
Pluggable Verification Modules:
An Extensible Protection Mechanism for the JVM

Philip W. L. Fong
Department of Computer Science

University of Regina
Regina, Saskatchewan, Canada S4S 0A2

pwlfong@cs.uregina.ca

ABSTRACT
Through the design and implementation of a JVM that sup-
ports Pluggable Verification Modules (PVMs), the idea of an
extensible protection mechanism is entertained. Link-time
bytecode verification becomes a pluggable service that can
be readily replaced, reconfigured and augmented. Appli-
cation-specific verification services can be safely introduced
into the dynamic linking process of the JVM. This feature
is enabled by the adoption of a previously proposed mod-
ular verification architecture, Proof Linking [23, 24], which
decouples bytecode verification from the dynamic linking
process, rendering the verifier a replaceable module. The
PVM mechanism has been implemented in an open source
JVM, the Aegis VM [21]. To evaluate the software engineer-
ing and security engineering benefits of this extensible pro-
tection mechanism, an augmented type system JAC (Java
Access Control) [37] has been successfully implemented as a
PVM.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—protection mech-
anisms; D.3.4 [Programming Languages]: Processors—
run-time environments; D.3.2 [Programming Languages]:
Language Classification—object-oriented languages, macro
and assembly languages; D.2.11 [Software Engineering]:
Software Architectures—domain-specific architectures; D.4.6
[Operating Systems]: Security and Protection—access con-
trols

General Terms
Security, Languages, Verification

Keywords
Pluggable verification modules, proof linking, extensible pro-
tection mechanism, Java virtual machine, bytecode verifica-
tion, Aegis VM, mobile code security, extensible systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04,Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

1. INTRODUCTION
As our society becomes increasingly aware of the need

for secure computing infrastructures, the programming lan-
guage community has invested in recent years an unprece-
dented interest in the interplay between software security
and programming language environments. One emerging
challenge arises from the growing popularity of Dynamically
Extensible Software Systems, such as mobile code language
environments [11, 53], scriptable applications, and software
systems with plug-in architectures [5, 19, 44]. In such sys-
tems, executable extensions can be dynamically linked into
the address space of a host software system, either to deliver
a short lived service, or to augment the capability of the un-
derlying host in a permanent manner. If adopted unchecked,
malicious software extensions could compromise the security
of the host. An effective protection approach is to mandate
the use of a safe language for programming software ex-
tensions. Strongly typed object-oriented programming lan-
guages, with support for enforcing data encapsulation on
the one hand, and support for constructing extensible ap-
plication framework on the other, becomes a natural linguis-
tic choice. Such an approach forms the security foundation
of the Java Virtual Machine (JVM) [39], an archetypical
platform for constructing extensible systems. Software ex-
tensions are compiled into strongly typed intermediate code
units called classfiles, which are in turn typechecked by a
bytecode verifier at the time of dynamic loading. Since byte-
code verification is an integral part of the classloading se-
mantics, typechecking is therefore nonbypassable.

Future applications of the JVM will likely demand ad-
ditional forms of verification to provide enhanced levels of
protection. To address this need, the attention of scholar-
ship has turned to safety properties that go beyond sim-
ple “type safety”. These application-specific safety proper-
ties are captured in augmented type systems [12, 55, 7, 37,
2], annotation languages [33, 1], and other forms of static
analyses. One critique of these works is that the notion of
safety is often formulated as a compile-time property, en-
forced by the code producer, at the level of the source lan-
guage. In the context of the JVM, in which code units bind
via dynamic linking, program verification that is performed
against source code, or administrated only by the code pro-
ducer, cannot be trusted. Unfortunately, given the inherent
complexity of Java’s dynamic linking process, and its tight
coupling with the bytecode verifier, programming alterna-
tive static analyses into the existing bytecode verification
procedure is an extremely taxing and error-prone exercise.

This partly explains why it is rare to see the mentioned
works materialize into link-time protection mechanisms for
the JVM. This analysis reveals a fundamental design flaw in
the protection architecture of the JVM, in which the link-
time static verification service is a fixture that cannot be
extended conveniently. As new security needs arise, there
exists no mechanism whereby alternative static analyses can
be retrofitted into the dynamic linking process of the run-
time system. This problem is in no way specific to the JVM:
the critique applies equally to other safe language environ-
ments such as the Common Language Infrastructure (CLI)
[18].

Through the design and implementation of a JVM that
supports Pluggable Verification Modules (PVMs), the idea
of an extensible protection mechanism is entertained. Link-
time bytecode verification becomes a pluggable service that
can be readily replaced, reconfigured and augmented. Ap-
plication-specific verification services can be safely intro-
duced into the dynamic linking process of the JVM. This
feature is enabled by the novel application of a previously
proposed modular verification architecture, Proof Linking
[23, 24], which decouples bytecode verification from the dy-
namic linking process. The main contributions of this paper
are the proposal of Pluggable Verification Modules as a stan-
dard feature for JVM-like extensible software systems, and
the report of a concrete design and implementation of such
a facility in an open source Java Virtual Machine, the Aegis
VM [21]. To evaluate the utility of the extensible protection
mechanism, an augmented type system JAC (Java Access
Control) [37] has been implemented as a PVM. This imple-
mentation exercise illustrates two aspects of utility: Firstly,
it demonstrates that incorporating an application-specific
static analysis into the link-time verification procedure of the
Aegis VM through the PVM extension mechanism requires
only a tractable amount of programming effort. Secondly,
it demonstrates how Proof Linking, as implemented in the
PVM facility, can be exploited to enable secure cooperation
[49] among mutually distrusting code units.

This paper is organized as follows. Section 2 analyzes the
architectural deficiencies of existing JVMs, and articulates
how the Proof Linking architecture can be novelly applied
to turn link-time static verification into a pluggable service.
The concrete design of the PVM facility as implemented in
the Aegis VM is detailed in Sections 3 and 4. The utility of
the extensible protection mechanism is evaluated in Sections
5 and 6, in which the implementation of the JAC type sys-
tem as a PVM is used to illustrate the software engineering
and security engineering benefits of the PVM facility. Dis-
cussion, related work, future work, and conclusion can be
found in Section 7.

2. PLUGGABLE VERIFICATION SERVICE
VIA PROOF LINKING

This section analyzes the verification architecture of ex-
isting JVMs, and explains why extensibility is not properly
supported in such an architecture (Section 2.1). It then re-
views the previously proposed Proof Linking architecture
(Section 2.2), and subsequently outlines a novel applica-
tion of this modular verification architecture to turn link-
time static verification into a pluggable service (Section 2.3).
Lastly, the implementation status of this extensible protec-
tion mechanism is reported (Section 2.4).

2.1 Problem Analysis
The lack of modularity in the verification architecture of

existing JVMs is the main obstacle to rendering bytecode
verification a pluggable service. To see this, note that code
safety is in general a whole-program notion: the safety of
a classfile depends not only on properties that can be es-
tablished by examining the classfile alone, but also on the
compatibility of the established properties with the runtime
environment into which the classfile is linked. In the context
of typechecking, the two tasks roughly correspond to the in-
ference of a type interface for a code unit, and the checking
of the compatibility between this type interface and a given
type environment. Cardelli succinctly called the two tasks
intrachecking and interchecking [10]. Unfortunately, the two
tasks are not cleanly separated from each other and from the
rest of the VM in a typical implementation of the bytecode
verification procedure [39]:

1. Interleaving of Intrachecking and Intercheck-
ing: In the course of intrachecking a classfile, class-
loading may be initiated by the bytecode verifier in
order to bring in the type interface of other classfiles
for interchecking purposes. The result of mixing some
interchecking into intrachecking is a tight coupling be-
tween the bytecode verifier and the dynamic linking
logic of the runtime environment. Under this veri-
fication architecture, if an application-specific static
analysis is to be introduced into the dynamic linking
process of the JVM, not only will the intrachecking
component have to possess intimate knowledge of the
VM internal, any undisciplined classloading performed
by the component for the sake of interchecking may
also perturb the soundness of the dynamic linking se-
mantics.

2. Delocalization of Interchecking: Because of the
incremental nature of dynamic loading, not all code
units of a program is present at run time. The bulk
of interchecking, therefore, has to be performed incre-
mentally as new classes are linked into the VM. Under
this verification architecture, application-specific in-
terchecking logic has to be carefully grafted at strategic
locations of the dynamic linking procedure. Not only
is this a nontrivial software engineering undertake, the
process is inherently error prone.

Simply put, the verification architecture of a typical JVM
implementation is not designed to support extensibility. Any
extension mechanism for supporting application-specific ver-
ification must involve a complete rethinking of the verifica-
tion architecture.

2.2 The Proof Linking Architecture
The Proof Linking architecture [23, 24] was originally

proposed as a means to improve the comprehensibility and
maintainability of the standard bytecode verifier in the JVM.
This has been achieved by modularizing the JVM verifica-
tion procedure. To understand the Proof Linking architec-
ture, consider the example depicted in Figure 1. Suppose
class C defines a method M(S), the body of which contains
an invokespecial bytecode instruction that delegates the call
to A.M(S). For this instruction to be properly typed, JVM
semantics require that C must be a subclass of A. This
requirement is an example of interchecking.

invokespecial A.M(S)

+M(S)

A

C
+M(S)

B

...

...

Figure 1: A Typechecking Example

Proof Linking cleanly separates intrachecking and inter-
checking. Intrachecking of classfiles is performed by a modu-
lar verifier, which infers for each classfile a verification inter-
face composed of proof obligations and commitments (Figure
2). Commitments are assertions established by the modu-
lar verifier, while proof obligations are assumptions made
during the process. Proof obligations and commitments are
analogous respectively to the import and export parts of a
module interface. For example, a modular verifier that im-
plements intrachecking for the standard JVM type system
will scan the body of C.M(S), and, noticing the invokespe-
cial instruction, generate a proof obligation subclass(C,

A) to record the intermodular dependency. The modular
verifier also generates the commitment extends(C, B) to
indicate that class C inherits directly from class B. In-
terchecking thus involves the discharging of proof obligations
using commitments of loaded classes. Due to the incremen-
tal nature of dynamic loading and lazy, dynamic linking, a
JVM program may not be completely loaded or linked, and
thus not all proof obligations can be discharged right away.
Consequently, also included in the verification interface is
an obligation discharging schedule, which assigns to each
proof obligation a linking primitive (i.e., a linking event),
prescribing that the obligation should be discharged prior
to the execution of the linking primitive. For example, the
above proof obligation subclass(C, A) is scheduled to be
discharged before the linking primitive “resolve A.M(S) in
C” is executed. Obligation discharging is therefore staged
carefully to dovetail with the dynamic loading of classfiles
and their commitments.

Incremental interchecking is achieved through a process
called proof linking (Figure 3). Whenever a linking primi-
tive is to be executed, the JVM attempts to discharge the
associated proof obligations using commitments of classes
that are already loaded. Execution of the linking primitive
is only authorized if the check succeeds. In previous works
[23, 24], incremental proof linking is modeled abstractly us-
ing deductive database concepts [40], whereby proof obliga-
tions are deductive queries, commitments are facts stored
in a database, and logic programs are formulated to express
interchecking logics such as type rules. For example, the
following Horn clause expresses defines the subclass/2 re-
lation to be the reflexive transitive closure of extends/2.

subclass(X, X).

subclass(X, Y) :- extends(X, Z), subclass(Z, Y).

The obligation subclass(C, A) can be discharged if both
the commitments extends(C, B) and extends(B, A) are
already loaded before the linking primitive “resolve A.M(S)

Obligation Discharging Schedule

Verifier
Run−time

Environment
Loader

Commitments

+

Obligations

Verified

Code Unit

Proof

Linker
CommitmentsObligations

Untrusted

Code Unit

Obligations

resolve S in X 321 OO

Linking Primitives

Database

Commitment
O

Figure 2: Modular Verification

Obligation Discharging Schedule

Run−time

Environment

Proof

Linker

Linker

3 Prove obligations by

consulting commitments

Commitment

Database

Resolve4

2 Look up obligations

of requested action

O1 O2 O3

1

Obligations

Request that symbol S

is to be resolved in X

Linking Primitives

resolve S in X

Figure 3: Incremental Proof Linking

in C” is executed. Correctness of the proof linking process is
assessed through the examination of a linking strategy, which
formally specifies the temporal dependencies between link-
ing primitives as a partially ordered set. Three correctness
conditions, namely, Safety, Monotonicity and Completion,
have been established with the help of the PVS specifica-
tion and verification system.

2.3 A Solution Approach
One of the main contributions of this work is the novel

employment of the Proof Linking architecture to create an
extensible protection mechanism for the Aegis VM. Because
Proof Linking cleanly separates intrachecking and intercheck-
ing through the use of a verification interface, intrachecking
is decoupled from the dynamic linking process. No longer
entangled with classloading logic, intrachecking code can
be engineered as a separate component that interacts with
the VM solely by generating verification interfaces. This
architectural property is exploited to allow arbitrary plug-
gable verification modules (PVMs) to be dynamically linked
into the JVM to augment the standard bytecode verifier.
Every PVM implements an intrachecking procedure for an
application-specific verification domain. Without having to
perform any interchecking and classloading, each PVM in-
fers a verification interface to capture intermodular depen-
dencies. Details of the PVM facility and the design of a
domain-independent representation of verification interface
is described in Section 3.

A generic proof linking mechanism is built into the Aegis
VM for supporting domain-independent interchecking. Specif-
ically, proof obligations and commitments generated by PVMs
are tracked by the Aegis VM, which discharges proof obliga-
tions according to the obligation discharging schedules em-
bedded in verification interfaces. Consequently, the com-
plexity of grafting interchecking code into the dynamic link-
ing procedure is now replaced by a reusable proof linking
engine. User-defined verification domains can be specified
through the creation of obligation libraries, which are used
by the generic proof linking mechanism for evaluating obli-
gations specific to a verification domain. Details of the
generic proof linking mechanism and obligation libraries can
be found in Section 4.

The PVM extension mechanism offers a number of soft-
ware engineering benefits to developers of an application-
specific verification technology. Firstly, intrachecking code
no longer needs to assume implementation-level knowledge
of the VM internal. Instead, a PVM depends only on an
abstract model of proof linking over which verification inter-
faces are defined. Secondly, interchecking is now a fully au-
tomated service provided by the generic proof linking mech-
anism, thereby freeing the developers from having to man-
ually graft interchecking code into the dynamic linking pro-
cedure. Thirdly, Safety and Completion are guaranteed
for free. The PVM extension facility is designed in such
a way that user-defined PVMs and obligation libraries au-
tomatically satisfy the two aforementioned correctness con-
ditions of Proof Linking. Developing well-mannered link-
time static analyses under the PVM framework is therefore
highly tractable. A detail demonstration of these software
engineering benefits in the context of the JAC type system
can be found in Section 5.

The PVM extension mechanism also offers a number of
security engineering benefits to the administrators and users
of a JVM platform. Firstly, the administrator is free to
mix and match PVMs to create a custom-made JVM plat-
form that addresses the specific security needs of an appli-
cation area (e.g., embedded VM for mobile phones). When
a security flaw is discovered in a PVM, it can be replaced
as an individual component. Configuration management of
the verification service is therefore streamlined. Secondly,
application-specific access control policies can be easily ex-
pressed in terms of proof obligations and commitments. En-
abled by the generic proof linking mechanism, safe dynamic
linking allows an extensible application to erect protection
boundaries between the application core and dynamically
loaded extensions. An illustration of this latter security en-
gineering benefit in the context of the JAC type system can
be found in Section 6.

2.4 Implementation Status
The PVM facility and the generic proof linking mechanism

have been fully implemented in the Aegis VM. The imple-
mentation effort has been administrated as an open source
project [21]. Six development releases result in a VM that
supports features including dynamic linking, access control,
delegation style classloading, loading constraints, reflection,
garbage collection, native method dispatching and all as-
pects of bytecode interpretation. The VM does not yet sup-
port multithreading. The Aegis VM currently runs on the
GNU/Linux (x86) platform. It provides a realistic platform
on which to test the feasibility of the Proof Linking architec-

ture. Features described in this paper has been incorporated
into release 0.2.0. Design highlights are outlined in Sections
3 and 4 to illustrate the utility of the approach. Consult [22]
for low-level implementation details.

3. PLUGGABLE VERIFICATION MODULES
PVMs are dynamically loadable shared libraries on the

GNU/Linux platform. Programmers may implement an app-
lication-specific analysis as a PVM, and subsequently use
it to augment the Aegis VM through the PVM extension
mechanism. This section outlines the design of this plug-in
mechanism.

3.1 PVM Life Cycle
The Aegis VM can be configured with an arbitrary num-

ber of PVMs. The PVMs are loaded when the VM boot-
straps. Every PVM exports an identifier specifying the veri-
fication domain to which it belongs. The Aegis VM uses this
identifier to match the PVM with a corresponding obliga-
tion library, with which the verification interfaces generated
by this PVM will be interpreted.

Next, the initialization function exported by each PVM
is invoked. From this point on, the verification facilities
of the loaded PVMs will be called into service whenever a
class is to be defined. Specifically, prior to the definition of
a class, the corresponding classfile representation is parsed
into an abstract syntax tree (AST). A built-in dataflow an-
alyzer is then employed to typecheck the bytecode meth-
ods in the AST. The results of dataflow analyses are passed
along with the AST into the verification function of every
loaded PVM, whereby application-specific intrachecking is
conducted (Section 3.2). Successful intrachecking generates
a verification interface (Section 3.3), which is then processed
by the generic proof linking mechanism. Class definition is
authorized only if all PVMs endorse the safety of the corre-
sponding classfile representation.

When the Aegis VM shuts down, the clean-up function
exported by each PVM is invoked before the PVM is un-
loaded.

3.2 Verification Function
The verification function implements the core functional-

ity of a PVM. To reduce the overhead of user-defined in-
trachecking, and to facilitate PVM development, the AST
of the target classfile and the results of typechecking byte-
code methods are passed as arguments to the verification
function. Specifically, the built-in dataflow analyzer of the
Aegis VM generates (1) an explicit intraprocedural control
flow graph for each bytecode method (control flow is implicit
due to the presence of the notorious subroutine construct in
the JVM bytecode language [52, 45]), and (2) a type state
for each program point. Each type state describes (i) the
depth of the operand stack, (ii) the type of each data item
residing in the operand stack and local variable array, and
(iii) the subroutine call chain leading to the program point.
A verification function may reuse the above information to
avoid analyzing a classfile from scratch. Experience from
implementing the JAC type system has confirmed that the
availability of this additional information greatly facilitates
the development of PVMs.

obligation ::= predicate-identifier { symbolic-argument }*
symbolic-argument ::= this

| super

| interface index
| field index
| method index
| literal index
| import-symbol index
| auxiliary-symbol index
| global-class index
| global-constant index

Figure 4: Abstract Syntax of Proof Obligations

3.3 Verification Interface
The verification function constructs a verification inter-

face for each classfile passing intrachecking. Every verifi-
cation interface is composed of three components — proof
obligations (3.3.1), commitments (3.3.2), and an obligation
discharging schedule (3.3.3). The Aegis VM stores verifi-
cation interfaces in class definitions. Unloading of a class
automatically cleans up the memory resources occupied by
the associated verification interfaces.

3.3.1 Proof Obligations
The verification function formulates proof obligations to

capture external dependencies of a target classfile. Every
proof obligation represents a condition to be checked at link
time by the generic proof linking mechanism. The PVM
facility provides an expressive, symbolic representation for
verification functions to encode proof obligations. Under
this representation, every proof obligation is a ground query
composed of a predicate identifier and zero or more symbolic
arguments. The abstract syntax of a proof obligation is given
in Figure 4.

Every verification domain defines a fixed number of pred-
icate symbols (Section 4.1). Each predicate symbol repre-
sents a boolean function that checks if some condition holds.
The predicate identifier of an obligation is a numeric index
specifying a predicate symbol in the verification domain to
which the PVM belongs. Intuitively, the boolean function
corresponding to the predicate symbol will be applied to the
symbolic arguments when the obligation is discharged.

The verification function may name various components
of the class being verified as the arguments of an obligation.
Specifically, the this, super, interface, field and method

argument syntax are used for naming the target class, its
immediate superclass, immediate superinterfaces, declared
fields and declared methods respectively. The index field
identifies the specific candidate of a given argument type.

A literal argument names an int, float, long, double,
or UTF-8 string literal in the constant pool. The index field
refers to the index of the literal in the constant pool.

An import-symbol argument names the resolved target of
a class, field, method, or interface method reference in the
constant pool. The index field refers to the index of the
symbolic reference in the constant pool.

Occasionally, the verification function may need to name
an argument that corresponds to a class that cannot be ref-

erenced using the above argument syntax. Such a class ref-
erence is said to be an auxiliary symbol. Every verification
interface provides its own symbol table for storing auxil-
iary class symbols. The auxiliary-symbol argument syn-
tax identifies an entry of this auxiliary symbol table. When
a class is prepared, all the class symbols mentioned in the
auxiliary symbol table are loaded and cached, so that they
can be readily retrieved at the time of obligation discharging
(Section 4.4).

The obligation argument types described so far refer to
run-time JVM data structures that are defined indepen-
dently of any specific verification domain. Obligation ar-
gument types global-class and global-constant provide
syntax for naming data structures specific to a verification
domain. Specifically, every verification domain may iden-
tify a fixed number of Java classes to be instrumental to
verification (e.g., the class java.lang.Throwable is needed for
checking if a class can be thrown as an exception). These
classes can be named as obligation arguments through the
global-class syntax. Every verification domain may also
define a fixed number of immutable, native data structure to
represent domain constants. Such constants can be named
using the global-constant syntax. See Section 4.1 for more
details.

As the Aegis VM has to explicitly track proof obliga-
tions, a compact obligation encoding has been derived [22],
whereby an obligation with k arguments can be encoded
with k + 1 32-bit machine words.

3.3.2 Commitments
Static properties successfully established by the verifica-

tion function for a target classfile are captured in commit-
ments. To maximize optimization opportunities, the Aegis
VM does not mandate a particular representation for com-
mitments. Any appropriate data structures can be employed
by a verification function to represent commitments for the
verification domain of the PVM.

3.3.3 Obligation Discharging Schedule
Because of lazy, dynamic linking, obligation discharging

proceeds in an incremental manner. Every proof obligation
formulated by a verification function is explicitly scheduled
to be discharged when a specific linking primitive is exe-
cuted. Such an obligation is said to be attached to the tar-
get linking primitive. Specifically, the following family of
linking primitives are defined for every class C:

endorse C: Endorsement of a class C occurs when C is
prepared [39, Section 5.4.2].

endorse C.F : Endorsement of a field C.F occurs prior to
the first access of F , and after the endorsement of class
C.

endorse C.M : Endorsement of a method C.M occurs prior
to the first invocation of M , and after the endorsement
of class C.

resolve S in C: This primitive coincides with the resolu-
tion of constant pool reference S. It occurs after the
endorsement of class C, and after the endorsement of
the referent of S.

In practice, proof obligations that require the checking of
C against the commitments of its supertypes or auxiliary

symbols are attached to endorsement primitives, while those
that validate import symbols are attached to resolution prim-
itives.

The design of the PVM facility is intentionally constrained,
so that a verification function may only attach proof obliga-
tions to “endorse C”, “endorse C.F”, “endorse C.M”,
and “resolve S in C” when the classfile representation of
class C is intrachecked. This constraint guarantees that the
correctness condition Safety is satisfied [23]. Specifically, the
design guarantees that, when a linking primitive is executed,
all proof obligations that may be attached to it are already
generated.

4. DOMAIN-INDEPENDENT PROOF
LINKING

A generic proof linking mechanism has been implemented
so that Aegis VM can process the proof obligations and com-
mitments generated by PVMs. At the heart of this facility
is a mechanism that allows users to define new verification
domain.

4.1 Obligation Libraries
Users may define an application-specific verification do-

main by developing an obligation library. As a dynamically
loadable shared library on GNU/Linux, each obligation li-
brary supplies the definitions for predicate symbols, global
classes and global constants of a verification domain. An
obligation library developer has to program the following:

Predicate functions. A native boolean function is defined
for each predicate symbol in the verification domain1.
This function will be dispatched when a corresponding
obligation is to be discharged. A predicate dispatching
table, analogous to a virtual function table, must be
exported by an obligation library.

Global classnames. An array of classnames must be ex-
ported to specify the names of global classes in the
verification domain. These classes will be automat-
ically loaded by the bootstrap classloader when the
Aegis VM bootstraps.

Global constants. An array of native data structures must
be exported as global constants for the verification do-
main.

4.2 Obligation Library API
To facilitate the evaluation of obligations, the Aegis VM

provides an obligation library API, whereby native predi-
cate functions can examine the run-time state of the VM
and look up commitments. A brief summary of the API
facilities is given in Figure 5. The obligation library API
is carefully designed so that native predicate functions only
have access to type interfaces and commitments of classes
that are already loaded. This guarantees that the correct-
ness condition Completion is satisfied [23].

1The formulation of the native predicate functions must cor-
respond to a monotonic logic in order for the correctness
condition Monotonicity to be satisfied [23]. It is the respon-
sibility of the obligation library developer to take care of
this requirement.

Package interface interrogation. Examine the name
and classloader of a loaded package.

Class interface interrogation. Examine the access con-
trol flags, package, classloader, name, superclass, su-
perinterfaces, declared fields, declared methods, and
constant pool entries of a loaded class.

Field interface interrogation. Examine the access con-
trol flags, declaring class, name, and type signature of
a field.

Method interface interrogation. Examine the access
control flags, declaring class, name, type signature,
and exception class names of a method.

Subtyping tests. Subclassing, subinterfacing, subtyping,
etc.

Contextual information. Retrieve commitments of a
class for the current verification domain; access global
classes and global constants of the current verification
domain.

Figure 5: Facilities in the Obligation Library API

4.3 Life Cycle of an Obligation Library
The Aegis VM can be configured with an arbitrary num-

ber of obligation libraries, thereby equipping the VM with
vocabularies for multiple verification domains. When the
Aegis VM starts up, all the configured obligation libraries
are loaded and initialized. The global classes specified by
each obligation library are loaded by the bootstrap class-
loader when the Aegis VM bootstraps. After this point, the
native predicate functions are made available to the generic
proof linking mechanism for obligation discharging. Obliga-
tion libraries are properly cleaned up and unloaded before
the Aegis VM shuts down.

4.4 Obligation Discharging Sequence
Whenever a linking primitive is executed, the Aegis VM

attempts to discharge all the attached proof obligations. To
discharge a proof obligation, the following steps are followed:

1. The predicate identifier is used as an index to look
up the corresponding native predicate function in the
predicate dispatching table of the current verification
domain. This is a constant-time operation

2. Each symbolic argument of the proof obligation is re-
solved into a corresponding pointer to a VM data struc-
ture or a global constant of the current verification do-
main. As argument resolution amounts to a constant-
time look up operation, construction of the argument
array takes time linear to the number of arguments
involved.

3. The native predicate function is invoked with the ar-
gument array as input. A boolean value is returned to
indicate the result of evaluation.

Execution of the linking primitive is authorized only when
all attached proof obligations are successfully discharged.

This concludes the discussion of the PVM facility and
the generic proof linking mechanism. We now turn to the
assessment of their utility.

5. SOFTWARE ENGINEERING BENEFITS
This section assesses the utility of the PVM facility in

supporting the development of link-time static verification
procedures for the JVM. Due to its simplicity and its rel-
evance to access control, the augmented type system JAC
[37] is chosen as an example verification domain to be im-
plemented on top of the PVM facility. Specifically, the JAC
type system, which is originally designed for typing Java
source programs at compile time (Section 5.1), is recast here
as a type system for the JVM bytecode language, enforce-
able at link time (Section 5.2). An annotation scheme is
designed for embedding JAC type interfaces into Java class-
files (Section 5.3). An obligation library is implemented for
the JAC verification domain (Section 5.4). A PVM for the
JAC type system is described (Section 5.5). Through the
recounting of this implementation exercise, the reader may
gain a better appreciation of the development effort involved
in the introduction of a non-standard static analysis into the
dynamic linking process of the JVM through the PVM facil-
ity. This in turn provides the basis for a fair assessment of
the software engineering benefits of the PVM facility (Sec-
tion 5.6).

5.1 JAC for the Java Source Language
JAC (Java with Access Control) [37] was proposed as an

augmented type system for controlling the proliferation of
side effects due to alias creation in object-oriented programs.
Rather than preventing the creation of aliases, JAC prevents
undesirable side effects from occurring when aliasing is un-
avoidable. Specifically, it allows a Java reference type to be
qualified as being readonly, which effectively protects the
transitive state of the reference from any write access. Un-
like the C type qualifier const, which only protects the state
of the object directly accessible from a const-qualified ref-
erence/pointer, the write protection of JAC extends to all
objects reachable from a readonly-qualified reference in the
underlying object graph.

To understand how transitive write protection works, con-
sider the following Java linked-list class.

public class List {

public int data;

public List next;

public List(int data, List next) {

this.data = data; this.next = next;

}

}

Notice that the instance variables of List are public, and as
such they can be freely modified by client code. However,
a List variable qualified as readonly cannot be used for
modifying the transitive state reachable from the variable.

readonly List x = new List(1, new List(2, null));
x.data = 5; // Error: Writing to immediate state
x.next.data = 6; // Error: Writing to transitive state

Objects reachable from a readonly reference are readonly.
Furthermore, unqualified reference types can be converted
to readonly ones, but not vice versa.

The original JAC type system is designed for typing Java
source programs at compile time. As discussed above, code

units that are checked to be type safe in the compilation
environment may no longer be type safe when they are linked
against those code units in the run-time environment. For
access control type systems to become a viable protection
mechanism for mobile code systems, they must be enforced
at link time. To this end, the JAC type system is recast in
this section as a type system for the JVM bytecode language.
Furthermore, this bytecode incarnation of JAC differs from
Kniesel and Theisen’s work [37] in the following ways:

1. The original JAC syntax forces the return type of an
instance method to share the same type qualifier with
the type of this, the object instance to which method
invocation is targeted. This restriction is purely a
source-level syntactic constraint, and will not be en-
forced here. The bytecode version of JAC presented
below is fully capable of qualifying the two types in-
dependently.

2. The original JAC type system has a mutable type qual-
ifier for decorating instance variables, thereby selec-
tively shielding the qualified fields from the transitive
effect of write protection. The mutable qualifier is not
modeled in this work. Extending the current work to
include the mutable qualifier is a straightforward ex-
ercise.

3. The original work in [37] describes an extension of JAC
to accommodate the generic type system of GJ [9], a
variant of Java that supports genericity. This exten-
sion is beyond the scope of this paper.

5.2 JAC for the JVM Bytecode Language
The JAC type system is recast here as a type system for

the JVM bytecode language. Similar to its source language
counterpart, the bytecode version of the JAC type system
defines two types, namely, readonly and ⊥. The bottom
type ⊥ applies to both mutable object references and prim-
itive values (i.e., int, boolean, etc). The readonly type
applies to object references for which transitive states are
protected.

5.2.1 Subtyping
The bottom type ⊥ is a subtype of readonly, and as such

the conversion of ⊥ to readonly is permitted. We write
A <: B if type A is equivalent to or a subtype of B. Method
subtyping follows the usual contravariant rule: A → B <:
A′ → B′ if A′ <: A and B <: B′.

5.2.2 Type Interface
Associated with each Java classfile is a JAC type interface,

which consists of an export part and an import part. Each
part is a list of type assertions, relating symbols to their
types. The export part describes type assertions for fields
and methods declared in the classfile. The import part con-
tains type assertions for field, method and interface method
references in the constant pool. The type assertion of a field
simply assigns a JAC type to the field. The type assertion
of a method assigns a JAC type to the return value and to
each formal parameter, including this in the case of an in-
stance method. A type assertion is well-formed if primitive
types in the standard Java type system are qualified by the
⊥ type.

5.2.3 Interchecking
Subclassing is safe only if method overriding honors the

usual subtyping rule. That is, if method C.M : T overrides
method C′.M : T ′, then T <: T ′. A similar requirement
applies to subinterfacing. This check can be performed when
the class endorsement primitive is executed.

Resolution of a constant pool method reference (or in-
terface method reference) C.M with import type assertion
C.M : T is type safe if the resolved target C′.M is defined in
a classfile that exports type assertion C′.M : T ′ and T ′ <: T .
Resolution of a constant pool field reference with import
type assertion C.F : T is type safe if the resolved target has
an export type assertion C′.F : T . Notice that the typing
requirements are different in the two cases.

5.2.4 Intrachecking
The export type assertion of a bytecode method is valid if

every program point in the method body can be consistently
assigned a JAC type state. A JAC type state is an assign-
ment of a JAC type to every location in the local variable
array and the operand stack. Every bytecode instruction
imposes typing constraints on the JAC type states at the
program points before and after the instruction. The typing
constraints for a sample of bytecode instructions are pre-
sented below. A more complete list can be found in [22].
The effect of a bytecode instruction is presented in a nota-
tion popularized by [39]. For example, the iadd instruction
pops two integers from the top of the operand stack, and
push their sum back. This can be illustrated as follows.

. . . , i1, i2 −→ . . . , i3

where integer i3 is the sum of i1 and i2.

aastore

Operand Stack: . . . , a, i, v −→ . . .

Operation: Store reference value v into array refer-
ence a as the component at index i.

Type Constraints: Neither a nor v is readonly.

getfield 〈fieldref 〉

Operand Stack: . . . , o −→ . . . , v

Operation: Load the value v of the instance variable
〈fieldref 〉 from object instance o.

Type Constraints: If the constant pool entry
〈fieldref 〉 is a reference field with a readonly im-
port type, then v must be readonly. If 〈fieldref 〉
is a reference field, and o has a readonly type,
then v must be readonly. Otherwise, v must be
⊥.

putfield 〈fieldref 〉

Operand Stack: . . . , o, v −→ . . .

Operation : Store the value v into the instance vari-
able 〈fieldref 〉 of object instance o.

Type Constraints: The type of o must not be
readonly. If the constant pool entry 〈fieldref 〉
is a reference field with an import type ⊥, then v

must not have a readonly type.

invokevirtual 〈methodref〉

Operand Stack:
. . . , o, a1, a2, . . . , ak −→ . . . , v

Operation: Invoke method 〈methodref 〉, with argu-
ments a1, a2, . . . , ak, on object instance o. Any
return value v is pushed into the operand stack.

Type Constraints: Let the type of o, a1, . . . , ak

and v be A0, A1, . . . , Ak and A, and the im-
port type of the constant pool entry 〈methodref 〉
be 〈B0, B1, . . . , Bk〉 → B. Then Ai <: Bi for
0 ≤ i ≤ k, and B <: A.

5.3 Embedding JAC Type Interfaces
To make JAC enforceable at link time, every classfile must

carry a JAC type interface. A compact encoding has been
designed [22] for embedding JAC type interfaces into class-
files through the classfile attribute facility [39, Section 4.7].

A well-formed JAC attribute assigns no more than one
type to an export symbol or an import reference. It is how-
ever, not necessary for all symbols to receive a type assign-
ment. The symbols left untyped are said to have default
types. In fact, a classfile may not even have a JAC attribute.
In such a case, all import references and export symbols
are assumed to have default types. The default type of a
field is ⊥; the default type of a method is such that the
return value and all formal parameters have type ⊥. This
definition of default types is consistent with the interpre-
tation of the standard Java type system in the context of
JAC. The provision of assuming a default type interface for
a classfile not carrying a JAC attribute renders it possible
to reuse legacy classfiles not compiled for JAC typechecking,
so long as client classes do not pass read-only references to
the legacy classes. This is particularly handy in the case of
the standard Java class library — hundreds of system classes
can be reused as is. This simple choice of default type makes
the experiments described in Section 6 tractable2.

A command line utility was developed to facilitate the in-
jection of JAC attributes into classfiles. The program takes
a classfile and a high level JAC type interface specification
as input, and generate a version of the input classfile with
the corresponding JAC attribute embedded3.

5.4 Obligation Library for JAC
An obligation library has been implemented for the JAC

verification domain. The JAC obligation library exports the
following predicates:

1. Import safety predicates:

safe-field-import field import-type
safe-method-import method import-type

where field is a field, method a method, and import-
type a UTF-8 literal representing an import type sig-
nature. The predicates checks if the export type of

2A more sophisticated design is to extend this version of
JAC to incorporate polymorphism, and to automatically
generate a principal type interface for each library class us-
ing a type inference algorithm. Not needed by the experi-
ments in this paper, such a feature is left for future work.
3Alternatively, the specification and embedding of JAC type
annotations can be performed in the framework of the new
JDK 5.0 metadata facility [6].

field/method is compatible with import-type. Imple-
mentation of the two predicate functions involves the
invocation of obligation library API functions to re-
trieve commitment data structures.

2. Method overriding safety predicate:

safe-method-override class

For each of the method declared in class, check that
its export type is a subtype of the export type of ev-
ery method it overrides. Implementation of this predi-
cate function involves applying obligation library API
functions to visit all superclasses and superinterfaces
of class, and to retrieve their commitment data struc-
tures.

The obligation library also exports a global constant for rep-
resenting default types. No global class is specified for the
JAC verification domain.

5.5 PVM for JAC
A PVM has been implemented for JAC. When the verifi-

cation function of the JAC PVM is invoked on a classfile, it
performs the following verification steps:

1. Parsing the type interface into a commitment
data structure. If the classfile carries a JAC at-
tribute, then the embedded JAC type interface is check-
ed for well-formedness. Otherwise, a default JAC type
interface is assumed. In either case, a JAC-specific
commitment data structure is generated to store the
JAC type interface.

2. Intrachecking bytecode methods. An iterative
dataflow analysis algorithm is applied to verify that
the bytecode methods satisfy the type constraints spec-
ified in Section 5.2.4. Notice that, if all import refer-
ences have default types, then there is no need to run
the dataflow analysis on a method with default export
type. In such a case, the analysis merely repeats what
has already been checked by the built-in bytecode ver-
ification procedure. Consequently, intrachecking can
be safely skipped for classfiles with no JAC attribute.

3. Generating obligation attachments. Firstly, a
corresponding import safety obligation is attached to
the resolution primitive of each import reference in the
constant pool. For example, an obligation of the fol-
lowing form will be generated for a field reference in
the constant pool:

safe-field-import import-symbol i literal j

where i is the constant pool index of the field reference,
and j is the constant pool index of the UTF-8 string
storing the import type. If the import type of the
field reference is not explicitly specified in the JAC
attribute, then the reference has a default type, and
the following obligation should be generated instead:

safe-field-import import-symbol i

global-constant 0

where “global-constant 0” denotes the global con-
stant representing default types. The formulation of

PVM Obl. Lib. Shared Total
2082 490 75 2647

Figure 6: LOC for the JAC Implementation

import safety obligations for method references is sim-
ilar.

Notice that obligation attachments should still be gen-
erated for an import reference even if it has default
type, since the export type of the reference target
may not be compatible with the default import type.
In other words, although intraprocedural typechecking
may be optimized away in special cases (see step 2 for
details), interprocedural typechecking must never be
bypassed.

Secondly, a method overriding safety obligation is at-
tached to the class endorsement primitive of the target
class.

safe-method-override this

4. Formulating verification interface. A verification
interface composed of the commitment data structure
from step 1 and the proof obligations from step 3 is
constructed. No auxiliary symbol is needed in this
verification domain.

5.6 Assessment
Reduction of Code Complexity. Figure 6 gives an

estimate of the complexity of the JAC implementation de-
scribed in Sections 5.4 and 5.5. Specifically, the number
of lines of (moderately commented) C code for the JAC
PVM, the corresponding obligation library, and common
data structures shared between the two are displayed. Such
a modest complexity is achieved because the Aegis VM pro-
vides reusable facilities to ease the development of verifi-
cation services. These include, for example, construction
of AST and type analysis results, API for interrogation of
VM state, utilities for formulating and managing commit-
ments and obligations, and, most importantly, automated
interchecking through proof linking. In short, the Aegis VM
provides a reusable development platform for developers of
link-time verification services.

Reduction of Cognitive Stain. Notice from Section 5.5
that a PVM developer works with an abstract proof linking
model rather than concrete details of the Aegis VM internal.
Not only that, Safety and Completion are granted for free:
violations of the two correctness conditions cannot even be
expressed in a PVM. Such provisions make the construction
of well-mannered verification services a cognitively tractable
task.

6. SECURITY ENGINEERING BENEFITS
Using the JAC type system as an example, this section il-

lustrates that features built into the PVM facility, including
user-defined intrachecking, and safe dynamic linking through
proof linking, can be exploited to impose access control con-
straints among mutually distrusting code units within the
same application.

6.1 Protection Through Import Type
Annotations

Suppose an application class Alice needs to compute the
sum of all integers in a List it creates. The task is dele-
gated to another class Bob, which provides a sum method
that computes the sum of all elements in a given List.

public class Alice {

public static void main(String[] args) {

List L =

new List(1, new List(2, new List(3, null)));

System.out.println(Bob.sum(L));

}

}

Suppose Alice cannot trust that Bob is side-effect free. To
ensure Bob does not accidentally or maliciously modify the
values stored in the List argument, the classfile of Alice can
be annotated with a JAC attribute containing the following
import type assertion.

Bob.sum : readonly → ⊥

When the Alice class is defined at load time, the JAC PVM
will attach a safe-method-import obligation to the resolu-
tion primitive of the import reference Bob.sum. The generic
proof linking mechanism will thus refuse to link Alice with
any implementation of Bob that does not honor this import
type specification. Consequently, the transitive state of the
List reference passed into sum will be write protected.

6.2 Inspiring Trust by Asserting Export Types
Suppose the class Bob indeed provides a side-effect free

implementation of the sum method.

public class Bob {

public static int sum(List L) {

int acc = 0;

while (L != null) {

acc += L.data;

L = L.next;

}

return acc;

}

}

To inspire trust, the classfile of Bob will need to be annotated
properly. Specifically, the following export type assertion is
embedded into the classfile of Bob.

Bob.sum : readonly → ⊥

When the class Bob is defined at load time, the verification
function of the JAC PVM will be invoked, and dataflow
analysis is conducted on the body of the Bob.sum method
so as to ensure that the implementation indeed lives up to
its promise. In this case, the JAC PVM successfully veri-
fies the export type assertion of the method, and class def-
inition is therefore granted. Next, when the import ref-
erence Bob.sum is resolved in Alice, the proof obligation
safe-method-import will be discharged to make sure that
the export type of sum in Bob is compatible with its cor-
responding import type in Alice. Again, the check will
succeed, and resolution will be granted.

To appreciate the robustness of trust inspiration, consider
a version of Bob in which the sum method silently corrupts
the List argument.

public class Bob {

public static int sum(readonly List L) {

int acc = 0;

while (L != null) {

acc += L.data;

if (L.next == null) // corrupt last node

L.data = 0;

L = L.next;

}

return acc;

}

}

The sum method perturbs the integer datum stored in the
last node of the List argument, corrupting its transitive
state. Without further annotation, Alice will not link with
Bob due to the incompatibility between the default export
type of Bob.sum and its expected import type in Alice. Yet,
the classfile of Bob could be annotated with a JAC attribute
that falsely claims that the sum method is side-effect free.

Bob.sum : readonly → ⊥

When the Aegis VM attempts to verify this version of Bob
with the JAC PVM, the dataflow analyzer will fail to con-
firm the consistency of the export type assertion, and class
definition will fail. In either case, write protection is guar-
anteed.

6.3 Secure Software Extension
Consider a more realistic example, in which the class Alice

dynamically loads a user-specified extension to carry out the
summation operation.

public class Alice {

public static void main(String[] args)

throws Throwable {

List L = new List(1, new List(2,

new List(3, null)));

Class C = Class.forName(args[0]);

Bob b = (Bob) C.newInstance();

System.out.println(b.sum(L));

}

}

In this example, Bob is defined as an interface specifying the
invocation convention of the summation service.

public interface Bob {

int sum(List L);

}

To protect Alice, the classfile of Bob is annotated to ensure
that any implementation of the sum service must treat the
List argument as readonly. Specifically, Bob.sum has the
following export type in Bob.

Bob.sum : readonly → ⊥

Notice, however, that there is no need to annotate Alice,
because a default import type for Bob.sum is assumed.

Bob.sum : ⊥ → ⊥

When the interface method reference Bob.sum is resolved
in Alice, the corresponding safe-method-import obligation
will be discharge successfully since the export type of the

resolved target (readonly → ⊥) is a subtype of the default
import type (⊥ → ⊥).

Suppose the class Charlie provides a non-compliant im-
plementation of Bob.sum.

public class Charlie implements Bob {

public int sum(List L) {

int acc = 0;

while (L != null) {

if (L.next == null) // corrupt last node

L.data = 0;

acc += L.data;

L = L.next;

}

return acc;

}

}

If Charlie is not annotated, then the default export type of
Charlie.sum will violate the subtyping constraint required
for type safe method overriding. The obligation
safe-method-override will thus fail to discharge when
Charlie is prepared. Alternatively, if Charlie falsely ex-
ports the following type assertion

Charlie.sum : readonly → ⊥

then the JAC PVM will detect the inconsistency when the
Charlie class is defined. In both cases, this faulty imple-
mentation of Bob will be rejected.

6.4 Assessment
A fundamental security challenge in dynamically extensi-

ble software systems has been the facilitation of secure co-
operation among mutually distrusting code units within the
same application. This problem and its variations have been
known by many names: the problem of mutual suspicion [50]
safe invocation [49], confused deputy [30], layered protection
[22], etc. Although the examples in this section are specific
to the JAC type system, they do illustrate how the PVM
facility and the generic proof linking mechanism may serve
as an enabling technology by which application-specific solu-
tions for secure cooperation can be implemented:

1. Protection by Access Contracts. Access control
constraints may be formulated as commitments, spec-
ifying a contract between a class and its potentially
malicious collaborators (e.g., JAC import types).

2. Safe Dynamic Linking. Appropriate obligations
must be formulated to enforce the contract at link
time (e.g., safe-method-import). The semantics of
the obligations are defined through the development
of an obligation library.

3. Trust Inspiration. To inspire trust, collaborating
code units must formulate matching commitments (e.g.,
JAC export types), and ensure that they live up to
their promises. The latter check is performed at link
time by a PVM.

4. Secure Software Extension. Dynamic software ex-
tension is enabled in Java through the combination of
dynamic loading and subtyping. The current protec-
tion scheme can also handle dynamic software exten-
sion through the design of appropriate subtyping rules
(e.g., safe-method-override).

PVM Obl. Lib. Shared Total
JAC 2082 490 75 2647

Confined Type 2257 579 90 2926

Figure 7: Relative Complexity (in LOC) of the JAC
and Confined Types Implementations

Capability type systems [8] similar to JAC can be readily
enforced in the PVM framework.

7. CONCLUDING REMARKS

7.1 Discussion

Wider Applicability. Although only JAC was examined in
this paper, the PVM framework is designed to be a gen-
eral extension mechanism for hosting a wide range of link-
time verification services. Efforts are underway to develop
PVMs and obligation libraries for confined types [55] and
alias burying [7], the other two alias control type systems
that appear with JAC [37] in the SP&E Special Issue on
Aliasing in Object-Oriented Systems. Given our previous
experience with JAC, a first working implementation4 of
confined types was obtained in 35 hours, with a complexity
comparable to that of JAC (see Figure 7). Implementation
of alias burying is still on-going. Such implementation ex-
ercises will further demonstrate the generality of the PVM
framework, and reveal potential areas of improvement.

Trusted Computing Base.The administrator of the Aegis
VM is responsible for configuring it with PVMs and obliga-
tion libraries, which are developed in native code, and are
considered part of the trusted computing base (TCB). A
potential objection to this design is that application-specific
verifiers should be part of the application layer, expressed
in JVM bytecode as a classloader. Such an alternative ap-
proach, if viable, would reduce the size of the TCB, and
prevent buggy verifiers from crashing the JVM. Attractive
as it is, such an approach is unfortunately not feasible in
the general case. Firstly, such a proposal overlooks the need
for interchecking application classes with built-in classes.
The latter are defined by the bootstrap classloader rather
than user-defined classloaders, and thus a verification mod-
ule embedded in an user-defined classloader will have no way
of generating proof obligations and commitments for those
built-in classes. Secondly, and more importantly, the attach-
ment and discharging of proof obligations at specific linking
events cannot be modeled at the bytecode level. Introducing
application-specific checks to strategic points of the dynamic
linking process can only be achieved by modifying the inter-
nal behavior of the JVM. The existing design appears to be
the only technically feasible approach in the general case.
We however do not rule out the possibility that some veri-
fication domains (e.g., [15]) may admit an implementation
embedded in a classloader.

An interesting approach to reduce programming errors in
PVMs and obligation libraries is to design alternative PVM
and obligation library APIs that support plugins coded in

4This implementation can be found in the CVS repository
of the Aegis VM Project.

a safe C dialect such as Cyclone [32]. The feasibility of this
approach is currently being explored.

Efficiency.Early experience with small example code does
not indicate that the PVM facility causes any significant
performance degradation. Because there is no existing Java
code base that are heavily annotated with augmented types
such as JAC, it is very difficult to obtain performance mea-
surement with real Java applications. However, we predict
that any performance impact caused by the introduction of
the PVM framework is correlated to the degree of static and
dynamic coupling of application classes: the tighter classes
are coupled, the more linking primitives are executed, and
thus more obligation discharging and verification sessions
will be resulted. To better profile the performance char-
acteristics of the PVM facility, we are currently designing
an artificial application domain in which the degree of class
coupling can be precisely manipulated.

Self-Certifying Code.To reduce the performance over-
head incurred by link-time verification, a code producer may
annotate untrusted code with a program-analytic certificate
that witness to the safety of the code. Upon receiving the an-
notated code, the link-time verification service checks stati-
cally if the certificate indeed establishes the safety property
in question. Intuitively, certificate checking is more efficient
than establishing code safety from scratch. This is the mo-
tivation behind the idea of Proof-Carrying Code (PCC) [44,
43] and J2ME pre-verification. The Proof Linking archi-
tecture and its PVM realization support the adoption of
self-certifying code in a legacy environment, in which a Java
application may contain both unannotated code and self-
certifying code. Specifically, a PVM may be constructed
to perform efficient certificate checking for self-certifying
code, and resort to full verification for unannotated code.
In both cases, the PVM generates a verification interface
(i.e., proof obligations and commitments) for the classfile in
question. Because of the modular verification architecture,
proof linking processes proof obligations and commitments
consistently in both cases despite the difference in how in-
trachecking is performed (i.e., certification checking vs full
verification). Consult [24, 22] for an extensive discussion of
how Proof Linking supports the interoperability of various
distributed verification protocols.

7.2 Related Work
The correctness of the Proof Linking architecture, espe-

cially its interaction with lazy, dynamic linking, has been
studied rigorously [23]. The correctness proof has been gen-
eralized to account for multiple classloaders [24]. Previous
work focuses on how the Proof Linking architecture may
improve the comprehensibility and maintainability of the
standard bytecode verifier [23], and how it can facilitate
distributed verification [24]. This paper takes the research
program a significant step further by (1) providing a com-
plete implementation of the Proof Linking architecture in
the Aegis VM, (2) applying the Proof Linking architecture to
build an extensible protection mechanism, in which the link-
time verification service becomes pluggable, and (3) evalu-
ating the utility of the extension mechanism in a concrete
verification domain.

The lack of extensibility in mainstream VM implementa-
tions has motivated a number of design alternatives. The

XVM [31] allows applications to load code expressing appli-
cation-specific policies for customizing the run-time com-
pilation strategy, object placement within the heap, and
thread scheduling. The Jupiter VM [16] is based on a build-
ing block architecture, in which pluggable resource factories
can be used to control run-time mechanisms such as thread
model, memory allocation strategy, and object locality. The
OVM [46] employs an object-oriented application framework
to provide a reflective, customizable intermediate language.
The Aegis VM is the first to address the need of extensibil-
ity on the security front by offering a configurable link-time
verification service within a formally verified architecture.

The study of type-safe linking was pioneered in the work
of Cardelli [10], which was followed by works such as typed
object files for TAL [28] and the comprehensive type system
of Duggan [17].

Built on their prior experience in formalizing various as-
pects of Java’s bytecode verifier and dynamic linking model
[29, 14, 47, 13], Qian et al [48] proposed a formal specifica-
tion of the Java classloading model, taking into account of
both bytecode verification and the on-going maintenance of
loading constraints. In their specification, bytecode verifica-
tion is modeled as a modular primitive. Interchecking and
classloading is avoided by the formulation of subtype con-
straints to capture intermodular dependencies, a strategy
similar to the formulation of proof obligation. The subtype
constraints are maintained and verified lazily in the same
way as the type equivalence constraints mandated by Liang
and Bracha [38, 39]. Two points of comparison are observed.
While proof obligations can be arbitrary queries, Qian et al
focus only on Java subtyping constraints. Type consistency
is modeled as a constraint problem over semilattices. In con-
trast, the generic proof linking model can be applied to a
wide spectrum of verification domains. Furthermore, sub-
type constraints are maintained on-the-fly , whereas proof
obligations are scheduled to be discharged prior to the ex-
ecution of their target linking primitives. This scheduling
element introduces an additional dimension of complexity
into the Proof Linking architecture.

Foster et al [26] developed a general framework for adding
user-defined type qualifiers to a language. The framework
supports qualifier polymorphism, and handles qualifier in-
ferences separately from the standard type system. The
framework has been successfully applied to detect format
string vulnerabilities [51]. The framework was subsequently
extended to account for flow-sensitive type qualifiers [27].
The inference algorithm has been implemented in a tool
Cqual, which allows programmers to annotate C programs
with application-specific type qualifiers, and subsequently
checks for type-safety statically. Although the work of Fos-
ter et al shares with PVM the same goal of enabling users
to incorporate application-specific verification into a pro-
gramming language system, the two works differ in several
aspects. Firstly, while the work of Foster et al represents
a type-theoretic study of user-defined type qualifiers, PVM
is a plug-in architecture aimed at supporting a wide-range
of static verification tasks. Generality is achieved through a
customizable proof linking mechanism, in which verification
interfaces are represented as proof obligations and commit-
ments. Secondly, while Cqual is a compile-time analysis
tool, the PVM facility is a link-time protection mechanism.
The explicit modeling of linking primitives and the formu-

lation of obligation discharging schedules are essential for
enforcing safety in a lazy, dynamic linking environment.

Extensibility is achieved in this work through modulariza-
tion. Alternatively, software adaptation could be conducted
in a more systematic manner through the application of ad-
vanced programming constructs. Originally proposed as an
alternative to encapsulation for implementing separation of
concern, aspect-oriented programming [34, 35] can be seen
as a high-level program extension mechanism. Specifically,
aspect-oriented programming systems allow the weaving of
aspect code into programmer-specified join points, thereby
modifying the behavior of the underlying program. Behav-
ioral reflection [20] and intercessory metaobject protocols
[36] allow operations such as method invocation to be in-
tercepted. When an interception occurs, a metaobject will
be notified of the event via some kind of method call back
facility. Programmers can customize the semantics of the
metaobject to achieve the effect of software extension.

7.3 Future Work
As the extension APIs for PVMs and obligation libraries

are orthogonal to the rest of the VM architecture, an in-
teresting endeavor is to reproduce the same extension APIs
in other JVM implementations, thereby making PVMs and
obligation libraries interoperable with multiple JVMs.

To facilitate program analysis, the Aegis VM passes to the
PVM verification function the AST and type analysis results
of the target classfile. The verification function can utilize
the control flow and typing information to speed up intra-
checking. Further speedup may be achievable if the dataflow
structure of bytecode methods can be made explicit, and is
passed along with the classfile AST to the verification func-
tion. One promising direction is to develop reusable PVMs
that summarize the dataflow structure of a bytecode method
in a SSA-based representation [4] along the line of Jimple
[54] or SafeTSA [3]. To support this, an extension of the
PVM API is planned to allow PVMs to share analysis re-
sults with each other.

The author is exploring the design of a capability type
system in which high-level access control constraints can be
expressed to enable secure cooperation in Java bytecode pro-
grams [25]. Such a type system will exploit the PVM facility
as a development platform. Another direction of interest is
to explore the embedding of Jif (Java Information Flow) [42,
41] in the PVM framework.

Proof Linking generalizes the link-time access control checks
performed in a standard JVM. An extensible protection
mechanism is obtained by making these access control checks
customizable. Another set of safety checks performed by the
JVM are loading constraints, which are essentially equiva-
lence constraints over binding of class symbols from different
namespaces [38]. An interesting direction is to generalize
the idea of Qian et al [48], and make loading constraints
customizable: users may introduce application-specific con-
straint systems over the binding of class symbols, and main-
tain binding consistency with pluggable constraint solvers.
This flexibility could yield an extensible protection mecha-
nism for which the subtype constraint system of Qian et al
becomes a special case.

Both the the PVM facility and the extensible loading
constraint system suggested in the previous paragraph are
special-purpose extension mechanisms. An existing check is
identified, and customizability is introduced through some

kind of special-purpose plug-in mechanism. An alternative
is to consider the application of general-purpose software
adaptation mechanisms, such as Aspect-Oriented Program-
ming, to extend the protection mechanism of a JVM. In
this approach, customizable join points are documented and
publicized as an Extension Programming Interface. Cus-
tomization code is then weaved into these join points as
security aspects. Such an approach may reduce the proba-
bility of programming error, and thus simplify the process
of transforming an existing protection mechanism into an
extensible one.

7.4 Conclusion
A extensible protection mechanism, Pluggable Verifica-

tion Modules, has been designed and implemented for the
JVM. Enabled by the Proof Linking architecture, the exten-
sion mechanism turns link-time verification into a pluggable
service. The software engineering and security engineer-
ing benefits of the extension framework have been demon-
strated. This suggests the notion of pluggable verification
services is more than just an isolated technological novelty,
but rather it represents a paradigm for building safe lan-
guage environments. The notion of safety changes as the
protection needs of a language environment evolve. A well-
designed language environment should anticipate evolution
by building into itself an extension mechanism that sup-
ports the augmentation of its verification service. Much like
a pipeline architecture (i.e., scanner, parser, optimizer, code
generator, etc) is a standard architecture for compilers, the
author argues that a modular verification architecture such
as Proof Linking should be a standard design for safe lan-
guage environments.

8. ACKNOWLEDGEMENTS
This work was supported in part by an NSERC Discovery

Grant. The author is grateful for the valuable comments
from Warren Burton, Robert Cameron, James Cordy, Tiko
Kameda, and the anonymous reviewers.

9. REFERENCES
[1] Jonathan Aldrich, Craig Chambers, and David

Notkin. ArchJava: Connecting software architecture
to implementation. In Proceedings fo the 24th
International Conference on Software Engineering
(ICSE’02), pages 187–197, Orlando, Florida, USA,
May 2002.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias annotations for program
understanding. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’02), pages 311–330, Seattle, Washington,
USA, November 2002.

[3] Wolfram Amme, Niall Dalton, Jeffery von Ronne, and
Michael Franz. SafeTSA: A type safe and referentially
secure mobile-code representation based on static
single assignment form. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming
Language Design and Implementation (PLDI’01),
pages 137–147, Snowbird, Utah, USA, May 2001.

[4] John Aycock and Nigel Horspool. Simple generation of
static single-assignment form. In Proceedings of the 9th

International Conference on Compiler Construction
(CC’00), volume 1781 of Lecture Notes in Computer
Science, pages 110–124, Berlin, Germany, April 2000.

[5] Brian Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gun Sirer, David Becker, Marc Fiuczynski,
Craig Chambers, and Susan Eggers. Extensibility,
safety and performance in the SPIN operating system.
In Proceedings of the 15th ACM Symposium on
Operating System Principles (SOSP’95), pages
267–284, Copper Mountain, Colorado, USA,
December 1995.

[6] Joshua Bloch. JSR 175: A metadata facility for the
Java programming language.
http://www.jcp.org/en/jsr/detail?id=175.

[7] John Boyland. Alias burying: Unique variables
without destructive reads. Software — Practice and
Experience, 31(6):533–553, May 2001.

[8] John Boyland, James Noble, and William Retert.
Capabilities for sharing: A generalisation of
uniqueness and read-only. In Proceedings of the 15th
European Conference on Object-Oriented Programming
(ECOOP’01), Budapest, Hungary, June 2001.

[9] Gilad Bracha, Martin Odersky, David Stoutamire, and
Philip Wadler. Making the future safe for the past:
adding genericity to the Java programming language.
In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’98), pages 183–200, Vancouver, British
Columbia, Canada, October 1998.

[10] Luca Cardelli. Program fragments, linking, and
modularization. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’97), pages 256–265,
Paris, France, January 1997.

[11] Antonio Carzaniga, Gian Pietro Picco, and Giovanni
Vigna. Designing distributed applications with mobile
code paradigms. In Proceedings of the 19th
International Conference on Software Engineering
(ICSE’97), pages 22–32, Boston, Massachusetts, USA,
May 1997.

[12] David G. Clarke, John M. Potter, and James Noble.
Ownership types for flexible alias protection. In
Proceedings of the 13th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’98), pages 48–64,
Vancouver, British Columbia, Canada, October 1998.

[13] Alessandro Coglio and Allen Goldberg. Type safety in
the JVM: Some problems in JDK 1.2.2 and proposed
solutions. In Proceedings of the 2nd ECOOP
Workshop on Formal Techniques for Java Programs,
Sophia Antipolis and Cannes, France, June 2000.

[14] Alessandro Coglio, Allen Goldberg, and Zhenyu Qian.
Toward a provably-correct implementation of the
JVM bytecode verifier. In Proceedings of the
OOPSLA’98 Workshop on the Formal Underpinnings
of Java, October 1998.

[15] John Corwin, David F. Bacon, David Grove, and Chet
Murthy. MJ: A rational module system for Java and
its applications. In Proceedings of the 18th ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’03), pages 241–254, Anaheim, California,

USA, October 2003.

[16] Patrick Doyle and Tarek S. Abdelrahman. A modular
and extensible JVM infrastructure. In Proceedings of
the USENIX 2nd Java Virtual Machine Research and
Technology Symposium (JVM’02), San Francisco,
California, USA, August 2002.

[17] Dominic Duggan. Type-safe linking with recursive
DLL and shared libraries. ACM Transactions on
Programming Languages and Systems, 24(6):711–804,
November 2002.

[18] ECMA. Common language infrastructure (CLI).
Standard 335, ECMA, December 2002.

[19] Dawson R. Engler, M. Frans Kaashoek, and
James O’Toole Jr. Exokernel: An operating system
architecture for application-level resource
management. In Proceedings of the 15th ACM
Symposium on Operating System Principles
(SOSP’95), Copper Mountain, Colorado, USA,
December 1995.

[20] Jacques Ferber. Computational reflection in class
based object oriented languages. In Proceedings of the
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’89), pages
317–326, New Orleans, Louisiana, USA, October 1989.

[21] Philip W. L. Fong. The Aegis VM Project.
http://aegisvm.sourceforge.net.

[22] Philip W. L. Fong. Proof Linking: A Modular
Verification Architecture for Mobile Code Systems.
PhD thesis, School of Computing Science, Simon
Fraser University, Burnaby, B.C., Canada V5A 1S6,
2004.

[23] Philip W. L. Fong and Robert D. Cameron. Proof
linking: Modular verification of mobile programs in
the presence of lazy, dynamic linking. ACM
Transactions on Software Engineering and
Methodology, 9(4):379–409, October 2000.

[24] Philip W. L. Fong and Robert D. Cameron. Proof
linking: Distributed verification of Java classfiles in
the presence of multiple classloaders. In Proceedings of
the USENIX Java Virtual Machine Research and
Technology Symposium (JVM’01), pages 53–66,
Monterey, California, USA, April 2001.

[25] Philip W. L. Fong and Cheng Zhang. Capabilities as
alias control: Secure cooperation in dynamically
extensible systems. Technical Report CS-2004-3,
Department of Computer Science, University of
Regina, Regina, Saskatchewan, Canada S4S 0A2,
2004. ISBN:0-7731-0479-8.

[26] Jeffrey S. Foster, Manuel Fähndrich, and Alexander
Aiken. A theory of type qualifiers. In Proceedings of
the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation (PLDI’99),
pages 192–203, Atlanta, Georgia, USA, May 1999.

[27] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken.
Flow-sensitive type qualifiers. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
Lanuage Design and Implementation (PLDI’02), pages
1–12, Berlin, Germany, June 2002.

[28] Neal Glew and Greg Morrisett. Type-safe linking and
modular assembly language. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’99), pages

250–261, San Antonio, Texas, USA, January 1999.

[29] Allen Goldberg. A specification of Java loading and
bytecode verification. In Proceedings of the 5th ACM
Conference on Computer and Communications
Security (CCS’98), pages 49–58, San Francisco,
California, USA, November 1998.

[30] Norm Hardy. The confused deputy (or why
capabilities might have been invented). ACM SIGOPS
Operating Systems Review, 22(4):36–38, October 1988.

[31] Timothy L. Harris. Extensible virtual machines.
Technical Report 525, University of Cambridge
Computer Laboratory, Cambridge, UK, December
2001.

[32] Trevor Jim, Greg Morrisett, Dan Grossman, Michael
Hicks, James Cheney, and Yanling Wang. Cyclone: A
safe dialect of C. In Proceedings of the USENIX
Annual Technical Conference, pages 275–288,
Monterey, California, USA, June 2002.

[33] Sarfraz Khurshid, Darko Marinov, and Daniel
Jackson. An analyzable annotation language. In
Proceedings of the 17th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’02), pages
231–245, Seattle, Washington, USA, November 2002.

[34] Cregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Christina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming
(ECOOP’97), volume 1241 of Lecture Notes in
Computer Science, Finland, June 1997.
Springer-Verlag.

[35] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey palm, and William Griswold. An
overview of AspectJ. In Proceedings of the 15th
European Conference on Object-Oriented
Programming (ECOOP’01), volume 2072, pages
327–353, Budapest, Hungary, June 2001.

[36] Gregor Kiczales, Jim Des Rivieres, and Daniel
Bobrow. The Art of the Metaobject Protocol. MIT
Press, 1991.

[37] Günter Kniesel and Dirk Theisen. JAC — access right
based encapsulation for Java. Software — Practice
and Experience, 31(6):555–576, May 2001.

[38] Sheng Liang and Gilad Bracha. Dynamic class loading
in the Java virtual machine. In Proceedings of the
1998 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA’98), pages 36–44, Vancouver, British
Columbia, Canada, October 1998.

[39] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison Wesley, 2nd edition,
1999.

[40] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 2nd edition, 1987.

[41] Andrew C. Myers. JFlow: Practical mostly-static
information flow control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’99), pages
228–241, San Antonio, Texas, USA, January 1999.

[42] Andrew C. Myers and Barbara Liskov. Complete, safe
information flow with decentralized labels. In

Proceedings of the 1998 IEEE Symposium on Security
and Privacy (S&P’98), Oakland, California, USA,
May 1998.

[43] George C. Necula. Proof-carrying code. In Proceedings
of the 24th ACM Symposium on Principles of
Programming Languages (POPL’97), pages 106–119,
Paris, France, January 1997.

[44] George C. Necula and Peter Lee. Safe kernel
extensions without run-time checking. In Proceedings
of the Second Symposium on Operating System Design
and Implementation (OSDI’96), pages 229–243,
Seattle, Washington, USA, October 1996.

[45] R. O’Callahan. A simple, comprehensive type system
for Java bytecode subroutines. In Proceedings of the
26th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’99),
pages 70–78, San Antonio, Texas, USA, January 1999.

[46] K. Palacz, J. Baker, C. Flack, C. Grothoff,
H. Yamauchi, and J. Vitek. Engineering a
customizable intermediate representation. In
Proceedings of the Workshop on Interpreters, Virtual
Machines and Emulators (IVME’03), San Diego,
California, USA, June 2003.

[47] Zhenyu Qian. Standard fixpoint iteration for Java
bytecode verification. ACM Transactions on
Programming Languages and Systems, 22(4):638–672,
July 2000.

[48] Zhenyu Qian, Allen Goldberg, and Alessandro Coglio.
A formal specification of Java class loading. In
Proceedings of the 15th Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’00), pages 325–336, Minneapolis,
Minnesota, USA, October 2000.

[49] Jonathan A. Rees. A security kernel based on the
lambda-calculus. A.I. Memo 1564, MIT, 1996.

[50] Michael D. Schroeder. Cooperation of Mutually
Suspicious Subsystems in a Computer Utility. Ph.D.
thesis, Massachusetts Institute of Technology,
September 1972.

[51] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and
David Wagner. Detecting format-string vulnerabilities
with type qualifiers. In Proceedings of the 10th
USENIX Security Symposium, Washington, D.C.,
USA, August 2001.

[52] Raymie Stata and Martin Abadi. A type system for
Java bytecode subroutines. ACM Transactions on
Programming Languages and Systems, 21(1):90–137,
January 1999.

[53] Tommy Thorn. Programming languages for mobile
code. ACM Computing Surveys, 29(3):213–239,
September 1997.

[54] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a
Java bytecode optimization framework. In Proceedings
of the 1999 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON’99),
Mississauga, Ontario, Canada, November 1999.

[55] Jan Vitek and Boris Bokowski. Confined types in
Java. Software — Practice and Experience,
31(6):507–532, May 2001.

