T-InvokeStatic: 〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ; Φ′, B.n, σ′〉 where
Φ′ = {r : C} and σ′ = push(Φ, A.m, C, σ). Suppose SafeStack(A.m, σ).
Then, by P-InvokeStatic, we have n ⊲ m and C ⊲ A ∨ A ⊲⊳ B, and
thus we deduce SafeStack(B.n, σ′) as required.

Case T-InvokeMethod: 〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ; Φ′, B′.n′, σ′〉 where
Φ′ = {r0 : B′, r : C} and σ′ = push(Φ, A.m, C, σ). Suppose
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SafeStack(A.m, σ). By P-InvokeMethod, we have n ⊲ m and n′ ⊲ n,
and therefore we obtain n′ ⊲m. By P-InvokeMethod again, we have
C ⊲ A ∨ A ⊲⊳ B. If C ⊲ A does not hold, then A ⊲⊳ B must hold, and
consequently C ⊲ B does not hold. But then P-InvokeMethod also
guarantees C ⊲B ∨B ⊲⊳ B′. We thus obtain C ⊲A∨A⊲B′. Therefore,
we deduce SafeStack(B′.n′, σ′) as required.

Case T-Return: 〈Π, Γ ; Φ′, B.n, push(Φ, A.m, C, σ)〉 →Σ 〈Π, Γ ; Φ ∪ {r :
C}, A.m, σ〉. By definition SafeStack(B.n, push(Φ, A.m, C, σ)) implies
SafeStack(A.m, σ). ⊓⊔

Associate with every transition rule is a domain and a set of labeled
references that are said to be active.

Transition Active Active
Rule Domain References

T-Widen l(A) r : B

T-New l(A) r : B

T-CheckCast l(A) r : B

T-GetStatic l(A) q : C

T-PutStatic l(B) q : C

T-GetField l(A) q : C

T-PutField l(B) q : C

T-InvokeStatic l(B) r : C

T-InvokeMethod l(B′) r0 : B′, r : C

T-Return l(A) r : C

Intuitively, a transition rule has the potential side effect of causing a
labeled reference that is active to become accessible in the active domain.
A labeled reference or a domain that is not active is said to be inactive.
Unless for an active domain and a labeled reference that is active, no new
labeled reference is made accessible in a domain. This notion is made
formal by the following lemma.

Lemma 2. Suppose 〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π ′, Γ ′; Φ, A′.m′, σ′〉. Consider
a domain D and a labeled reference r : C. Unless both D and r : C are ac-
tive for the transition rule that brings about the transition, Accessible [D](r :
C | 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉) implies Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, σ〉).

Proof. Straightforward case analysis. ⊓⊔

The next lemma is the centerpiece of our confinement result. It asserts
that, under the DCC safety policy, if a domain acquires new capabilities as
a result of a transition step, then the capability acquisition must conform
to the capability granting policy of the execution context.
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Lemma 3. Suppose 〈Π, Γ ; Φ, A.m, σ〉 →Σ 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉 so that
SafeStack(A.m, σ). Let D be an arbitrary domain. If
Accessible [D](r : C | 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉), then at least one of the fol-
lowing conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, σ〉) (previously accessible)

2. l(C) ◮ D (not a capability)

3. C ⊲ m ∧ D ◮ l(m) (controlled capability propagation)

Proof. We proceed by case analysis on the transition rules in Fig. 4. By
Lemma 2, we only need to consider the active domain and the labeled
references that are active.

Case T-Widen: Consider the active labeled reference r : B and active
domain l(A). By T-Widen, there exists C so that Φ ⊢ r : C and
C <: B. Thus, condition 1 holds.

Case T-New: Consider the active labeled reference r : B and active
domain l(A). By P-New, B ⊲ A, and thus condition 2 holds.

Case T-CheckCast: Consider the active labeled reference r : B and
active domain l(A). By P-CheckCast, B ⊲ A, and thus condition 2
holds.

Case T-GetStatic: Consider the active labeled reference q : C and ac-
tive domain l(A). By P-GetStatic, either C ⊲ A or A ⊲⊳ B. In the
former case, condition 2 holds. In the latter, T-GetStatic guarantees
Γ ⊢ B ; q : C, which in turn entails condition 1.

Case T-PutStatic: Consider the active labeled reference q : C and ac-
tive domain l(B). By P-PutStatic, either C ⊲ B or A ⊲⊳ B. In the
former case, condition 2 holds. In the latter, T-GetStatic guarantees
Φ ⊢ q : C, which in turn entails condition 1.

Case T-GetField: Similar to T-GetStatic.

Case T-PutField: Similar to T-PutStatic.

Case T-InvokeStatic: Consider the active domain l(B) and the active
labeled references r : C. By P-InvokeStatic, one of (∀i . Ci ⊲ B) or
A ⊲⊳ B or (B ⊲ m ∧ ∀i . Ci ⊲ m) must hold. In the first case, condition
2 is assured. In the second case, condition 1 is assured. In the third
case, condition 3 is assured.

Case T-InvokeMethod: Consider the active domain l(B′) and the ac-
tive labeled references r0 : B′ and r : C. For the labeled reference
r0 : B′, obviously condition 2 holds. We focus on the labeled refer-
ences r : C. By P-InvokeMethod, either (∀i . Ci ⊲ B′) or B ⊲⊳ B′. If
the former is true, condition 2 is guaranteed. Otherwise, (∀i . Ci ⊲ B′)
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does not hold, but B ⊲⊳ B′ holds. But then P-InvokeMethod guar-
antees that one of (∀ . Ci ⊲ B) or A ⊲⊳ B or (B ⊲ m ∧ ∀i . Ci ⊲ m)
must hold. The first alternative is impossible because (∀i . Ci ⊲ B′) is
false but B ⊲⊳ B′ is true. By B ⊲⊳ B′, the second alternative implies
A ⊲⊳ B′, and thus condition 1 is assured. Again, by B ⊲⊳ B′, the third
alternative implies (B′ ⊲ m ∧ ∀i . Ci ⊲ m), and thus condition 3 is
assured.

Case T-Return: Consider the active domain l(A) and the active labeled
references r : C. Because SafeStack(B.n, push(Φ, A.m, C, σ)), either
C ⊲ A or A ⊲⊳ B. In the former case, condition 2 holds. In the latter,
since T-Return guarantees Φ′ ⊢ r : C, where Φ′ is the stack frame
of B, we therefore conclude that condition 1 holds. ⊓⊔

We are now ready to state and prove the main confinement theorem.

Theorem 4 (Discretionary Capability Confinement). Suppose

〈Π, Γ ; Φ, A.m, ⋄〉
∗

−→Σ 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Let D be an arbitrary do-
main. If Accessible [D](r : C | 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉), then at least one of
the following conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, ⋄〉) (previously accessible)
2. l(C) ◮ D (not a capability)
3. C ⊲ m ∧ D ◮ l(m) (controlled capability propagation)

Proof. We proceed by straightforward induction on the number of state
transitions.

Base Case: 〈Π, Γ ; Φ, A.m, ⋄〉 = 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Then condition 1
is given by the assumption of the theorem.

Induction Step: There is a state 〈Π ′′, Γ ′′; Φ′′, A′′.m′′, σ′′〉, such that 〈Π,

Γ ; Φ, A.m, ⋄〉
∗

−→Σ 〈Π ′′, Γ ′′; Φ′′, A′′.m′′, σ′′〉 and 〈Π ′′, Γ ′′; Φ′′, A′′.m′′,

σ′′〉 →Σ 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Suppose that condition 2 and 3 do
not hold. Since SafeStack(A.m, ⋄), we conclude from Lemma 1 that
SafeStack(A′′.m′′, σ′′). Therefore, m′′ ⊲ m. Now, it cannot be the case
that C ⊲ m′′ ∧ D ◮ l(m′′), or else, by m′′ ⊲ m, it contradicts with
the assumption that condition 3 does not hold. By Lemma 3, we de-
duce Accessible [D](r : C | 〈Π ′′, Γ ′′; Φ′′, A′′.m′′, σ′′〉). By the induction
hypothesis, we further obtain condition 1 as required. ⊓⊔

4.4 Theft and Leakage

In the following, we identify annotation practices that preserve useful
confinement properties. Specifically, a method A.m is said to be safe iff
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m ⊲ A. Executing a safe method A.m will only cause those domains dom-
inated by l(A) to acquire capabilities that A can generate. Programmers
concerned with capability confinement may then arrange their code to
invoke untrusted software extensions only via safe method interfaces.

Theft. Capability theft occurs when executing code in a domain causes
the domain to acquire capabilities it does not already possess. The absence
of theft makes capabilities unforgeable. Theorem 4 entails that executing
safe methods always guarantees the absence of capability theft.

Corollary 5 (No Theft). Suppose m ⊲ A and 〈Π, Γ ; Φ, A.m, ⋄〉
∗

−→Σ

〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Let D be l(A). If Accessible [D](r : C | 〈Π ′, Γ ′; Φ′,

A′.m′, σ′〉), then at least one of the following conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, ⋄〉) (previously accessible)
2. l(C) ◮ D (not a capability)

Proof. By way of contradiction, suppose conditions 1 and 2 do not hold.
Theorem 4 implies C ⊲ m, which, by m ⊲ A, in turn implies C ⊲ A, con-
tradicting the assumption that condition 2 does not hold. ⊓⊔

Intuitively, the above statement says, if the execution of a safe method in
a domain causes the domain to acquire new references, those references
are never capabilities.

Leakage. Capability leakage occurs when executing code in a domain
causes a foreign domain to acquire a capability that the foreign domain
does not already possess. When a capability is granted to a domain, it is
in the interest of the granter that the grantee will not leak the granted
capability. Theorem 4 entails that a safe method never leaks capabilities
to a domain that is not dominated by the home domain of the method.

Corollary 6 (No Leakage). Suppose m⊲A and 〈Π, Γ ; Φ, A.m, ⋄〉
∗

−→Σ

〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Let D be a domain such that D ◮ l(A) is not true.
If Accessible [D](r : C | 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉), then at least one of the
following conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, ⋄〉) (previously accessible)
2. l(C) ◮ D (not a capability)

Proof. By way of contradiction, suppose conditions 1 and 2 do not hold.
Theorem 4 implies D ◮ l(m), which, by m ⊲ A, in turn implies D ◮ l(A),
contradicting the assumption of the corollary. ⊓⊔
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Mutual Suspicion. Suppose A and B are mutually suspicious, and a
safe method A.m is invoked. By Corollary 5, no reference of type B will
be acquired by A as a result of the invocation. Similarly, by Corollary
6, no reference of type A will be acquired by B. Consequently, mutually
suspicious types never exchange capabilities as a result of invoking safe
methods. If the two types have never been explicitly granted capabilities
of one another, then they cannot invoke methods declared in each others
type interface. Collusion of this kind is therefore completely eliminated.

5 Extensions and Variations

5.1 Accommodating Other Language Constructs

Arrays. The array types C[ ], C[ ][ ], . . . are said to be carrier types for
declared type C. An object reference with a carrier type is a carrier . If
D acquires a carrier (e.g., of type C[ ]) for a capability type C, while E
obtains a carrier-type reference (e.g., of type Object[ ]) to the same object,
then E can store references into the carrier, while D can retrieve the
said references as type-C capabilities. Special type constraints must be
introduced into DCC to avoid the misuse of carriers as covert channels
for capability communication.

In general, E can communicate capabilities to D via an array only
if (i) the array has been acquired by D as a capability carrier, while
(ii) E acquires a carrier alias of that array. Corresponding to these two
necessary conditions are two approaches to handle arrays in DCC:

Approach I: Permit (i) but not (ii). A domain is allowed to instantiate
and share capability carriers, but no carrier alias may be created across
domain boundaries.
– Instantiation of carriers (including capability carriers) is freely al-

lowed, but dynamic casting of a reference into a carrier is not
allowed (even if the carrier is not a capability carrier).

– Sharing and granting of carriers across domain boundaries are not
allowed.

– A method with carrier-type formal parameters and/or return value
can only be overriden by methods declared in the same domain.

Approach II: Permit (ii) but not (i): Carrier aliases are allowed to be
created across domain boundaries, but a domain must not acquire any
capability carrier.
– Generation of capability carriers is not allowed.
– Sharing and granting of capability carriers across domain bound-

aries are not allowed.
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– If the return type of a method is a carrier type for a capability
type, then the method can only be overriden by a method declared
in the same domain.

– If the type of a method formal parameter is a carrier type for
a capability type, then the method can only override a method
declared in the same domain.

Although either approach is secure, Approach II is preferred because it is
backward compatible to pure Java: a Java program in which all declared
types belong to the root domain ⊤ trivially satisfies all type constraints.

To implement Approach II, some minor changes are introduced to the
type constraints in Sect. 3.2. Specifically, the array type C[ ] is considered
to be as capable as C: i.e., C ⊲⊳ C[ ]. Under this assumption, almost all
of the type constraints in Sect. 3.2 can be reused as is, except for one,
namely, (DCC3). The type constraint must be revised to explicitly forbid
the granting of capability carriers:

(DCC3′) Discretionary capability granting. If A.m invokes B.n, and
C is the type of a formal parameter of n, then C ⊲ B ∨ A ⊲⊳ B ∨ (B ⊲

m ∧ C ⊲ m ∧ “C is not an array”).

Genericity. Genericity does not present any security challenge to the
present design of DCC5. Genericity is a purely source-level construct that
is translated into bytecode via type erasure. The source-level generic type
Set<C> is translated into the raw reference type Set. Set members are
retrieved as Object references. The compiler introduces a dynamic cast
to convert the retrieved Object reference into a type-C reference. There
are two impliciations to this set up. Firstly, because generic containers
such as Set belong to the root domain, DCC permits the acquisition and
transmission of capability containers. Secondly, if C is a capability type,
then P-CheckCast will effectively forbid the retrieval of any type-C
capabilities from generic containers. This is consistent with the overall
design philosophy of DCC: capability acquisition must only occur as a
result of explicit granting (i.e., argument passing). In summary, there
is no security motivation for imposing any additional type constraint to
account for genericity.

5 In an earlier version of this manuscript, genericity was mistaken to be a challenge to
DCC. Specifically, the acquisition of a capability container Set<C> was incorrectly
considered to be equivalent to the acquisition of all the type-C capabilities that the
container carries. In this view, the dynamic casts introduced by the compilation
process impose unnecessary constraints (via P-CheckCast) over the retrieval of
capabilities that are already acquired. This understanding was later found to be
inconsistent with the notion of accessibility as specified in Fig. 7.
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GameEngineDomain
GameEngine

CharacterDomain
Character
Observable

SidekickDomain
Sidekick

HeroDomain
Hero

Fig. 8. Revised dominance hierarchy for the hero-sidekick application. Dotted arrows
represent “dominated-by” relationships (◮). Solid arrows represent “strongly-dominat-
ed-by” relationships (:◮)

Nested Types. Nested types do not pose any difficulty to the present
formulation of DCC, as they are mainly source-level constructs, and are
encoded at the bytecode level as regular JVM classes. It is, however,
natural for a reference type and its nested types to belong to the same
confinement domain in order for them to collaborate properly. A compile-
time type checker may volunteer to issue a warning if this is not the case,
but failing to do so does not post any security threat at run time.

5.2 Modular Enforcement of Hereditary Mutual Suspicion

Hereditary mutual suspicion (DCC7) interacts with dynamic linking in a
non-trivial manner. Specifically, (DCC7) is universally quantified over all
subtypes of two mutually exclusive roles. The enforcement of (DCC7) thus
involves a time complexity quadratic to the number of subtypes of the
mutually exclusive roles, making it very inefficient. Worst still, because of
the dynamic linking semantics of the JVM, some of these subtypes may
not have been completely loaded, making it impossible to enforce (DCC7)
at link time. This section addresses the above two issues by examining
a reformulation of (DCC7) that facilitates modular enforcement . We
begin by rephrasing (DCC7) in a more succinct and yet equivalent form,
involving only three participants:

(DCC7′) Hereditary mutual suspicion (2nd form). Suppose A and
B are mutually suspicious. If A′ is a subtype of A, then A′ and B are
also mutually suspicious.

We show that (DCC7) follows from (DCC7′) (the other direction is
obvious). Suppose A′ and B′ are subtypes of A and B respectively. It
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suffices to demonstrate that, if A′ and B′ are not mutually suspicious,
then (DCC7′) implies A and B are not mutually suspicious. If B′ ⊲ A′,
then, by (DCC5), B ⊲ A′, and thus it follows from (DCC7′) that A and B

are not mutually suspicious. The case for A′ ⊲ B′ is symmetrical.
We adopt a conservative design that facilitates the modular enforce-

ment of hereditary mutual suspicion (DCC7′). Specifically, we want to be
able to check a reference type A only once at link time, and then conclude
that it will not participate in the violation of (DCC7′) in the future. To
this end, we (1) lift the reasoning of mutual suspicion from the level of
reference types to the level of confinement domains, and (2) capture in
a binary relation the sufficient condition by which mutual suspicion is
preserved in subtyping. A programmer-supplied partial order :◮ is pos-
tulated, so that:

(HMS1) ⊤ :◮ D
(HMS2) D :◮ E ⇒ D ◮ E
(HMS3) (D :◮ E ∧ D′

◮ E) ⇒ (D ◮ D′ ∨ D′
◮ D)

We say that D strongly dominates E whenever E :◮ D. The :◮ relation
induces a pre-ordering of Java reference types: we write B : ⊲ A iff l(B) =
E , l(A) = D and E :◮ D. It follows readily from definition that : ⊲ is
reflexive and transitive, and B : ⊲ A ⇒ B ⊲ A. We restate hereditary
mutual suspicion in a form that facilitates modular enforcement.

(DCC7′′) Hereditary mutual suspicion (3rd form). If A <: B, then
B :⊲ A.

We show that (DCC7′) follows from (DCC7′′), (HMS2) and (HMS3).
Suppose A and B are mutually suspicious, so that l(A) = D and l(B) =
D′. Suppose further that A′ <: A and l(A′) = E . By (DCC7′′), we have
D :◮ E . Applying the contrapositive of (HMS3), D′

◮ E does not hold.
Similarly, E ◮ D′ does not hold, or else (HMS2) and the transitivity
of ◮ would imply D ◮ D′, a contradiction. Consequently, A′ and B are
mutually suspicious as required by (DCC7′).

Notice that (DCC7′′) is sound but incomplete, meaning that programs
satisfying (DCC7′′) are guaranteed to satisfy (DCC7′), but some programs
satisfying (DCC7′) may not satisfy (DCC7′′). We trade completeness for
tractability: (DCC7′′) can be enforced even in the presence of dynamic
loading, and, as the number of confinement domains is much fewer than
the number of reference types, (DCC7′′) can be enforced efficiently.

A revised dominance hierarchy of the hero-sidekick game application
is given in Fig. 8.
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Observable

ObservableDomain

HeroDomain
Hero

SidekickDomain
Sidekick

GameEngineDomain
GameEngine

CharacterDomain
Character

Fig. 9. An alternative dominance hierarchy for the hero-sidekick application

5.3 Finer-Grained Control of Capability Granting

The capability granting policy l(m) plays two roles: it controls what ca-
pabilities can be granted when m is executing, and to whom shall these
capabilities be granted. In previous discussion, we unified these two roles
into one label to simplify exposition. In the following, we explore an alter-
native design that leads to a finer-grained control of capability granting.
As we shall see, this flexibility supports a controlled form of capabil-
ity exchange between mutually suspicious reference types. To motivate
this, consider the alternative dominance hierarchy for the hero-sidekick
as shown in Fig. 9. In this set up, Observable becomes a capability
for Sidekick. In order for Hero.broadcast to communicate Observable

references to Sidekick.update, we will have to adopt the annotations
l(broadcast) = GameEnginDomain and l(update) = SidekickDomain.
This configuration is acceptable in our example, in which the broadcast

method is composed of only three lines of code that invokes only update.
The configuration, however, violates the principle of least privilege [36],
especially for a complex broadcast method that may invoke methods
other than update. It would be desirable if we can impose a capabil-
ity granting policy that allows, and only allows, broadcast to grant
Observable capabilities to the SidekickDomain.

We begin with separating the two roles into separate labels. Specif-
ically, the capability granting policy of a method m is specified by two
domain labels: t(m), the target of m, which specifies what domains may
acquire capabilities as a result of executing m, and p(m), the potency of
m, which specifies what capabilities may be granted when m is executed.
More specifically, (DCC3′) is modified to reflect this separation of roles:
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t(n) ◮ t(m) p(n) ◮ p(m) B ⊲ A

C ⊲ A ∨ A ⊲⊳ B

(∀i . Ci ⊲ B) ∨ A ⊲⊳ B ∨ (l(B) ◮ t(m) ∧ ∀i . l(Ci) ◮ p(m))

invokestatic〈B.n : C → C〉 ∈ Σ[A.m]
(P-InvokeStatic

′)

t(n) ◮ t(m) p(n) ◮ p(m)
t(n′) ◮ t(n) p(n′) ◮ p(n)

C ⊲ A ∨ A ⊲⊳ B

C ⊲ B ∨ B ⊲⊳ B′ (∀i . Ci ⊲ B′) ∨ B ⊲⊳ B′

(∀i . Ci ⊲ B) ∨ A ⊲⊳ B ∨ (l(B) ◮ t(B) ∧ ∀i . l(Ci) ◮ p(m))

invokemethod〈B.n : C → C〉[B′.n′] ∈ Σ[A.m]
(P-InvokeMethod

′)

Fig. 10. Revised safety policy for DCC

(DCC3′′) Discretionary capability granting. If A.m invokes B.n, and
C is the type of a formal parameter of n, then C ⊲ B ∨ A ⊲⊳ B ∨
(l(B) ◮ t(m) ∧ l(C) ◮ p(m) ∧ “C is not an array”).

The rules (DCC4) and (DCC6) are adapted accordingly.

(DCC4′) No Amplification of Rights. A method m may invoke an-
other method n only if t(n) ◮ t(m) and p(n) ◮ p(m).

(DCC6′) Impersonation Avoidance. Suppose B.n is overridden by B′.n′.

1. t(n′) ◮ t(n) and p(n′) ◮ p(n).

2. [No change.]

3. [No change.]

The safety policy rules P-InvokeStatic and P-InvokeMethod are
revised to reflect this change. The resulting formulation is depicted in
Fig. 10. The reformulated safety policy rules allow us to establish a variant
of our main confinement theorem.

Theorem 7 (Discretionary Capability Confinement (Revised)).

Suppose 〈Π, Γ ; Φ, A.m, ⋄〉
∗

−→Σ 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Let D be an arbi-
trary domain. If Accessible [D](r : C | 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉), then at least
one of the following conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, ⋄〉) (previously accessible)

2. l(C) ◮ D (not a capability)

3. l(C) ◮ p(m) ∧ D ◮ t(m) (controlled capability propagation)

The proof of this theorem is a straightforward adaptation of the proof for
Theorem 4. The theorem above legitimize the annotations suggested in
the beginning of this subsection.
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@Domain

public interface CharacterDomain extends Root { }
@Domain ( allowSubtyping = { CharacterDomain.class } )

public interface HeroDomain extends CharacterDomain { }
@Domain ( allowSubtyping = { CharacterDomain.class } )

public interface SidekickDomain extends CharacterDomain { }
@Domain

public interface GameEngineDomain extends HeroDomain, SidekickDomain { }

Fig. 11. An interface hierarchy representing the dominance hierarchy of the hero-
sidekick game application

6 Implementation Experience

6.1 Source-Level Annotations

Although DCC is formulated and enforced at the bytecode level, a speci-
fication mechanism has been devised to facilitate the annotation of Java
source files with such DCC typing information as domain membership
(l(C)), capability granting policy (l(m)), dominance relationship (◮), and
strong dominance relationship (:◮). These source-level annotations are
encoded using the JDK 5.0 metadata facility. For example, Fig. 11 illus-
trates how the domain hierarchy in Fig. 8 is encoded at the source level as
an interface hierarchy. Specifically, a confinement domain is represented
as an empty public interface with a @Domain annotation. The subsump-
tion relation is represented by interface extension: if a domain interface
E extends another domain interface D, then D ◮ E . The root domain
⊤ is represented by the predefined domain interface Root, which must
be a superinterface of every user-defined domain interface. Strong sub-
sumption is specified via the allowSubtyping element of a @Domain an-
notation. Specifically, the value of an allowSubtyping element is a list of
domain interfaces. If domain interface D appears in the allowSubtyping

list of domain interface E , then we intend it to mean D :◮ E . If no
allowSubtyping element is supplied, then, by default, the domain inter-
face is strongly dominated only by Root. Lastly, domain membership and
capability granting policies (without the extension of Sect. 5.3) are indi-
cated by the @Confined and @Grants annotations respectively. For exam-
ple, the following declaration confines the Robin class to SidekickDomain

and sets the capability granting policy of the update method to Side-

kickDomain:

@Confined ( SidekickDomain.class )

public class Robin implements Sidekick {
@Grants ( SidekickDomain.class )
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Fig. 12. The DCC software development environment

public void update(Observable hero);

}

6.2 Type Checkers

The present design of DCC is optimized for enforcement efficiency, and
as such it requires no iterative analysis of method bodies. All type con-
straints are enforced by a linear-time scan of classfiles.

We envision a programming environment (Fig. 12) in which Java
source files embedded with DCC annotations are partially validated by a
compiler frontend, and subsequently translated into annotated classfiles
by the JDK 5.0 compiler. The annotated classfiles are then type-checked
at the bytecode level by a compiler backend prior to shipping. To guard
against malicious code generators, type checking is also conducted by
the JVM at load time, against classfiles, at the bytecode level. All the
three DCC type checkers depicted in Fig. 12 have been implemented.
The frontend component is a source-level type checker based on the
JDK 5.0 annotation processing tool (apt). It ensures that the type inter-
face of Java classes and interfaces conform to type constraints (DCC5),
(DCC6) (DCC7′′), as well as the HMS rules. The backend component
is an offline, bytecode-level type checker based on the Apache ByteCode
Engineering Library (BCEL). It ensures that classfiles or JAR files con-
form to all the type constraints. Lastly, the load-time type checker
is obtained by embedding the backend type checking engine into a Java
class loader, which type-checks classfiles as they are loaded into the JVM.

7 Concluding Remarks

7.1 Related Work

Language-Based Capability Systems. Previously proposed language-based
capability systems [17, 14, 15] lack confinement guarantees. This work
combines the ideas of confinement domains [22] and capability granting
policies [26] to achieve capability confinement.
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Object Reference Confinement. The design of DCC has been influenced by
the notion of confined types [22–25], the systematic enforcement of which
could have eliminated a security breach in JDK 1.1. While the confine-
ment boundaries of confined types are absolute and uniform, those in
DCC are semi-permeable and discriminatory, allowing reference acquisi-
tion through dominance and capability granting through discretion. This
difference is due to the fact that confined types is designed to uniformly
confine all object references of a given concrete class, but DCC is designed
to selectively confine those object references that would otherwise escape
with a privileged static type. While Vitek et al identify confinement do-
mains with Java packages, thereby reusing the access control semantics
of package private members, the dominance hierarchy of DCC is indepen-
dent of the Java package semantics. Also, the type rules for confined types
block reference leakages at their originating sites, while the type rules of
DCC target illegal reference acquisition at the receiving ends. This shift
of focus is motivated by the need of discriminatory confinement induced
by the trust relation. Lastly, bytecode-level implementation of confined
types involves iterative flow analysis; link-time type checking of DCC does
not.

The static type system pop [37] supports the reference-as-capability
metaphor in an inheritance-less object calculus. Contrary to “communi-
cation-based” schemes of object confinement (e.g., confined types), an
“used-based” approach has been adopted by pop to impose a custom
“user interface” over an object. The user interface specifies how individual
protection domains may access the object. DCC can be seen as a hybrid of
communication-based and use-based approaches to capabilities: use-based
views are modeled as static types imposed on references, and references
may only escape from a confinement domain so long as they do not escape
with a view that grants privileged accesses to the receiving domain.

Encapsulation Policies. Modern object-oriented programming languages
provide access modifiers such as protected and private to control the
visibility of reference types and their members. DCC could be seen as a
static access control scheme in which the accessibility of a reference type
or its members can be controlled more precisely than the traditional set
of access modifiers. In this respect, this work shares with Composable
Encapsulation Policies (CEP) [38, 39] the concern of providing alterna-
tive interfaces to multiple client categories. Therefore, the role of encap-
sulation policies is analogous to capabilities in DCC. Schärli et al [38]
rightly observe that Java interfaces could have been used for modeling
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encapsulation policies had it not been the fact that encapsulation policies
modeled as such are not enforceable. Under DCC, encapsulation policies
expressed as Java interfaces can indeed be enforced as capabilities. DCC
can therefore be seen as a non-intrusive augmentation to Java that turns
type interfaces into enforceable encapsulation policies.

Concealment of Concrete Type. The Emerald programming language [40]
is an early object-oriented language for distributed programming. It pro-
vides a restrict type qualifier for concealing the concrete type of an ob-
ject reference (i.e., preventing downcasting). This feature provides partial
support for the reference-as-capability metaphor.

Stack Inspection. Stack inspection [5] is an access control model for pro-
gram execution that involves code units belonging to distinct protection
domains. A common assumption behind the many models of stack in-
spection [5–7, 9] and its variants [8] is that the binding of permissions to
code units is performed statically. While this simplification has the clear
advantage of supporting declarative reasoning of access control, it does
not support dynamic access control policies [41, Sect. 5.6], in which
the set of permissions associated with a protection domain may evolve
over time. DCC identifies protection domains with confinement domains.
While the binding of code units to their protection domains (i.e., con-
finement domains) is performed statically, the granting of permissions
to protection domains occurs dynamically through capability acquisition.
Notice, however, the right to grant capability is still modeled statically in
DCC. A close examination of the SafeStack invariant reveals that DCC
maintains a stack invariant very similar to that of stack inspection. Precise
formulation of this connection belongs to future work (see next section).

Language-Based Information Flow Control. Although this work is primar-
ily concerned with access control, and thus orthogonal to language-based
information flow control [42], one may see the No Theft and No Leak-
age properties as playing the analogous roles of Simple Security and
*-Property in information flow control.

Separation of Duty. The principle of separation of duty is foundational
in ensuring system integrity [27]. The original intention is to avoid an un-
trusted external agent from single-handedly contaminating the integrity
of the system. Postulating mutually-exclusive roles is a popular means [43,
29] for enforcing separation of duty statically [28]. By requiring multiple
external agents to be involved in carrying out a task, it is assumed that
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collusion between external agents is unlikely. Similarly, our work aims to
avoid the collusion of untrusted code units. The hereditary mutual sus-
picion constraint not only support mutual exclusion of roles, it provably
eliminates collusion between them. To the best of the author’s knowledge,
this is the first work to enforce such a strong form of separation of duty
in a language-based environment.

7.2 Future Work

In Sect. 5.3, adopting a finer-grained representation of capability granting
policies leads to interesting capability communication idioms. An exten-
sion is to explore alternative representations of capability granting poli-
cies, and study the collaboration idioms thus enabled.

Typing rule (DCC4) mandates that the right to grant capability is
always diminishing along a call chain. This requirement not only restricts
the reusability of methods, but also causes methods deep in a call chain
to be deprived of capability granting rights. Is it possible to permit am-
plification of capability granting right while preserving the confinement
properties? One helpful observation is that the reasoning of capability
granting rights in DCC is akin to stack inspection: introduction of every
new stack frame further restricts the right of capability granting, and we
seek a mechanism that allows privileged frames to tentatively amplify this
right. It is likely that the extensive experience of the research community
on stack inspection can be exploited to help address this challenge.

A limitation of this work is the lack of support for capability revoca-
tion. It is obviously impossible to “revoke” a capability reference that has
already been acquired by a protection domain. The lack of revocation can
be alleviated by carefully regulating authority delegation. Constrained
delegation is a well-studied topic in the context of role-based access con-
trol and trust management (see, particularly, [44–46]). First ideas of how
delegation constraints may be integrated into a capability type system
can be found in [47].

7.3 Conclusion

A lightweight, non-intrusive, static annotation system, DCC, has been
proposed to model capabilities in a Java-like language environment. We
have shown that, unlike previous language-based capability systems, DCC
enforces capability confinement guarantees such as no theft and no leak-
age. Leveraging the confinement guarantees, DCC can model a collabora-
tion protocol known as hereditary mutual suspicion, which can be seen as
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a strong form of role separation. A suite of development tools, including
a load-time type checker, have been implemented. This work suggests a
number of future directions, including the connection of DCC with stack
inspection and constrained delegation.
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